organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(2,6-diiso­propyl­anilino)-1-phenyl­butyl­ium hexa­fluorido­phosphate

aDépartement de Chimie, Faculté des Sciences, 5019 Monastir, Tunisia, and bDépartement de Chimie, Faculté des Sciences, 7021 Bizerte, Tunisia
*Correspondence e-mail: najouahaj@yahoo.fr

(Received 14 October 2007; accepted 4 December 2007; online 12 December 2007)

The cation of the title salt, C34H45N2+·PF6, is a protonated form of an unsymmetrical overcrowded β-imino­amine. The observed bond lengths [C—N = 1.326 (4)–1.341 (4) Å and C—C = 1.383 (4)–1.391 (4) Å] suggest significant delocalization within the π system of the N C C C N backbone.

Related literature

For related literature, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Bourget-Merle et al. (2002[Bourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev. 102, 3031-3065.]); Filipou et al. (1993[Filipou, A. C., Volkl, C. & Rogers, R. D. (1993). J. Organomet. Chem. 463, 135-142.]); Landolsi et al. (2002[Landolsi, K., Rzaigui, M. & Bouachir, F. (2002). Tetrahedron Lett. 43, 9463-9466.], 2008[Landolsi, K., Belhaj Mbarek Elmkacher, N., Guerfel, T. & Bouachir, F. (2008). C. R. Acad. Sci. Ser. IIC Chem. In the press.]); Mair et al. (1995[Mair, F. S., Scully, D., Edwards, A. J., Raithby, P. R. & Snaith, R. (1995). Polyhedron, 14, 2397-2401.]); Parks & Holm (1968[Parks, J. E. & Holm, R. H. (1968). Inorg. Chem. 7, 1408-1416.]).

[Scheme 1]

Experimental

Crystal data
  • C34H45N2+·F6P

  • Mr = 626.69

  • Monoclinic, P 21 /n

  • a = 12.4688 (2) Å

  • b = 15.6981 (2) Å

  • c = 17.4329 (3) Å

  • β = 95.563 (3)°

  • V = 3396.18 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 293 (2) K

  • 0.31 × 0.21 × 0.16 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: none

  • 10101 measured reflections

  • 5966 independent reflections

  • 3165 reflections with I > 2σ(I)

  • Rint = 0.028

  • 2 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.175

  • S = 1.02

  • 5966 reflections

  • 416 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Selected bond lengths (Å)

C3—N2 1.341 (4)
C3—C2 1.383 (4)
C2—C1 1.391 (4)
C1—N1 1.326 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯F2 0.86 (3) 2.28 (4) 3.094 (4) 156 (3)
N1—HN1⋯F4 0.86 (3) 2.49 (4) 3.187 (4) 139 (3)

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS Software. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

β-Iminoamine complexes or β-diketiminato complexes (also known as diazapentadienyl complexes) were first reported in 1968 (Parks et al., 1968) and a few reports of their structural characterizations appeared since then (Mair et al., 1995; Filipou et al., 1993). Attention to their structural chemistry is quite recent. The β-diketiminates have been recognized as ancillary ligands owing to their exceptional steric and electronic properties that can be readily modified by variation of the substituents in the main framework (Bourget-Merle et al., 2002). Recently we have been interested in synthesis of new unsymmetrical β-iminoamines with bulky substituents attached to the nitrogen atoms and their coordination chemistry (Landolsi et al., 2002). Here we report the crystal structure of the hexafluorophosphate salt of overcrowded β-iminoamine.

The PF6- anion possess an octahedral geometry with the P—F distances ranging from 1.525 (3) to 1.589 (3) Å. The cation shows the W-shaped open conformation whereas the neutral form exhibit the U-shaped closed conformation (Landolsi et al., 2008). The N—C and the C—C bond distances of the N—C—C—C—N backbone (Table 1) are intermediate between single and double-bond lengths, that suggests significant delocalization within the π-system (Allen et al., 1987). One N—C bond is longer than the other, this difference can possibly be attributed to the different groups attached to C1 and C3. This bis-(iminium) salt can be used as prospective starting materiels for organoelement and coordination chemistry.

Related literature top

For related literature, see: Allen et al. (1987); Bourget-Merle et al. (2002); Filipou et al. (1993); Landolsi et al. (2002, 2008); Mair et al. (1995); Parks & Holm (1968).

Experimental top

The title compound was obtained as a result of attempted recrystallization of the hexafluorophosphate methallyl β-diimine nickel complex, (C4 H7) Ni (C34 H44 N2) PF6 (100 mg, 0.135 mmoles) from methylene chloride (15 ml)\acetic acid (0.05%) mixture, which resulted in decomposition of the complex. The Ni complex was prepared by an oxidative addition of the hexafluorophosphate methallyloxyphosphonium salt (54 mg, 0.143 mmoles) to the (β-diimine)Ni spieces generated in situ by the chemical reduction of (β-diimine)NiBr2 (100 mg, 0.143 mmoles) with zinc (190 mg, 2.860 mmoles) in methylene chloride (20 ml). Crystals for X-ray analysis were obtained from a diluted solution of the title compound (10 mg, 0.013 mmoles) in methylene chloride /n-hexane (15 ml/15 ml) at 243 K.

Refinement top

Hydrogen atoms H2, HN1 and HN2 were located in a Fourier map and refined freely. All the other H atoms were placed in calculated positions and allowed to ride on their parent atom. Uiso of H atoms are equal to 1.2 Ueq of the parent atom.

Structure description top

β-Iminoamine complexes or β-diketiminato complexes (also known as diazapentadienyl complexes) were first reported in 1968 (Parks et al., 1968) and a few reports of their structural characterizations appeared since then (Mair et al., 1995; Filipou et al., 1993). Attention to their structural chemistry is quite recent. The β-diketiminates have been recognized as ancillary ligands owing to their exceptional steric and electronic properties that can be readily modified by variation of the substituents in the main framework (Bourget-Merle et al., 2002). Recently we have been interested in synthesis of new unsymmetrical β-iminoamines with bulky substituents attached to the nitrogen atoms and their coordination chemistry (Landolsi et al., 2002). Here we report the crystal structure of the hexafluorophosphate salt of overcrowded β-iminoamine.

The PF6- anion possess an octahedral geometry with the P—F distances ranging from 1.525 (3) to 1.589 (3) Å. The cation shows the W-shaped open conformation whereas the neutral form exhibit the U-shaped closed conformation (Landolsi et al., 2008). The N—C and the C—C bond distances of the N—C—C—C—N backbone (Table 1) are intermediate between single and double-bond lengths, that suggests significant delocalization within the π-system (Allen et al., 1987). One N—C bond is longer than the other, this difference can possibly be attributed to the different groups attached to C1 and C3. This bis-(iminium) salt can be used as prospective starting materiels for organoelement and coordination chemistry.

For related literature, see: Allen et al. (1987); Bourget-Merle et al. (2002); Filipou et al. (1993); Landolsi et al. (2002, 2008); Mair et al. (1995); Parks & Holm (1968).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the cation with displacement ellipsoids drawn at the 30% probability level. H atoms and the hexaflororphosphate anion are omitted for clarity.
[Figure 2] Fig. 2. View of the anion and a fragment of the cation with displacement ellipsoids are drawn at the 30% probability level.
1,3-Bis(2,6-diisopropylanilino)-1-phenylbutylium hexafluorophosphate top
Crystal data top
C34H45N2+·F6PF(000) = 1328
Mr = 626.69Dx = 1.226 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.4688 (2) Åθ = 9.3–11.3°
b = 15.6981 (2) ŵ = 0.14 mm1
c = 17.4329 (3) ÅT = 293 K
β = 95.563 (3)°Prism, colourless
V = 3396.18 (9) Å30.31 × 0.21 × 0.16 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.028
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.1°
Graphite monochromatorh = 1414
non–profiled ω scansk = 018
10101 measured reflectionsl = 1020
5966 independent reflections2 standard reflections every 120 min
3165 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0756P)2 + 1.269P]
where P = (Fo2 + 2Fc2)/3
5966 reflections(Δ/σ)max = 0.003
416 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C34H45N2+·F6PV = 3396.18 (9) Å3
Mr = 626.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4688 (2) ŵ = 0.14 mm1
b = 15.6981 (2) ÅT = 293 K
c = 17.4329 (3) Å0.31 × 0.21 × 0.16 mm
β = 95.563 (3)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.028
10101 measured reflections2 standard reflections every 120 min
5966 independent reflections intensity decay: 1%
3165 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.175H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.45 e Å3
5966 reflectionsΔρmin = 0.27 e Å3
416 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.00211 (8)0.84236 (7)0.17439 (7)0.0746 (4)
F10.0452 (2)0.91779 (17)0.22077 (19)0.1208 (10)
F20.0651 (3)0.8051 (2)0.24702 (19)0.1345 (11)
F30.0425 (3)0.76825 (19)0.1260 (2)0.1384 (12)
F40.1024 (2)0.8969 (2)0.1625 (2)0.1362 (12)
F50.1013 (2)0.7896 (2)0.1879 (3)0.198 (2)
F60.0594 (3)0.8823 (2)0.1000 (2)0.1797 (18)
N10.3134 (2)0.81810 (16)0.25332 (15)0.0420 (6)
HN10.246 (3)0.8131 (19)0.2369 (18)0.051*
N20.67098 (19)0.85742 (16)0.19588 (15)0.0445 (7)
HN20.724 (3)0.838 (2)0.1770 (19)0.054*
C10.3830 (2)0.81205 (18)0.20064 (17)0.0393 (7)
C20.4909 (2)0.83195 (19)0.22012 (19)0.0414 (7)
HC20.506 (2)0.8615 (19)0.2632 (18)0.050*
C30.5788 (2)0.81410 (18)0.18015 (17)0.0394 (7)
C40.3338 (2)0.7888 (2)0.12127 (18)0.0532 (9)
H4A0.32270.72830.11830.065*
H4B0.38130.80580.08390.065*
H4C0.26590.81740.11090.065*
C50.5816 (2)0.74619 (19)0.12192 (18)0.0416 (7)
C60.6244 (3)0.7605 (2)0.0529 (2)0.0557 (9)
H60.65220.81380.04250.067*
C70.6261 (3)0.6956 (3)0.0011 (2)0.0697 (11)
H70.65370.70540.04800.084*
C80.5868 (3)0.6168 (3)0.0153 (3)0.0714 (12)
H80.58790.57330.02070.086*
C90.5461 (3)0.6015 (2)0.0836 (3)0.0696 (11)
H90.52060.54750.09420.084*
C100.5424 (2)0.6658 (2)0.1372 (2)0.0545 (9)
H100.51370.65530.18360.066*
C110.6796 (2)0.93436 (19)0.24075 (19)0.0447 (8)
C120.7108 (2)0.9293 (2)0.3193 (2)0.0526 (9)
C130.7167 (3)1.0056 (3)0.3608 (2)0.0648 (10)
H130.73641.00460.41360.078*
C140.6939 (3)1.0818 (3)0.3247 (3)0.0692 (11)
H140.69871.13180.35330.084*
C150.6640 (3)1.0855 (2)0.2471 (3)0.0664 (10)
H150.64951.13800.22370.080*
C160.6552 (2)1.0113 (2)0.2029 (2)0.0535 (9)
C170.6231 (3)1.0165 (3)0.1165 (2)0.0688 (11)
HC170.601 (3)0.963 (3)0.102 (2)0.083*
C180.5244 (4)1.0711 (4)0.0970 (3)0.128 (2)
H18A0.53871.12810.11510.154*
H18B0.46501.04800.12140.154*
H18C0.50681.07180.04220.154*
C190.7163 (4)1.0459 (4)0.0744 (3)0.127 (2)
H19A0.69491.04670.02000.154*
H19B0.77581.00750.08490.154*
H19C0.73751.10210.09130.154*
C200.7387 (3)0.8462 (3)0.3608 (2)0.0644 (10)
HC200.731 (3)0.799 (2)0.329 (2)0.078*
C210.8559 (3)0.8428 (3)0.3926 (3)0.1132 (18)
H21A0.87000.88660.43070.137*
H21B0.90070.85140.35150.137*
H21C0.87140.78810.41580.137*
C220.6704 (4)0.8301 (3)0.4258 (3)0.1090 (17)
H22A0.68980.86960.46690.132*
H22B0.68190.77300.44430.132*
H22C0.59580.83760.40760.132*
C230.3434 (2)0.83308 (19)0.33457 (17)0.0417 (7)
C240.3415 (2)0.9163 (2)0.36250 (19)0.0474 (8)
C250.3743 (3)0.9285 (2)0.4401 (2)0.0617 (10)
H250.37550.98330.46040.075*
C260.4052 (3)0.8608 (3)0.4875 (2)0.0643 (10)
H260.42740.87050.53920.077*
C270.4036 (3)0.7793 (2)0.4590 (2)0.0570 (9)
H270.42300.73420.49200.069*
C280.3734 (2)0.7634 (2)0.38158 (19)0.0486 (8)
C290.3744 (3)0.6724 (2)0.3519 (2)0.0620 (10)
HC290.355 (3)0.674 (2)0.296 (2)0.075*
C300.2925 (4)0.6185 (3)0.3876 (3)0.1124 (18)
H30A0.30880.61770.44260.136*
H30B0.29450.56150.36790.136*
H30C0.22190.64210.37510.136*
C310.4860 (4)0.6328 (3)0.3650 (3)0.1013 (16)
H31A0.50620.62730.41930.122*
H31B0.53710.66860.34260.17 (3)*
H31C0.48530.57760.34130.122*
C320.3040 (3)0.9907 (2)0.3117 (2)0.0571 (9)
H320.29550.97090.25820.069*
C330.1952 (3)1.0217 (3)0.3322 (3)0.0838 (13)
H33A0.14550.97480.32980.102*
H33B0.16871.06500.29630.102*
H33C0.20261.04480.38340.102*
C340.3843 (4)1.0635 (3)0.3173 (3)0.1030 (16)
H34A0.38751.08840.36770.125*
H34B0.36221.10590.27930.125*
H34C0.45421.04230.30830.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0382 (16)0.0388 (17)0.0404 (18)0.0018 (13)0.0006 (13)0.0030 (14)
C20.0384 (16)0.0449 (19)0.0411 (19)0.0019 (14)0.0051 (14)0.0135 (15)
C10.0402 (16)0.0375 (17)0.0405 (18)0.0040 (13)0.0047 (14)0.0042 (14)
C40.0411 (18)0.071 (2)0.047 (2)0.0035 (16)0.0004 (15)0.0106 (18)
C320.066 (2)0.050 (2)0.057 (2)0.0066 (17)0.0131 (17)0.0037 (17)
C290.077 (3)0.048 (2)0.060 (2)0.0017 (18)0.004 (2)0.0001 (19)
C200.070 (2)0.063 (2)0.058 (2)0.001 (2)0.0056 (19)0.013 (2)
C170.082 (3)0.054 (2)0.068 (3)0.000 (2)0.003 (2)0.000 (2)
C210.068 (3)0.136 (4)0.132 (5)0.017 (3)0.004 (3)0.041 (4)
C330.080 (3)0.079 (3)0.094 (3)0.029 (2)0.017 (2)0.018 (2)
C300.132 (4)0.083 (3)0.128 (4)0.036 (3)0.041 (4)0.019 (3)
C310.103 (4)0.072 (3)0.127 (4)0.032 (3)0.000 (3)0.022 (3)
C340.098 (3)0.081 (3)0.130 (4)0.023 (3)0.010 (3)0.021 (3)
C220.103 (4)0.109 (4)0.118 (4)0.003 (3)0.027 (3)0.033 (3)
C180.119 (4)0.140 (5)0.114 (5)0.049 (4)0.041 (3)0.015 (4)
C190.121 (4)0.178 (6)0.085 (4)0.002 (4)0.019 (3)0.031 (4)
P10.0465 (5)0.0677 (7)0.1073 (10)0.0088 (5)0.0044 (5)0.0161 (6)
N10.0325 (13)0.0514 (16)0.0417 (16)0.0009 (12)0.0010 (12)0.0082 (12)
N20.0324 (14)0.0480 (16)0.0534 (17)0.0004 (12)0.0067 (12)0.0127 (13)
C230.0344 (15)0.050 (2)0.0410 (19)0.0009 (14)0.0076 (13)0.0072 (16)
C110.0322 (15)0.0454 (19)0.056 (2)0.0033 (13)0.0019 (14)0.0139 (17)
C50.0329 (15)0.0454 (18)0.047 (2)0.0011 (13)0.0034 (14)0.0103 (15)
C160.0459 (18)0.050 (2)0.065 (2)0.0049 (15)0.0063 (16)0.0103 (18)
C120.0423 (17)0.058 (2)0.057 (2)0.0085 (16)0.0013 (16)0.0156 (19)
C280.0481 (18)0.050 (2)0.049 (2)0.0015 (15)0.0086 (15)0.0029 (17)
C240.0465 (18)0.051 (2)0.045 (2)0.0051 (15)0.0101 (15)0.0068 (16)
C100.0442 (18)0.053 (2)0.068 (2)0.0022 (15)0.0104 (16)0.0136 (19)
C130.061 (2)0.072 (3)0.060 (2)0.0096 (19)0.0020 (18)0.022 (2)
F10.122 (2)0.0880 (18)0.158 (3)0.0191 (16)0.042 (2)0.0302 (18)
C270.062 (2)0.065 (2)0.045 (2)0.0079 (18)0.0055 (17)0.0036 (18)
C140.060 (2)0.059 (3)0.088 (3)0.0107 (19)0.007 (2)0.031 (2)
C60.0501 (19)0.064 (2)0.054 (2)0.0014 (16)0.0091 (17)0.0124 (19)
C250.068 (2)0.060 (2)0.057 (3)0.0043 (19)0.0095 (19)0.018 (2)
C150.066 (2)0.050 (2)0.084 (3)0.0076 (18)0.006 (2)0.010 (2)
C70.059 (2)0.096 (3)0.056 (2)0.006 (2)0.0129 (18)0.027 (2)
C260.069 (2)0.083 (3)0.041 (2)0.006 (2)0.0045 (18)0.010 (2)
C80.051 (2)0.076 (3)0.087 (3)0.003 (2)0.003 (2)0.045 (2)
F20.120 (2)0.158 (3)0.121 (2)0.029 (2)0.0131 (19)0.019 (2)
F30.135 (2)0.117 (2)0.159 (3)0.0506 (19)0.014 (2)0.059 (2)
F40.098 (2)0.119 (2)0.196 (3)0.0125 (17)0.036 (2)0.003 (2)
C90.049 (2)0.053 (2)0.107 (3)0.0063 (17)0.013 (2)0.032 (2)
F50.0667 (18)0.093 (2)0.442 (7)0.0233 (15)0.056 (3)0.030 (3)
F60.224 (4)0.150 (3)0.146 (3)0.086 (3)0.077 (3)0.028 (2)
Geometric parameters (Å, º) top
C3—N21.341 (4)C18—H18B0.9600
C3—C21.383 (4)C18—H18C0.9600
C3—C51.475 (4)C19—H19A0.9600
C2—C11.391 (4)C19—H19B0.9600
C2—HC20.89 (3)C19—H19C0.9600
C1—N11.326 (4)P1—F51.525 (3)
C1—C41.503 (4)P1—F61.551 (3)
C4—H4A0.9600P1—F11.558 (3)
C4—H4B0.9600P1—F21.563 (3)
C4—H4C0.9600P1—F31.570 (3)
C32—C241.513 (5)P1—F41.589 (3)
C32—C331.515 (5)N1—C231.449 (4)
C32—C341.516 (5)N1—HN10.86 (3)
C32—H320.9800N2—C111.437 (4)
C29—C301.507 (6)N2—HN20.83 (3)
C29—C281.520 (5)C23—C241.395 (4)
C29—C311.521 (5)C23—C281.396 (4)
C29—HC290.98 (4)C11—C121.390 (5)
C20—C221.503 (6)C11—C161.396 (4)
C20—C211.513 (5)C5—C61.382 (4)
C20—C121.516 (5)C5—C101.388 (4)
C20—HC200.94 (4)C16—C151.395 (5)
C17—C191.506 (6)C12—C131.397 (5)
C17—C181.511 (6)C28—C271.389 (4)
C17—C161.522 (5)C24—C251.388 (5)
C17—HC170.91 (4)C10—C91.379 (5)
C21—H21A0.9600C10—H100.9300
C21—H21B0.9600C13—C141.369 (5)
C21—H21C0.9600C13—H130.9300
C33—H33A0.9600C27—C261.372 (5)
C33—H33B0.9600C27—H270.9300
C33—H33C0.9600C14—C151.368 (5)
C30—H30A0.9600C14—H140.9300
C30—H30B0.9600C6—C71.388 (5)
C30—H30C0.9600C6—H60.9300
C31—H31A0.9600C25—C261.377 (5)
C31—H31B0.9600C25—H250.9300
C31—H31C0.9600C15—H150.9300
C34—H34A0.9600C7—C81.370 (5)
C34—H34B0.9600C7—H70.9300
C34—H34C0.9600C26—H260.9300
C22—H22A0.9600C8—C91.360 (5)
C22—H22B0.9600C8—H80.9300
C22—H22C0.9600C9—H90.9300
C18—H18A0.9600
N2—C3—C2120.0 (3)C17—C19—H19A109.5
N2—C3—C5115.5 (2)C17—C19—H19B109.5
C2—C3—C5124.5 (3)H19A—C19—H19B109.5
C3—C2—C1128.8 (3)C17—C19—H19C109.5
C3—C2—HC2114.4 (19)H19A—C19—H19C109.5
C1—C2—HC2116.7 (19)H19B—C19—H19C109.5
N1—C1—C2119.8 (3)F5—P1—F691.9 (3)
N1—C1—C4114.7 (3)F5—P1—F190.42 (18)
C2—C1—C4125.3 (3)F6—P1—F188.41 (18)
C1—C4—H4A109.5F5—P1—F292.9 (2)
C1—C4—H4B109.5F6—P1—F2175.0 (2)
H4A—C4—H4B109.5F1—P1—F292.79 (19)
C1—C4—H4C109.5F5—P1—F390.9 (2)
H4A—C4—H4C109.5F6—P1—F390.54 (19)
H4B—C4—H4C109.5F1—P1—F3178.4 (2)
C24—C32—C33110.0 (3)F2—P1—F388.15 (18)
C24—C32—C34112.3 (3)F5—P1—F4178.6 (3)
C33—C32—C34110.2 (3)F6—P1—F489.4 (2)
C24—C32—H32108.1F1—P1—F489.20 (17)
C33—C32—H32108.1F2—P1—F485.72 (19)
C34—C32—H32108.1F3—P1—F489.54 (18)
C30—C29—C28111.0 (3)C1—N1—C23124.3 (2)
C30—C29—C31110.9 (4)C1—N1—HN1116 (2)
C28—C29—C31111.7 (3)C23—N1—HN1119 (2)
C30—C29—HC29108 (2)C3—N2—C11123.7 (2)
C28—C29—HC29108 (2)C3—N2—HN2116 (2)
C31—C29—HC29107 (2)C11—N2—HN2120 (2)
C22—C20—C21108.4 (4)C24—C23—C28122.8 (3)
C22—C20—C12112.5 (3)C24—C23—N1118.8 (3)
C21—C20—C12112.0 (3)C28—C23—N1118.4 (3)
C22—C20—HC20107 (2)C12—C11—C16122.9 (3)
C21—C20—HC20104 (2)C12—C11—N2119.1 (3)
C12—C20—HC20113 (2)C16—C11—N2117.9 (3)
C19—C17—C18111.5 (4)C6—C5—C10119.2 (3)
C19—C17—C16111.0 (4)C6—C5—C3121.3 (3)
C18—C17—C16112.5 (4)C10—C5—C3119.5 (3)
C19—C17—HC17112 (3)C15—C16—C11117.3 (3)
C18—C17—HC17104 (2)C15—C16—C17120.1 (3)
C16—C17—HC17106 (3)C11—C16—C17122.6 (3)
C20—C21—H21A109.5C11—C12—C13117.1 (3)
C20—C21—H21B109.5C11—C12—C20123.3 (3)
H21A—C21—H21B109.5C13—C12—C20119.5 (3)
C20—C21—H21C109.5C27—C28—C23117.5 (3)
H21A—C21—H21C109.5C27—C28—C29119.4 (3)
H21B—C21—H21C109.5C23—C28—C29123.2 (3)
C32—C33—H33A109.5C25—C24—C23117.1 (3)
C32—C33—H33B109.5C25—C24—C32120.6 (3)
H33A—C33—H33B109.5C23—C24—C32122.3 (3)
C32—C33—H33C109.5C9—C10—C5120.0 (3)
H33A—C33—H33C109.5C9—C10—H10120.0
H33B—C33—H33C109.5C5—C10—H10120.0
C29—C30—H30A109.5C14—C13—C12120.9 (4)
C29—C30—H30B109.5C14—C13—H13119.6
H30A—C30—H30B109.5C12—C13—H13119.6
C29—C30—H30C109.5C26—C27—C28120.8 (3)
H30A—C30—H30C109.5C26—C27—H27119.6
H30B—C30—H30C109.5C28—C27—H27119.6
C29—C31—H31A109.5C15—C14—C13121.1 (3)
C29—C31—H31B109.5C15—C14—H14119.5
H31A—C31—H31B109.5C13—C14—H14119.5
C29—C31—H31C109.5C5—C6—C7120.2 (3)
H31A—C31—H31C109.5C5—C6—H6119.9
H31B—C31—H31C109.5C7—C6—H6119.9
C32—C34—H34A109.5C26—C25—C24121.2 (3)
C32—C34—H34B109.5C26—C25—H25119.4
H34A—C34—H34B109.5C24—C25—H25119.4
C32—C34—H34C109.5C14—C15—C16120.7 (4)
H34A—C34—H34C109.5C14—C15—H15119.7
H34B—C34—H34C109.5C16—C15—H15119.7
C20—C22—H22A109.5C8—C7—C6119.5 (4)
C20—C22—H22B109.5C8—C7—H7120.3
H22A—C22—H22B109.5C6—C7—H7120.3
C20—C22—H22C109.5C27—C26—C25120.6 (3)
H22A—C22—H22C109.5C27—C26—H26119.7
H22B—C22—H22C109.5C25—C26—H26119.7
C17—C18—H18A109.5C9—C8—C7120.9 (4)
C17—C18—H18B109.5C9—C8—H8119.5
H18A—C18—H18B109.5C7—C8—H8119.5
C17—C18—H18C109.5C8—C9—C10120.2 (4)
H18A—C18—H18C109.5C8—C9—H9119.9
H18B—C18—H18C109.5C10—C9—H9119.9
N2—C3—C2—C1161.6 (3)C24—C23—C28—C29179.2 (3)
C5—C3—C2—C121.5 (5)N1—C23—C28—C291.0 (4)
C3—C2—C1—N1165.6 (3)C30—C29—C28—C2764.9 (5)
C3—C2—C1—C418.7 (5)C31—C29—C28—C2759.4 (5)
C2—C1—N1—C239.0 (4)C30—C29—C28—C23115.2 (4)
C4—C1—N1—C23174.9 (3)C31—C29—C28—C23120.5 (4)
C2—C3—N2—C1113.6 (5)C28—C23—C24—C252.0 (4)
C5—C3—N2—C11169.2 (3)N1—C23—C24—C25177.9 (3)
C1—N1—C23—C2495.7 (4)C28—C23—C24—C32177.1 (3)
C1—N1—C23—C2884.2 (4)N1—C23—C24—C323.0 (4)
C3—N2—C11—C1294.3 (4)C33—C32—C24—C2571.1 (4)
C3—N2—C11—C1685.2 (4)C34—C32—C24—C2552.0 (4)
N2—C3—C5—C647.3 (4)C33—C32—C24—C23108.0 (4)
C2—C3—C5—C6135.7 (3)C34—C32—C24—C23128.9 (4)
N2—C3—C5—C10131.5 (3)C6—C5—C10—C90.3 (5)
C2—C3—C5—C1045.6 (4)C3—C5—C10—C9179.1 (3)
C12—C11—C16—C150.6 (5)C11—C12—C13—C140.8 (5)
N2—C11—C16—C15179.9 (3)C20—C12—C13—C14178.8 (3)
C12—C11—C16—C17178.8 (3)C23—C28—C27—C261.0 (5)
N2—C11—C16—C171.7 (5)C29—C28—C27—C26179.0 (3)
C19—C17—C16—C1576.5 (5)C12—C13—C14—C150.4 (6)
C18—C17—C16—C1549.3 (5)C10—C5—C6—C71.3 (5)
C19—C17—C16—C11101.7 (4)C3—C5—C6—C7179.9 (3)
C18—C17—C16—C11132.5 (4)C23—C24—C25—C261.3 (5)
C16—C11—C12—C130.3 (5)C32—C24—C25—C26177.8 (3)
N2—C11—C12—C13179.2 (3)C13—C14—C15—C160.6 (6)
C16—C11—C12—C20179.3 (3)C11—C16—C15—C141.0 (5)
N2—C11—C12—C201.3 (5)C17—C16—C15—C14179.3 (3)
C22—C20—C12—C11122.7 (4)C5—C6—C7—C81.2 (5)
C21—C20—C12—C11114.8 (4)C28—C27—C26—C251.6 (5)
C22—C20—C12—C1357.7 (5)C24—C25—C26—C270.4 (5)
C21—C20—C12—C1364.7 (5)C6—C7—C8—C90.1 (6)
C24—C23—C28—C270.9 (4)C7—C8—C9—C100.9 (6)
N1—C23—C28—C27179.0 (3)C5—C10—C9—C80.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···F20.86 (3)2.28 (4)3.094 (4)156 (3)
N1—HN1···F40.86 (3)2.49 (4)3.187 (4)139 (3)

Experimental details

Crystal data
Chemical formulaC34H45N2+·F6P
Mr626.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.4688 (2), 15.6981 (2), 17.4329 (3)
β (°) 95.563 (3)
V3)3396.18 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.31 × 0.21 × 0.16
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10101, 5966, 3165
Rint0.028
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.175, 1.02
No. of reflections5966
No. of parameters416
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.27

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Selected bond lengths (Å) top
C3—N21.341 (4)C2—C11.391 (4)
C3—C21.383 (4)C1—N11.326 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···F20.86 (3)2.28 (4)3.094 (4)156 (3)
N1—HN1···F40.86 (3)2.49 (4)3.187 (4)139 (3)
 

Acknowledgements

The authors thank Chtioui Ahlem for the structure refinement.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev. 102, 3031–3065.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS Software. Version 5.1/1.2. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFilipou, A. C., Volkl, C. & Rogers, R. D. (1993). J. Organomet. Chem. 463, 135–142.  CSD CrossRef Web of Science Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLandolsi, K., Belhaj Mbarek Elmkacher, N., Guerfel, T. & Bouachir, F. (2008). C. R. Acad. Sci. Ser. IIC Chem. In the press.  Google Scholar
First citationLandolsi, K., Rzaigui, M. & Bouachir, F. (2002). Tetrahedron Lett. 43, 9463–9466.  Web of Science CSD CrossRef CAS Google Scholar
First citationMair, F. S., Scully, D., Edwards, A. J., Raithby, P. R. & Snaith, R. (1995). Polyhedron, 14, 2397–2401.  CSD CrossRef CAS Web of Science Google Scholar
First citationParks, J. E. & Holm, R. H. (1968). Inorg. Chem. 7, 1408–1416.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds