metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Doxofyllinium tetra­chlorido­anti­monate(III) monohydrate

aCollege of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, People's Republic of China, bCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and cGuobang Chemicals Co., Ltd., Shangyu Zhejiang 312369, People's Republic of China
*Correspondence e-mail: apharm@sina.com

(Received 16 November 2007; accepted 5 December 2007; online 12 December 2007)

The title compound, (C11H14N4O4)[SbCl4]·H2O, comprises a protonated doxofyllinium cation [7-(1,3-dioxolan-2-ylmeth­yl)-1,3-dimethyl-2,6-dioxo-3,7-dihydro-1H-purin-9-ium], an [SbCl4] anion and a water mol­ecule linked by N—H⋯O and O—H⋯Cl hydrogen bonds: the [SbCl4] anions form centrosymmetric dimers via weak Sb⋯Cl inter­actions [Sb⋯Cl = 3.1159 (9) Å]. The geometrical arrangement in the crystal structure is characterized by slipped ππ stacking of the parallel purine ring systems, with an inter­planar separation of 3.32 Å.

Related literature

For related literature, see: Chen, Tu, Shu et al. (2007[Chen, H.-X., Tu, B., Shu, Z., Ma, X.-J. & Jin, Z.-M. (2007). Acta Cryst. E63, o726-o727.]); Chen, Tu & Jin (2007[Chen, Z.-H., Tu, B. & Jin, Z.-M. (2007). Acta Cryst. E63, o2676-o2677.]);Feng et al. (2007[Feng, W.-J., Ma, X.-J., Shu, Z. & Jin, Z.-M. (2007). Acta Cryst. E63, o3609.]); Franzone et al. (1981[Franzone, J. S., Reboani, C. & Fonzo, D. (1981). Farmacol. Sci. 36, 201-219.], 1989[Franzone, J. S., Cirillo, R. & Biffignandi, P. (1989). Eur. J. Pharmacol. 165, 269-277.]); Villani et al. (1997[Villani, F., De Maria, P., Ronchi, E. & Galimberti, M. (1997). Int. J. Clin. Pharmacol. Ther. 35, 107-111.]); Zhao & Li (2001[Zhao, J. J. & Li, L. (2001). J. N. Bethune Univ. Med. Sci. 27, 646-676.]).

[Scheme 1]

Experimental

Crystal data
  • (C11H14N4O4)[SbCl4]·H2O

  • Mr = 548.85

  • Triclinic, [P \overline 1]

  • a = 8.9783 (5) Å

  • b = 10.4727 (5) Å

  • c = 11.0357 (4) Å

  • α = 68.7550 (10)°

  • β = 82.671 (2)°

  • γ = 88.228 (2)°

  • V = 959.10 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 153 (2) K

  • 0.33 × 0.28 × 0.27 mm

Data collection
  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.459, Tmax = 0.486 (expected range = 0.547–0.579)

  • 9490 measured reflections

  • 4399 independent reflections

  • 4151 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.05

  • 4399 reflections

  • 236 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.40 e Å−3

  • Δρmin = −2.97 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5 0.92 (4) 1.75 (4) 2.663 (4) 172 (4)
O5—H5C⋯Cl1 0.81 (3) 2.65 (2) 3.332 (3) 142 (2)
O5—H5D⋯Cl1i 0.81 (3) 2.41 (2) 3.205 (3) 166 (5)
C3—H3A⋯O1 0.97 2.45 3.145 (8) 128
C7—H7⋯Cl3ii 0.93 2.56 3.432 (3) 157
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y, z-1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Doxofylline [7-(1,3-dioxolan-2-ylmethyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione] is a therapeutic agent with anti-asthmatic (Franzone et al., 1989), anti-inflammatory activities (Zhao et al., 2001) and a bronchodilating effect on smooth muscle (Franzone et al., 1981; Villani et al., 1997). So far several organic compounds containing doxofylline have been synthesized (Chen, Tu, Shu et al.,2007); Chen, Tu & Jin, 2007; Feng et al., 2007), but the doxofylline complex containing metal has not been reported. All of the above studies provide important references to futher research into doxofylline. Herein we present here the structure of the title compound (Scheme 1), (I).

As depicted in Fig. 1, the compound (I) is comprised of a doxofylline cation, a SbCl4 anion and a water molecule. The N1 of doxofylline is protonated and links to the water molecule by N1—H1···O5 hydrogen bond, and the water molecule links the SbCl4 anion by O5—H5C···Cl interactions. The dihedral angle between the plane of the purine ring and the approximate plane through C4/O3/C6/O4 is 68.5°. The pure compound is 8.42° (Chen, Tu, Shu et al.,2007); Chen, Tu & Jin, 2007). In the purine ring, the bond length of N4—C11 [1.392 (3) Å] bond is somewhat longer than the corresponding N—C [1.374 (4) Å] bond length in the Chen's case (Chen et al., 2007).

The symmetrically related SbCl4 link into dimers via coordinated bonds of Sb1—Cl4 (-x + 1, -y + 2, -z + 2) [3.1159 (9) Å] (Fig. 2), which plays an important role in the formation of the crystal. In addition, there exists slipped π···π stacking between symmetrically related pyridines rings at (-x + 2, -y + 1, -z + 1), with a centroid to centroid distance equal to be 3.662 (6) Å. With intermolecular hydrogen bonds listed in Table 1, the stacking interactons further stabilize the crystal structure (Fig. 3).

Related literature top

For related literature, see: Chen, Tu, Shu et al. (2007); Chen, Tu & Jin (2007);Feng et al. (2007); Franzone et al. (1981, 1989); Villani et al. (1997); Zhao & Li (2001).

Experimental top

Antimony trichloride, hydrochloride acid and doxofylline in a 1:1:1 molar ratio were mixed and dissolved in sufficient acetone by heating to a temperature at which a clear solution resulted. Crystals of (I) were formed by gradual evaporation of acetone over a period of three days at 298 K.

Refinement top

H atoms attaching to N atoms were deduced from difference Fourier maps, and incorporated in refinement freely. The water H atoms were located tentatively in difference Fourier maps and were refined with the O—H and H···H distances restrained to 0.82 (2) and 1.39 (2) Å. Others were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.93 (C7—H7), 0.96 (methyl), 0.97 (methylene) and 0.98Å (methine), with Uiso(H) = 1.2–1.5 Ueq(C).

Structure description top

Doxofylline [7-(1,3-dioxolan-2-ylmethyl)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione] is a therapeutic agent with anti-asthmatic (Franzone et al., 1989), anti-inflammatory activities (Zhao et al., 2001) and a bronchodilating effect on smooth muscle (Franzone et al., 1981; Villani et al., 1997). So far several organic compounds containing doxofylline have been synthesized (Chen, Tu, Shu et al.,2007); Chen, Tu & Jin, 2007; Feng et al., 2007), but the doxofylline complex containing metal has not been reported. All of the above studies provide important references to futher research into doxofylline. Herein we present here the structure of the title compound (Scheme 1), (I).

As depicted in Fig. 1, the compound (I) is comprised of a doxofylline cation, a SbCl4 anion and a water molecule. The N1 of doxofylline is protonated and links to the water molecule by N1—H1···O5 hydrogen bond, and the water molecule links the SbCl4 anion by O5—H5C···Cl interactions. The dihedral angle between the plane of the purine ring and the approximate plane through C4/O3/C6/O4 is 68.5°. The pure compound is 8.42° (Chen, Tu, Shu et al.,2007); Chen, Tu & Jin, 2007). In the purine ring, the bond length of N4—C11 [1.392 (3) Å] bond is somewhat longer than the corresponding N—C [1.374 (4) Å] bond length in the Chen's case (Chen et al., 2007).

The symmetrically related SbCl4 link into dimers via coordinated bonds of Sb1—Cl4 (-x + 1, -y + 2, -z + 2) [3.1159 (9) Å] (Fig. 2), which plays an important role in the formation of the crystal. In addition, there exists slipped π···π stacking between symmetrically related pyridines rings at (-x + 2, -y + 1, -z + 1), with a centroid to centroid distance equal to be 3.662 (6) Å. With intermolecular hydrogen bonds listed in Table 1, the stacking interactons further stabilize the crystal structure (Fig. 3).

For related literature, see: Chen, Tu, Shu et al. (2007); Chen, Tu & Jin (2007);Feng et al. (2007); Franzone et al. (1981, 1989); Villani et al. (1997); Zhao & Li (2001).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids is shown. Hydrogn bonds are illustrated as dashed lines.
[Figure 2] Fig. 2. The dimer of SbCl4 in the crystal lattice. Atoms which are not labeled are obtained by symmetry operation of (-x + 1, -y + 2, -z + 2). Coordinated bonds of Sb1—Cl4 (-x + 1, -y + 2, -z + 2) and Cl4—Sb1 (-x + 1, -y + 2, -z + 2) are illustrated by dashed lines.
[Figure 3] Fig. 3. The packing diagram of (I) viewed down along the c axis. Hydrogen bonds are illustrated by dashed lines.
7-(1,3-dioxolan-2-ylmethyl)-1,3-dimethyl-2,6-dioxo-3,7-dihydro-1H-purin-9-ium tetrachloridoantimonate(III) monohydrate top
Crystal data top
(C11H14N4O4)[SbCl4]·H2OZ = 2
Mr = 548.85F(000) = 540
Triclinic, P1Dx = 1.901 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9783 (5) ÅCell parameters from 4733 reflections
b = 10.4727 (5) Åθ = 2.1–26.9°
c = 11.0357 (4) ŵ = 2.03 mm1
α = 68.755 (1)°T = 153 K
β = 82.671 (2)°Block, colourless
γ = 88.228 (2)°0.33 × 0.28 × 0.27 mm
V = 959.10 (8) Å3
Data collection top
Bruker APEX
diffractometer
4399 independent reflections
Radiation source: fine-focus sealed tube4151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.459, Tmax = 0.486k = 1313
9490 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.741P]
where P = (Fo2 + 2Fc2)/3
4399 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 1.40 e Å3
3 restraintsΔρmin = 2.97 e Å3
Crystal data top
(C11H14N4O4)[SbCl4]·H2Oγ = 88.228 (2)°
Mr = 548.85V = 959.10 (8) Å3
Triclinic, P1Z = 2
a = 8.9783 (5) ÅMo Kα radiation
b = 10.4727 (5) ŵ = 2.03 mm1
c = 11.0357 (4) ÅT = 153 K
α = 68.755 (1)°0.33 × 0.28 × 0.27 mm
β = 82.671 (2)°
Data collection top
Bruker APEX
diffractometer
4399 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4151 reflections with I > 2σ(I)
Tmin = 0.459, Tmax = 0.486Rint = 0.046
9490 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 1.40 e Å3
4399 reflectionsΔρmin = 2.97 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.603006 (19)0.947081 (18)0.845084 (16)0.01708 (9)
Cl10.50253 (10)0.84549 (9)0.69342 (9)0.03132 (19)
Cl20.85111 (8)0.95551 (8)0.72752 (7)0.02636 (17)
Cl30.70926 (9)1.07637 (8)0.98807 (8)0.02720 (17)
Cl40.53886 (10)1.16845 (8)0.70074 (8)0.02833 (18)
O30.7285 (2)0.7066 (2)0.0265 (2)0.0210 (4)
N41.0810 (3)0.6651 (3)0.4722 (2)0.0167 (5)
N31.2424 (3)0.5255 (2)0.3864 (2)0.0162 (5)
C111.1991 (3)0.5734 (3)0.4877 (3)0.0173 (5)
C81.0212 (3)0.7064 (3)0.3567 (3)0.0153 (5)
C11.1882 (3)0.5670 (3)0.2638 (3)0.0153 (5)
C21.0676 (3)0.6614 (3)0.2569 (3)0.0149 (5)
O11.2388 (2)0.5233 (2)0.1794 (2)0.0226 (5)
N10.9061 (3)0.7955 (3)0.3204 (2)0.0182 (5)
N20.9814 (3)0.7279 (3)0.1570 (2)0.0164 (5)
O21.2588 (2)0.5340 (2)0.5875 (2)0.0247 (5)
C70.8856 (3)0.8068 (3)0.1984 (3)0.0199 (6)
H70.81450.86190.15010.024*
C121.3671 (3)0.4282 (3)0.4072 (3)0.0233 (6)
H12A1.38910.40140.33250.035*
H12B1.33900.34880.48400.035*
H12C1.45440.47110.41880.035*
O40.8543 (2)0.5081 (2)0.1080 (2)0.0221 (4)
C30.9963 (3)0.7182 (3)0.0266 (3)0.0186 (6)
H3A1.08940.67290.01310.022*
H3B1.00120.80970.03950.022*
C40.8666 (3)0.6396 (3)0.0103 (3)0.0170 (5)
H40.88160.63260.07660.020*
C50.6971 (4)0.4720 (3)0.1295 (3)0.0254 (6)
H5A0.66950.40480.21660.030*
H5B0.67130.43610.06520.030*
C60.6219 (4)0.6067 (4)0.1140 (4)0.0362 (8)
H6A0.52840.61230.07700.043*
H6B0.60140.61880.19750.043*
C101.0375 (4)0.7258 (3)0.5723 (3)0.0230 (6)
H10A1.09180.68280.64580.035*
H10B0.93160.71210.60040.035*
H10C1.06070.82220.53590.035*
O50.7621 (3)0.9581 (3)0.4328 (2)0.0308 (5)
H10.857 (4)0.845 (4)0.367 (4)0.024 (9)*
H5C0.731 (4)0.907 (3)0.5067 (18)0.029*
H5D0.699 (3)1.004 (3)0.390 (3)0.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.01524 (12)0.01761 (13)0.01647 (12)0.00463 (8)0.00456 (8)0.00337 (9)
Cl10.0308 (4)0.0267 (4)0.0434 (5)0.0035 (3)0.0099 (3)0.0195 (4)
Cl20.0185 (3)0.0339 (4)0.0231 (3)0.0024 (3)0.0001 (3)0.0070 (3)
Cl30.0209 (4)0.0285 (4)0.0289 (4)0.0004 (3)0.0088 (3)0.0045 (3)
Cl40.0357 (4)0.0188 (4)0.0285 (4)0.0071 (3)0.0144 (3)0.0031 (3)
O30.0136 (9)0.0262 (11)0.0211 (10)0.0040 (8)0.0060 (8)0.0051 (9)
N40.0172 (11)0.0215 (12)0.0123 (10)0.0048 (9)0.0057 (9)0.0063 (9)
N30.0149 (11)0.0191 (12)0.0146 (10)0.0056 (9)0.0061 (9)0.0052 (9)
C110.0158 (12)0.0212 (14)0.0148 (12)0.0024 (10)0.0044 (10)0.0057 (11)
C80.0141 (12)0.0180 (13)0.0141 (12)0.0029 (10)0.0055 (10)0.0050 (10)
C10.0124 (12)0.0190 (13)0.0140 (12)0.0004 (10)0.0038 (10)0.0048 (11)
C20.0133 (12)0.0200 (13)0.0115 (11)0.0023 (10)0.0060 (9)0.0042 (10)
O10.0219 (11)0.0312 (12)0.0189 (10)0.0091 (9)0.0056 (8)0.0139 (9)
N10.0171 (11)0.0205 (12)0.0188 (11)0.0067 (9)0.0069 (9)0.0082 (10)
N20.0151 (11)0.0206 (12)0.0137 (10)0.0026 (9)0.0075 (9)0.0047 (9)
O20.0234 (11)0.0353 (13)0.0155 (9)0.0084 (9)0.0107 (8)0.0070 (9)
C70.0168 (13)0.0237 (15)0.0215 (13)0.0053 (11)0.0084 (11)0.0093 (12)
C120.0209 (14)0.0281 (16)0.0201 (13)0.0135 (12)0.0081 (11)0.0068 (12)
O40.0227 (11)0.0215 (11)0.0203 (10)0.0024 (8)0.0035 (8)0.0052 (9)
C30.0171 (13)0.0276 (15)0.0117 (12)0.0020 (11)0.0046 (10)0.0071 (11)
C40.0154 (13)0.0218 (14)0.0149 (12)0.0049 (11)0.0056 (10)0.0071 (11)
C50.0277 (16)0.0304 (17)0.0179 (13)0.0070 (13)0.0006 (12)0.0091 (13)
C60.0223 (16)0.037 (2)0.0401 (19)0.0003 (14)0.0018 (14)0.0035 (16)
C100.0269 (15)0.0301 (17)0.0159 (13)0.0065 (12)0.0065 (11)0.0122 (12)
O50.0291 (12)0.0417 (15)0.0262 (11)0.0164 (11)0.0078 (9)0.0176 (11)
Geometric parameters (Å, º) top
Sb1—Cl42.3915 (7)N2—C31.468 (3)
Sb1—Cl22.4176 (7)C7—H70.9300
Sb1—Cl12.5460 (9)C12—H12A0.9600
Sb1—Cl32.6917 (9)C12—H12B0.9600
O3—C61.428 (4)C12—H12C0.9600
O3—C41.429 (3)O4—C41.405 (3)
N4—C81.364 (3)O4—C51.440 (4)
N4—C111.392 (3)C3—C41.512 (4)
N4—C101.470 (4)C3—H3A0.9700
N3—C111.392 (4)C3—H3B0.9700
N3—C11.409 (3)C4—H40.9800
N3—C121.473 (3)C5—C61.507 (5)
C11—O21.216 (4)C5—H5A0.9700
C8—C21.362 (4)C5—H5B0.9700
C8—N11.369 (3)C6—H6A0.9700
C1—O11.213 (3)C6—H6B0.9700
C1—C21.434 (4)C10—H10A0.9600
C2—N21.388 (3)C10—H10B0.9600
N1—C71.344 (4)C10—H10C0.9600
N1—H10.92 (4)O5—H5C0.81 (3)
N2—C71.327 (4)O5—H5D0.81 (3)
Cl4—Sb1—Cl293.49 (3)H12A—C12—H12B109.5
Cl4—Sb1—Cl188.23 (3)N3—C12—H12C109.5
Cl2—Sb1—Cl188.95 (3)H12A—C12—H12C109.5
Cl4—Sb1—Cl386.84 (3)H12B—C12—H12C109.5
Cl2—Sb1—Cl390.02 (3)C4—O4—C5105.2 (2)
Cl1—Sb1—Cl3174.90 (3)N2—C3—C4112.1 (2)
C6—O3—C4108.5 (2)N2—C3—H3A109.2
C8—N4—C11117.8 (2)C4—C3—H3A109.2
C8—N4—C10122.3 (2)N2—C3—H3B109.2
C11—N4—C10119.4 (2)C4—C3—H3B109.2
C11—N3—C1127.4 (2)H3A—C3—H3B107.9
C11—N3—C12115.5 (2)O4—C4—O3106.6 (2)
C1—N3—C12116.9 (2)O4—C4—C3110.1 (2)
O2—C11—N3121.5 (3)O3—C4—C3110.1 (2)
O2—C11—N4121.2 (3)O4—C4—H4110.0
N3—C11—N4117.3 (2)O3—C4—H4110.0
C2—C8—N4124.1 (2)C3—C4—H4110.0
C2—C8—N1108.2 (2)O4—C5—C6102.8 (3)
N4—C8—N1127.7 (2)O4—C5—H5A111.2
O1—C1—N3122.2 (2)C6—C5—H5A111.2
O1—C1—C2126.7 (3)O4—C5—H5B111.2
N3—C1—C2111.1 (2)C6—C5—H5B111.2
C8—C2—N2106.7 (2)H5A—C5—H5B109.1
C8—C2—C1122.1 (2)O3—C6—C5103.9 (3)
N2—C2—C1131.2 (2)O3—C6—H6A111.0
C7—N1—C8107.2 (2)C5—C6—H6A111.0
C7—N1—H1125 (2)O3—C6—H6B111.0
C8—N1—H1127 (2)C5—C6—H6B111.0
C7—N2—C2107.7 (2)H6A—C6—H6B109.0
C7—N2—C3125.6 (2)N4—C10—H10A109.5
C2—N2—C3126.7 (2)N4—C10—H10B109.5
N2—C7—N1110.1 (2)H10A—C10—H10B109.5
N2—C7—H7125.0N4—C10—H10C109.5
N1—C7—H7125.0H10A—C10—H10C109.5
N3—C12—H12A109.5H10B—C10—H10C109.5
N3—C12—H12B109.5H5C—O5—H5D116.0 (19)
C1—N3—C11—O2176.7 (3)O1—C1—C2—N21.4 (5)
C12—N3—C11—O21.7 (4)N3—C1—C2—N2180.0 (3)
C1—N3—C11—N45.3 (4)C2—C8—N1—C71.4 (3)
C12—N3—C11—N4179.7 (3)N4—C8—N1—C7179.5 (3)
C8—N4—C11—O2179.0 (3)C8—C2—N2—C71.3 (3)
C10—N4—C11—O26.1 (4)C1—C2—N2—C7178.8 (3)
C8—N4—C11—N33.1 (4)C8—C2—N2—C3176.4 (3)
C10—N4—C11—N3175.9 (3)C1—C2—N2—C31.1 (5)
C11—N4—C8—C21.4 (4)C2—N2—C7—N10.5 (3)
C10—N4—C8—C2174.1 (3)C3—N2—C7—N1177.3 (3)
C11—N4—C8—N1179.7 (3)C8—N1—C7—N20.6 (3)
C10—N4—C8—N17.0 (5)C7—N2—C3—C473.4 (4)
C11—N3—C1—O1176.4 (3)C2—N2—C3—C4109.3 (3)
C12—N3—C1—O11.4 (4)C5—O4—C4—O331.0 (3)
C11—N3—C1—C25.0 (4)C5—O4—C4—C3150.4 (2)
C12—N3—C1—C2180.0 (3)C6—O3—C4—O412.6 (3)
N4—C8—C2—N2179.2 (3)C6—O3—C4—C3132.0 (3)
N1—C8—C2—N21.7 (3)N2—C3—C4—O456.9 (3)
N4—C8—C2—C11.4 (5)N2—C3—C4—O360.4 (3)
N1—C8—C2—C1179.5 (3)C4—O4—C5—C636.3 (3)
O1—C1—C2—C8178.6 (3)C4—O3—C6—C59.9 (4)
N3—C1—C2—C82.9 (4)O4—C5—C6—O328.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.92 (4)1.75 (4)2.663 (4)172 (4)
O5—H5C···Cl10.81 (3)2.65 (2)3.332 (3)142 (2)
O5—H5D···Cl1i0.81 (3)2.41 (2)3.205 (3)166 (5)
C3—H3A···O10.972.453.145 (8)128
C7—H7···Cl3ii0.932.563.432 (3)157
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formula(C11H14N4O4)[SbCl4]·H2O
Mr548.85
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)8.9783 (5), 10.4727 (5), 11.0357 (4)
α, β, γ (°)68.755 (1), 82.671 (2), 88.228 (2)
V3)959.10 (8)
Z2
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.33 × 0.28 × 0.27
Data collection
DiffractometerBruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.459, 0.486
No. of measured, independent and
observed [I > 2σ(I)] reflections
9490, 4399, 4151
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.05
No. of reflections4399
No. of parameters236
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.40, 2.97

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.92 (4)1.75 (4)2.663 (4)172 (4)
O5—H5C···Cl10.81 (3)2.65 (2)3.332 (3)142 (2)
O5—H5D···Cl1i0.81 (3)2.41 (2)3.205 (3)166 (5)
C3—H3A···O10.972.453.145 (8)128
C7—H7···Cl3ii0.932.563.432 (3)157
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y, z1.
 

References

First citationBruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-H., Tu, B. & Jin, Z.-M. (2007). Acta Cryst. E63, o2676–o2677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, H.-X., Tu, B., Shu, Z., Ma, X.-J. & Jin, Z.-M. (2007). Acta Cryst. E63, o726–o727.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFeng, W.-J., Ma, X.-J., Shu, Z. & Jin, Z.-M. (2007). Acta Cryst. E63, o3609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFranzone, J. S., Cirillo, R. & Biffignandi, P. (1989). Eur. J. Pharmacol. 165, 269–277.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFranzone, J. S., Reboani, C. & Fonzo, D. (1981). Farmacol. Sci. 36, 201–219.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationVillani, F., De Maria, P., Ronchi, E. & Galimberti, M. (1997). Int. J. Clin. Pharmacol. Ther. 35, 107–111.  CAS PubMed Web of Science Google Scholar
First citationZhao, J. J. & Li, L. (2001). J. N. Bethune Univ. Med. Sci. 27, 646–676.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds