organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

C60 1,1,2,2-tetra­chloro­ethyl­ene tetra­solvate

aDepartment of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India, and bSophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai 600 036, India
*Correspondence e-mail: byra@iitm.ac.in

(Received 29 October 2007; accepted 10 December 2007; online 18 December 2007)

In the title complex, C60·4C2Cl4, the C60 mol­ecule is located on an inversion centre and there are two tetra­chloro­ethyl­ene (TCE) mol­ecules in the asymmetric unit. Both TCE mol­ecules show positional disorder, with occupancy ratios of 0.75:0.25 and 0.56:0.44. Four fullerene C atoms form short contacts [3.208 (17) and 3.223 (17) Å] with the centres of the TCE double bonds, indicating that C60–solvent inter­actions are largely ππ in nature.

Related literature

For related literature on inclusion compounds of C60 with various guest mol­ecules, see: Balch & Olmstead (1999[Balch, A. L. & Olmstead, M. M. (1999). Coord. Chem. Rev. 185-186, 601-617.]) and references cited therein; Olmstead et al. (2000[Olmstead, M. M., Jiang, F. & Balch, A. L. (2000). Chem. Commun. pp. 483-484.]); Hardie et al. (2003[Hardie, M. J., Torrensa, R. & Raston, C. L. (2003). Chem. Commun. pp. 1854-1855.]); Bond (2003[Bond, A. D. (2003). Acta Cryst. E59, o1992-o1993.]); Litvinov et al. (2003[Litvinov, A. L., Konarev, D. V., Kovalevsky, A. Y., Coppens, P. & Lyubovskaya, R. N. (2003). CrystEngComm, 5, 137-139.]); Soldatov et al. (2001[Soldatov, D. V., Diamente, P. R., Ratcliffe, C. I. & Ripmeester, J. A. (2001). Inorg. Chem. 40, 5660-5667.]); Dodrick et al. (2005[Dodrick, M. S., Panthofer, M. & Jansen, M. (2005). Eur. J. Inorg. Chem. pp. 4064-4069.]).

[Scheme 1]

Experimental

Crystal data
  • C60·4C2Cl4

  • Mr = 1383.88

  • Triclinic, [P \overline 1]

  • a = 10.049 (5) Å

  • b = 10.168 (5) Å

  • c = 13.412 (5) Å

  • α = 70.484 (5)°

  • β = 68.508 (5)°

  • γ = 79.834 (5)°

  • V = 1199.6 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.97 mm−1

  • T = 173 (2) K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Bruker Kappa APEX2 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.759, Tmax = 0.830

  • 11755 measured reflections

  • 4047 independent reflections

  • 3502 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.105

  • wR(F2) = 0.265

  • S = 1.11

  • 4047 reflections

  • 420 parameters

  • 34 restraints

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 7.6), Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 7.6), Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altormare et al., 1993[Altomare, A., Gascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

C60 is located around inversion centre and there are two symmetry independent 1,1,2,2-tetrachloroethylene (TCE) solvent molecules in the asymmetric unit. The ORTEP drawing of the title compound is shown in Fig. 1. In the C60 molecule inter-pentagonal bond distances are in the range 1.3947 (17)–1.414 (15) Å while the intra-pentagonal bond distances are in the range 1.364 (19)–1.55 (2) Å. Such a variation in bond lengths is possibly due to the librational motion of the C60 molecule in the crystal. Similar variations of bond lengths were observed in some other C60 co-crystals (Dodrick et al., 2005). The C60 and TCE molecules show intermolecular π-π interactions (Fig. 2). The short contacts between the fullerene C2 atom and the centre of the ethylene C33A—C34A bond, and C22 atom and the centre of the ethylene C31A—C32A bond are of 3.208 (17) and 3.223 (17) Å, respectively. Additionally, short contacts are observed between Cl atoms of TCE and C60 (Cl7···C14i 3.419 (14) Å, Cl5···Cl4 = 3.491 (4) Å; symmetry code: (i) x, -1 + y, z]. The solvent molecules and C60 are located in alternating layers parallel to the (001) plane. The shortest C60···C60 contacts are: C27···C29i 3.690 (14) Å and C9···C11ii 3.447 (14) Å [symmetry code: (i) 2 - x, 1 - y, -z, (ii) 1 - x, -y, -z]

Related literature top

For related literature on inclusion compounds of C60 with various guest molecules, see: Balch & Olmstead (1999) and references cited therein; Olmstead et al. (2000); Hardie et al. (2003); Bond (2003); Litvinov et al. (2003); Soldatov et al. (2001); Dodrick et al. (2005).

Experimental top

C60 sample was purchased from Sigma-Aldrich and used as received. The solvents for crystallization, 1,1,2,2-tetrachloroethylene (TCE) and methanol were of purity >99% and were purchased from E. Merck (Germany). Crystals of the C60. 4(CCl4) were grown by diffusion of methanol into a solution of C60 in TCE over a period of five days. Upon removal from the mother liquor the crystals were unstable anad therefore were mounted at 0°C.

Refinement top

The C60 molecule was refined without any restraints. Both TCE molecules were disordered and showed two approximately perpendicular orientations with overlapping Cl atoms (the ratio of occupancies 0.75:0.25 and 0.56:0.44). Since one of the disordered TCE molecules showed occupancies very close to 0.75 and 0.25 these values were fixed at the final stages of the refinement. The restraints were imposed on C—C and C—Cl bond lengths of the TCE molecules and anisotropic displacement parameters of C31A, C32A and C34A atoms. The residual peak of 1.25 e Å-3 is located at 1.06 Å from the C5 atom of C60 indicating that in addition to large librational motion the C60 molecule can be also partially disordered. The high residual values, R1=0.105 and wR1=0.259 are most probably due to disorder of the TCE and C60 molecules.

Structure description top

C60 is located around inversion centre and there are two symmetry independent 1,1,2,2-tetrachloroethylene (TCE) solvent molecules in the asymmetric unit. The ORTEP drawing of the title compound is shown in Fig. 1. In the C60 molecule inter-pentagonal bond distances are in the range 1.3947 (17)–1.414 (15) Å while the intra-pentagonal bond distances are in the range 1.364 (19)–1.55 (2) Å. Such a variation in bond lengths is possibly due to the librational motion of the C60 molecule in the crystal. Similar variations of bond lengths were observed in some other C60 co-crystals (Dodrick et al., 2005). The C60 and TCE molecules show intermolecular π-π interactions (Fig. 2). The short contacts between the fullerene C2 atom and the centre of the ethylene C33A—C34A bond, and C22 atom and the centre of the ethylene C31A—C32A bond are of 3.208 (17) and 3.223 (17) Å, respectively. Additionally, short contacts are observed between Cl atoms of TCE and C60 (Cl7···C14i 3.419 (14) Å, Cl5···Cl4 = 3.491 (4) Å; symmetry code: (i) x, -1 + y, z]. The solvent molecules and C60 are located in alternating layers parallel to the (001) plane. The shortest C60···C60 contacts are: C27···C29i 3.690 (14) Å and C9···C11ii 3.447 (14) Å [symmetry code: (i) 2 - x, 1 - y, -z, (ii) 1 - x, -y, -z]

For related literature on inclusion compounds of C60 with various guest molecules, see: Balch & Olmstead (1999) and references cited therein; Olmstead et al. (2000); Hardie et al. (2003); Bond (2003); Litvinov et al. (2003); Soldatov et al. (2001); Dodrick et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altormare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-32 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997.

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the title compound showing 50% probability displacement ellipsoids. Labels for C60 were omitted. The TCE molecules in minor occupancies are not shown. Symmetry code for the atoms not from the asymmetric unit(_2): 2 - x, -y, -z).
[Figure 2] Fig. 2. View of the crystal packing in the title compound along the b axis.
(I) top
Crystal data top
C60·4C2Cl4Z = 1
Mr = 1383.88F(000) = 680
Triclinic, P1Dx = 1.916 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.049 (5) ÅCell parameters from 9670 reflections
b = 10.168 (5) Åθ = 2.2–28.4°
c = 13.412 (5) ŵ = 0.97 mm1
α = 70.484 (5)°T = 173 K
β = 68.508 (5)°Plate, brown
γ = 79.834 (5)°0.3 × 0.2 × 0.2 mm
V = 1199.6 (10) Å3
Data collection top
Bruker APEX2 Kappa
diffractometer
4047 independent reflections
Radiation source: fine-focus sealed tube3502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and φ scanθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1111
Tmin = 0.759, Tmax = 0.830k = 1211
11755 measured reflectionsl = 1515
Refinement top
Refinement on F234 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.105Secondary atom site location: difference Fourier map
wR(F2) = 0.265 w = 1/[σ2(Fo2) + (0.0602P)2 + 20.5574P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
4047 reflectionsΔρmax = 1.25 e Å3
420 parametersΔρmin = 0.68 e Å3
Crystal data top
C60·4C2Cl4γ = 79.834 (5)°
Mr = 1383.88V = 1199.6 (10) Å3
Triclinic, P1Z = 1
a = 10.049 (5) ÅMo Kα radiation
b = 10.168 (5) ŵ = 0.97 mm1
c = 13.412 (5) ÅT = 173 K
α = 70.484 (5)°0.3 × 0.2 × 0.2 mm
β = 68.508 (5)°
Data collection top
Bruker APEX2 Kappa
diffractometer
4047 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3502 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.830Rint = 0.037
11755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.10534 restraints
wR(F2) = 0.265 w = 1/[σ2(Fo2) + (0.0602P)2 + 20.5574P]
where P = (Fo2 + 2Fc2)/3
S = 1.11Δρmax = 1.25 e Å3
4047 reflectionsΔρmin = 0.68 e Å3
420 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7872 (12)0.2020 (11)0.1752 (10)0.048 (3)
C20.8649 (12)0.1051 (13)0.2458 (9)0.050 (3)
C30.8346 (14)0.0347 (13)0.2881 (8)0.053 (3)
C40.7301 (14)0.0837 (17)0.2621 (11)0.069 (4)
C50.6574 (12)0.0048 (16)0.2046 (11)0.069 (4)
C60.6836 (10)0.1484 (11)0.1574 (9)0.044 (3)
C70.6674 (10)0.1949 (11)0.0509 (10)0.043 (2)
C80.6353 (9)0.0806 (11)0.0226 (9)0.038 (2)
C90.6293 (9)0.0449 (12)0.1128 (11)0.051 (3)
C100.6808 (12)0.1691 (13)0.0941 (14)0.068 (4)
C110.6954 (10)0.0755 (11)0.0878 (9)0.043 (3)
C121.2500 (12)0.0616 (14)0.1058 (11)0.055 (3)
C131.2598 (12)0.1767 (11)0.0131 (12)0.051 (3)
C140.7609 (12)0.2663 (12)0.1663 (12)0.062 (4)
C150.7816 (13)0.2274 (11)0.2465 (9)0.052 (3)
C160.9231 (17)0.2585 (12)0.2626 (9)0.063 (4)
C170.9541 (18)0.1434 (13)0.2871 (8)0.064 (4)
C181.0919 (15)0.1027 (16)0.2459 (9)0.064 (4)
C191.1206 (14)0.0448 (15)0.2018 (10)0.057 (3)
C201.0097 (15)0.1432 (14)0.2030 (10)0.059 (3)
C211.2117 (14)0.1785 (12)0.1725 (11)0.060 (3)
C221.1800 (13)0.2823 (11)0.1474 (10)0.052 (3)
C231.0266 (11)0.3278 (10)0.1968 (9)0.043 (2)
C240.7594 (10)0.2949 (10)0.0361 (9)0.041 (2)
C251.0019 (12)0.3678 (9)0.1130 (10)0.045 (3)
C260.8641 (12)0.3473 (10)0.0120 (12)0.053 (3)
C270.8788 (13)0.3009 (11)0.0902 (10)0.049 (3)
C281.0212 (15)0.2708 (13)0.1026 (12)0.061 (3)
C291.1246 (13)0.3373 (10)0.0941 (10)0.049 (3)
C301.1358 (17)0.2883 (12)0.0146 (12)0.065 (4)
C311.3841 (11)0.4523 (10)0.2363 (7)0.027 (3)0.82 (2)
C321.3342 (11)0.4954 (11)0.3232 (7)0.029 (3)0.82 (2)
C31A1.306 (2)0.430 (3)0.3017 (15)0.013 (10)0.18 (2)
C32A1.406 (2)0.515 (3)0.2605 (15)0.007 (9)0.18 (2)
C330.7666 (10)0.1574 (11)0.4919 (11)0.030 (5)0.56 (3)
C340.6841 (11)0.2472 (11)0.4454 (12)0.039 (5)0.56 (3)
C33A0.7762 (13)0.2488 (14)0.4439 (16)0.039 (7)0.44 (3)
C34A0.677 (2)0.162 (2)0.4950 (19)0.034 (6)0.44 (3)
Cl11.5322 (2)0.5188 (2)0.12839 (19)0.0357 (6)
Cl21.2994 (3)0.3299 (3)0.2202 (2)0.0484 (7)
Cl31.4140 (3)0.6192 (3)0.3386 (2)0.0425 (6)
Cl41.1832 (3)0.4285 (3)0.4339 (2)0.0566 (8)
Cl50.9370 (3)0.2011 (4)0.4666 (2)0.0569 (8)
Cl60.7062 (3)0.0017 (3)0.5858 (2)0.0535 (7)
Cl70.7431 (4)0.4076 (3)0.3547 (2)0.0615 (9)
Cl80.5146 (3)0.2052 (3)0.4689 (2)0.0565 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.053 (7)0.072 (8)0.036 (6)0.006 (6)0.008 (5)0.043 (6)
C30.073 (8)0.064 (8)0.012 (4)0.005 (6)0.002 (5)0.016 (5)
C60.026 (5)0.042 (6)0.042 (6)0.015 (4)0.011 (4)0.021 (5)
C70.023 (5)0.039 (6)0.065 (7)0.019 (4)0.015 (5)0.023 (5)
C80.014 (4)0.046 (6)0.058 (6)0.003 (4)0.017 (4)0.018 (5)
C90.007 (4)0.054 (7)0.077 (8)0.007 (4)0.004 (5)0.009 (6)
C100.026 (6)0.055 (8)0.114 (12)0.025 (5)0.015 (7)0.011 (8)
C120.040 (6)0.088 (9)0.069 (8)0.008 (6)0.035 (6)0.041 (7)
C130.039 (6)0.040 (6)0.090 (9)0.015 (5)0.037 (6)0.018 (6)
C140.038 (6)0.043 (6)0.079 (9)0.033 (5)0.015 (6)0.024 (6)
C150.053 (7)0.031 (5)0.035 (6)0.016 (5)0.019 (5)0.006 (4)
C170.121 (12)0.055 (7)0.017 (5)0.007 (7)0.032 (6)0.001 (5)
C190.067 (8)0.082 (9)0.054 (7)0.002 (7)0.044 (7)0.036 (7)
C200.089 (10)0.066 (8)0.052 (7)0.003 (7)0.042 (7)0.039 (6)
C210.072 (8)0.040 (6)0.076 (9)0.003 (6)0.055 (7)0.003 (6)
C220.063 (7)0.041 (6)0.051 (7)0.027 (5)0.045 (6)0.000 (5)
C230.048 (6)0.026 (5)0.042 (6)0.001 (4)0.020 (5)0.010 (4)
C240.032 (5)0.024 (5)0.063 (7)0.015 (4)0.019 (5)0.011 (4)
C250.053 (6)0.009 (4)0.061 (7)0.007 (4)0.015 (5)0.004 (4)
C260.050 (6)0.017 (5)0.090 (9)0.011 (4)0.019 (6)0.025 (5)
C270.060 (7)0.035 (6)0.063 (7)0.009 (5)0.019 (6)0.037 (5)
C280.080 (9)0.053 (7)0.080 (9)0.008 (6)0.031 (8)0.048 (7)
C290.065 (8)0.019 (5)0.065 (7)0.014 (5)0.031 (6)0.003 (5)
C300.096 (10)0.040 (6)0.079 (9)0.036 (7)0.034 (8)0.020 (6)
C310.028 (6)0.023 (5)0.028 (6)0.005 (4)0.009 (5)0.001 (4)
C320.028 (6)0.034 (6)0.027 (6)0.002 (5)0.014 (5)0.010 (5)
C31A0.014 (11)0.013 (11)0.014 (11)0.000 (5)0.004 (6)0.005 (6)
C32A0.008 (10)0.007 (10)0.006 (11)0.000 (5)0.001 (6)0.003 (5)
C330.023 (10)0.039 (11)0.024 (9)0.009 (9)0.004 (8)0.012 (8)
C340.051 (13)0.024 (10)0.025 (10)0.008 (9)0.008 (9)0.006 (8)
C33A0.042 (15)0.046 (15)0.030 (13)0.012 (13)0.006 (12)0.015 (11)
C34A0.019 (11)0.028 (12)0.037 (13)0.007 (10)0.010 (10)0.007 (10)
Cl10.0277 (11)0.0402 (13)0.0334 (12)0.0031 (9)0.0002 (9)0.0140 (10)
Cl20.0645 (17)0.0344 (13)0.0625 (17)0.0119 (12)0.0345 (14)0.0150 (12)
Cl30.0450 (14)0.0485 (14)0.0442 (14)0.0097 (11)0.0119 (11)0.0262 (11)
Cl40.0426 (15)0.074 (2)0.0378 (14)0.0217 (14)0.0055 (11)0.0085 (13)
Cl50.0457 (16)0.086 (2)0.0461 (16)0.0226 (15)0.0169 (13)0.0166 (15)
Cl60.0653 (18)0.0400 (14)0.0425 (15)0.0036 (12)0.0213 (13)0.0076 (11)
Cl70.104 (3)0.0280 (13)0.0343 (14)0.0175 (14)0.0051 (15)0.0002 (10)
Cl80.0380 (14)0.0658 (18)0.0538 (17)0.0013 (13)0.0180 (12)0.0021 (14)
C160.111 (11)0.041 (6)0.022 (5)0.027 (7)0.020 (6)0.017 (5)
C50.028 (6)0.092 (10)0.047 (7)0.001 (6)0.020 (5)0.007 (7)
C10.046 (6)0.043 (6)0.061 (7)0.017 (5)0.009 (5)0.041 (6)
C110.028 (5)0.052 (6)0.054 (6)0.004 (4)0.033 (5)0.001 (5)
C180.078 (9)0.100 (11)0.028 (6)0.001 (8)0.043 (6)0.010 (6)
C40.044 (7)0.100 (11)0.040 (7)0.015 (7)0.016 (6)0.019 (7)
Geometric parameters (Å, º) top
C2—C31.386 (17)C23—C251.426 (16)
C2—C201.426 (17)C24—C22i1.432 (16)
C2—C11.457 (16)C24—C261.433 (16)
C3—C41.429 (19)C25—C29i1.350 (16)
C3—C171.482 (19)C25—C26i1.505 (16)
C6—C11.382 (16)C26—C271.348 (17)
C6—C71.408 (15)C26—C25i1.505 (16)
C6—C51.504 (18)C27—C11.396 (16)
C7—C241.414 (15)C27—C281.468 (17)
C7—C81.454 (14)C28—C301.299 (19)
C8—C111.394 (15)C29—C25i1.350 (16)
C8—C91.427 (15)C29—C301.415 (17)
C9—C101.347 (17)C29—C14i1.463 (19)
C9—C51.55 (2)C31—C321.280 (2)
C10—C13i1.364 (19)C31—Cl11.699 (10)
C10—C141.487 (18)C31—Cl21.735 (10)
C12—C131.379 (18)C32—Cl31.709 (10)
C12—C191.443 (17)C32—Cl41.735 (10)
C12—C11i1.471 (16)C31A—C32A1.282 (2)
C13—C10i1.364 (19)C31A—Cl21.747 (9)
C13—C301.529 (19)C31A—Cl41.748 (9)
C14—C151.354 (19)C32A—Cl31.751 (9)
C14—C29i1.463 (19)C32A—Cl11.751 (9)
C15—C161.480 (19)C33—C341.281 (2)
C15—C41.517 (19)C33—Cl51.728 (8)
C17—C181.372 (19)C33—Cl61.731 (8)
C17—C161.427 (17)C34—Cl81.720 (8)
C19—C201.360 (18)C34—Cl71.726 (8)
C19—C181.454 (19)C33A—C34A1.281 (2)
C20—C281.510 (19)C33A—Cl51.711 (9)
C21—C221.327 (17)C33A—Cl71.721 (9)
C21—C11i1.426 (16)C34A—Cl81.75 (2)
C21—C181.524 (19)C34A—Cl61.75 (2)
C22—C24i1.432 (16)C5—C41.251 (19)
C22—C231.525 (16)C11—C21i1.426 (16)
C23—C161.358 (17)C11—C12i1.471 (16)
C3—C2—C20120.2 (11)C27—C26—C24121.6 (11)
C3—C2—C1119.0 (11)C27—C26—C25i117.9 (11)
C20—C2—C1108.6 (11)C24—C26—C25i108.2 (10)
C2—C3—C4120.7 (12)C26—C27—C1118.9 (11)
C2—C3—C17119.2 (12)C26—C27—C28121.0 (11)
C4—C3—C17107.2 (11)C1—C27—C28108.6 (11)
C1—C6—C7119.7 (10)C30—C28—C27120.3 (13)
C1—C6—C5121.1 (11)C30—C28—C20121.0 (13)
C7—C6—C5107.4 (11)C27—C28—C20106.3 (11)
C6—C7—C24118.8 (10)C25i—C29—C30123.2 (12)
C6—C7—C8111.1 (9)C25i—C29—C14i117.5 (11)
C24—C7—C8117.6 (10)C30—C29—C14i108.4 (11)
C11—C8—C9119.7 (10)C28—C30—C29120.3 (14)
C11—C8—C7118.9 (9)C28—C30—C13119.0 (12)
C9—C8—C7109.3 (10)C29—C30—C13107.8 (12)
C10—C9—C8121.5 (12)C32—C31—Cl1121.3 (8)
C10—C9—C5120.3 (12)C32—C31—Cl2121.7 (8)
C8—C9—C5106.4 (10)Cl1—C31—Cl2117.0 (5)
C9—C10—C13i119.8 (13)C31—C32—Cl3122.2 (9)
C9—C10—C14117.8 (14)C31—C32—Cl4121.7 (9)
C13i—C10—C14110.6 (12)Cl3—C32—Cl4116.0 (5)
C13—C12—C19119.7 (12)C32A—C31A—Cl2117.9 (7)
C13—C12—C11i118.3 (11)C32A—C31A—Cl4116.8 (7)
C19—C12—C11i109.1 (11)Cl2—C31A—Cl4125.3 (7)
C10i—C13—C12123.0 (12)C31A—C32A—Cl3119.1 (7)
C10i—C13—C30107.0 (11)C31A—C32A—Cl1118.2 (7)
C12—C13—C30119.8 (12)Cl3—C32A—Cl1122.7 (6)
C15—C14—C29i121.7 (11)C34—C33—Cl5119.1 (7)
C15—C14—C10119.8 (13)C34—C33—Cl6121.0 (7)
C29i—C14—C10106.2 (12)Cl5—C33—Cl6119.8 (5)
C14—C15—C16119.4 (11)C33—C34—Cl8119.7 (7)
C14—C15—C4121.6 (12)C33—C34—Cl7120.9 (7)
C16—C15—C4105.7 (11)Cl8—C34—Cl7119.3 (5)
C18—C17—C16119.9 (14)C34A—C33A—Cl5118.4 (14)
C18—C17—C3119.0 (12)C34A—C33A—Cl7119.0 (14)
C16—C17—C3109.9 (13)Cl5—C33A—Cl7122.6 (7)
C20—C19—C12120.6 (13)C33A—C34A—Cl8119.4 (17)
C20—C19—C18119.7 (12)C33A—C34A—Cl6120.8 (17)
C12—C19—C18108.0 (11)Cl8—C34A—Cl6119.8 (7)
C19—C20—C2121.4 (12)C23—C16—C17121.5 (13)
C19—C20—C28119.8 (13)C23—C16—C15117.9 (11)
C2—C20—C28106.7 (11)C17—C16—C15108.4 (12)
C22—C21—C11i120.2 (13)C4—C5—C6118.8 (15)
C22—C21—C18119.0 (12)C4—C5—C9122.0 (14)
C11i—C21—C18107.1 (11)C6—C5—C9105.8 (11)
C21—C22—C24i121.0 (12)C6—C1—C27122.1 (11)
C21—C22—C23119.6 (11)C6—C1—C2117.2 (10)
C24i—C22—C23108.4 (10)C27—C1—C2109.7 (10)
C16—C23—C25121.6 (11)C8—C11—C21i121.5 (11)
C16—C23—C22119.6 (11)C8—C11—C12i117.6 (10)
C25—C23—C22106.5 (9)C21i—C11—C12i108.6 (11)
C7—C24—C22i120.8 (10)C17—C18—C19120.6 (13)
C7—C24—C26118.8 (10)C17—C18—C21120.2 (13)
C22i—C24—C26108.7 (10)C19—C18—C21107.1 (11)
C29i—C25—C23121.9 (11)C5—C4—C3123.1 (15)
C29i—C25—C26i117.2 (11)C5—C4—C15118.2 (15)
C23—C25—C26i108.2 (9)C3—C4—C15108.9 (12)
C20—C2—C3—C4137.2 (11)Cl5—C33—C34—Cl8179.6 (9)
C1—C2—C3—C40.8 (15)Cl6—C33—C34—Cl84 (2)
C20—C2—C3—C170.7 (14)Cl5—C33—C34—Cl72 (2)
C1—C2—C3—C17137.3 (10)Cl6—C33—C34—Cl7178.3 (10)
C1—C6—C7—C240.7 (13)Cl5—C33A—C34A—Cl8177.4 (12)
C5—C6—C7—C24142.6 (9)Cl7—C33A—C34A—Cl82 (3)
C1—C6—C7—C8141.9 (9)Cl5—C33A—C34A—Cl60 (3)
C5—C6—C7—C81.4 (10)Cl7—C33A—C34A—Cl6179.4 (12)
C6—C7—C8—C11142.2 (9)C32—C31—Cl1—C32A0 (2)
C24—C7—C8—C110.4 (13)Cl2—C31—Cl1—C32A177 (3)
C6—C7—C8—C90.3 (10)C31A—C32A—Cl1—C310 (2)
C24—C7—C8—C9142.0 (9)Cl3—C32A—Cl1—C31179 (4)
C11—C8—C9—C100.1 (14)C32—C31—Cl2—C31A2 (3)
C7—C8—C9—C10141.9 (10)Cl1—C31—Cl2—C31A179 (3)
C11—C8—C9—C5143.0 (9)C32A—C31A—Cl2—C312 (2)
C7—C8—C9—C51.0 (10)Cl4—C31A—Cl2—C31180 (5)
C8—C9—C10—C13i0.0 (15)C31—C32—Cl3—C32A1 (3)
C5—C9—C10—C13i137.9 (11)Cl4—C32—Cl3—C32A180 (3)
C8—C9—C10—C14139.6 (11)C31A—C32A—Cl3—C321 (2)
C5—C9—C10—C141.7 (15)Cl1—C32A—Cl3—C32180 (4)
C19—C12—C13—C10i138.2 (11)C31—C32—Cl4—C31A0 (2)
C11i—C12—C13—C10i0.8 (15)Cl3—C32—Cl4—C31A179 (3)
C19—C12—C13—C302.4 (15)C32A—C31A—Cl4—C320 (2)
C11i—C12—C13—C30139.8 (10)Cl2—C31A—Cl4—C32178 (5)
C9—C10—C14—C151.0 (15)C34A—C33A—Cl5—C332.6 (16)
C13i—C10—C14—C15142.1 (11)Cl7—C33A—Cl5—C33177 (3)
C9—C10—C14—C29i143.9 (10)C34—C33—Cl5—C33A0.4 (18)
C13i—C10—C14—C29i0.8 (12)Cl6—C33—Cl5—C33A176 (2)
C29i—C14—C15—C160.6 (15)C34—C33—Cl6—C34A0.7 (18)
C10—C14—C15—C16137.7 (11)Cl5—C33—Cl6—C34A175 (3)
C29i—C14—C15—C4134.6 (11)C33A—C34A—Cl6—C332.6 (17)
C10—C14—C15—C42.5 (16)Cl8—C34A—Cl6—C33174 (3)
C2—C3—C17—C181.1 (15)C34A—C33A—Cl7—C341.0 (17)
C4—C3—C17—C18142.8 (10)Cl5—C33A—Cl7—C34179 (3)
C2—C3—C17—C16142.6 (10)C33—C34—Cl7—C33A2.1 (18)
C4—C3—C17—C160.9 (12)Cl8—C34—Cl7—C33A179 (3)
C13—C12—C19—C201.9 (15)C33—C34—Cl8—C34A3.8 (17)
C11i—C12—C19—C20142.7 (10)Cl7—C34—Cl8—C34A179 (3)
C13—C12—C19—C18141.0 (10)C33A—C34A—Cl8—C340.7 (18)
C11i—C12—C19—C180.2 (11)Cl6—C34A—Cl8—C34178 (3)
C12—C19—C20—C2138.1 (11)C25—C23—C16—C17137.0 (11)
C18—C19—C20—C20.6 (16)C22—C23—C16—C170.0 (15)
C12—C19—C20—C280.6 (15)C25—C23—C16—C151.1 (14)
C18—C19—C20—C28138.1 (11)C22—C23—C16—C15138.1 (10)
C3—C2—C20—C190.5 (15)C18—C17—C16—C231.6 (16)
C1—C2—C20—C19141.3 (10)C3—C17—C16—C23141.8 (11)
C3—C2—C20—C28142.7 (10)C18—C17—C16—C15143.1 (11)
C1—C2—C20—C280.9 (11)C3—C17—C16—C150.2 (12)
C11i—C21—C22—C24i1.4 (16)C14—C15—C16—C231.2 (14)
C18—C21—C22—C24i136.9 (11)C4—C15—C16—C23142.6 (10)
C11i—C21—C22—C23138.4 (11)C14—C15—C16—C17142.0 (10)
C18—C21—C22—C232.8 (15)C4—C15—C16—C170.5 (11)
C21—C22—C23—C162.3 (14)C1—C6—C5—C41.0 (16)
C24i—C22—C23—C16142.0 (10)C7—C6—C5—C4143.6 (11)
C21—C22—C23—C25145.0 (10)C1—C6—C5—C9140.7 (10)
C24i—C22—C23—C250.7 (10)C7—C6—C5—C91.9 (10)
C6—C7—C24—C22i137.9 (10)C10—C9—C5—C41.5 (17)
C8—C7—C24—C22i0.8 (13)C8—C9—C5—C4141.9 (12)
C6—C7—C24—C261.1 (13)C10—C9—C5—C6141.7 (10)
C8—C7—C24—C26139.9 (9)C8—C9—C5—C61.8 (10)
C16—C23—C25—C29i0.8 (15)C7—C6—C1—C270.6 (14)
C22—C23—C25—C29i141.0 (9)C5—C6—C1—C27137.6 (10)
C16—C23—C25—C26i141.4 (10)C7—C6—C1—C2141.0 (9)
C22—C23—C25—C26i0.4 (10)C5—C6—C1—C22.8 (14)
C7—C24—C26—C271.6 (14)C26—C27—C1—C61.1 (15)
C22i—C24—C26—C27141.9 (10)C28—C27—C1—C6142.7 (9)
C7—C24—C26—C25i143.1 (9)C26—C27—C1—C2144.0 (10)
C22i—C24—C26—C25i0.4 (11)C28—C27—C1—C20.2 (11)
C24—C26—C27—C11.6 (15)C3—C2—C1—C61.9 (14)
C25i—C26—C27—C1139.5 (10)C20—C2—C1—C6144.2 (9)
C24—C26—C27—C28137.6 (11)C3—C2—C1—C27143.1 (9)
C25i—C26—C27—C280.3 (14)C20—C2—C1—C270.7 (11)
C26—C27—C28—C300.1 (16)C9—C8—C11—C21i137.7 (10)
C1—C27—C28—C30142.9 (11)C7—C8—C11—C21i0.8 (14)
C26—C27—C28—C20142.6 (10)C9—C8—C11—C12i0.2 (12)
C1—C27—C28—C200.3 (11)C7—C8—C11—C12i138.7 (9)
C19—C20—C28—C300.0 (16)C16—C17—C18—C19138.8 (11)
C2—C20—C28—C30142.9 (11)C3—C17—C18—C191.2 (15)
C19—C20—C28—C27142.2 (10)C16—C17—C18—C211.0 (16)
C2—C20—C28—C270.8 (11)C3—C17—C18—C21139.1 (11)
C27—C28—C30—C290.3 (16)C20—C19—C18—C171.0 (16)
C20—C28—C30—C29137.3 (12)C12—C19—C18—C17142.3 (10)
C27—C28—C30—C13136.5 (11)C20—C19—C18—C21143.7 (10)
C20—C28—C30—C130.6 (16)C12—C19—C18—C210.4 (11)
C25i—C29—C30—C280.2 (17)C22—C21—C18—C171.3 (16)
C14i—C29—C30—C28143.2 (11)C11i—C21—C18—C17142.0 (11)
C25i—C29—C30—C13140.8 (10)C22—C21—C18—C19141.5 (10)
C14i—C29—C30—C132.2 (11)C11i—C21—C18—C190.8 (11)
C10i—C13—C30—C28144.3 (11)C6—C5—C4—C31.9 (18)
C12—C13—C30—C281.8 (15)C9—C5—C4—C3137.2 (13)
C10i—C13—C30—C292.7 (11)C6—C5—C4—C15140.2 (11)
C12—C13—C30—C29143.5 (10)C9—C5—C4—C154.9 (17)
Cl1—C31—C32—Cl31.3 (14)C2—C3—C4—C52.8 (18)
Cl2—C31—C32—Cl3178.3 (6)C17—C3—C4—C5143.9 (12)
Cl1—C31—C32—Cl4180.0 (6)C2—C3—C4—C15142.2 (10)
Cl2—C31—C32—Cl43.0 (14)C17—C3—C4—C151.2 (12)
Cl2—C31A—C32A—Cl3178.6 (19)C14—C15—C4—C55.5 (16)
Cl4—C31A—C32A—Cl31 (4)C16—C15—C4—C5145.9 (11)
Cl2—C31A—C32A—Cl12 (4)C14—C15—C4—C3141.5 (11)
Cl4—C31A—C32A—Cl1179.8 (19)C16—C15—C4—C31.1 (12)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC60·4C2Cl4
Mr1383.88
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.049 (5), 10.168 (5), 13.412 (5)
α, β, γ (°)70.484 (5), 68.508 (5), 79.834 (5)
V3)1199.6 (10)
Z1
Radiation typeMo Kα
µ (mm1)0.97
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerBruker APEX2 Kappa
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.759, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
11755, 4047, 3502
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.105, 0.265, 1.11
No. of reflections4047
No. of parameters420
No. of restraints34
w = 1/[σ2(Fo2) + (0.0602P)2 + 20.5574P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.25, 0.68

Computer programs: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altormare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-32 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 1997.

 

Acknowledgements

This work was supported by funds from the Defence Research Development Organization, Government of India, to PB. We thank Mr V. Ramkumar for assistance with the data collection and the Department of Chemistry, IIT Madras, Chennai, for the XRD facility.

References

First citationAltomare, A., Gascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBalch, A. L. & Olmstead, M. M. (1999). Coord. Chem. Rev. 185–186, 601–617.  Web of Science CSD CrossRef CAS Google Scholar
First citationBond, A. D. (2003). Acta Cryst. E59, o1992–o1993.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 (Version 1.22) and SAINT-Plus (Version 7.6), Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDodrick, M. S., Panthofer, M. & Jansen, M. (2005). Eur. J. Inorg. Chem. pp. 4064–4069.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHardie, M. J., Torrensa, R. & Raston, C. L. (2003). Chem. Commun. pp. 1854–1855.  Web of Science CSD CrossRef Google Scholar
First citationLitvinov, A. L., Konarev, D. V., Kovalevsky, A. Y., Coppens, P. & Lyubovskaya, R. N. (2003). CrystEngComm, 5, 137–139.  Web of Science CSD CrossRef CAS Google Scholar
First citationOlmstead, M. M., Jiang, F. & Balch, A. L. (2000). Chem. Commun. pp. 483–484.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSoldatov, D. V., Diamente, P. R., Ratcliffe, C. I. & Ripmeester, J. A. (2001). Inorg. Chem. 40, 5660–5667.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds