metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-benzoyl-1-phenyl­ethenolato-κ2O,O′)(ethanol-κO)dioxidouranium(VI)

aResearch Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-34, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
*Correspondence e-mail: yikeda@nr.titach.ac.jp

(Received 21 November 2007; accepted 27 November 2007; online 18 December 2007)

In the title compound, [U(C15H11O2)2O2(C2H6O)], the UVI atom has a penta­gonal–bipyramidal coordination geometry. The two so-called `-yl' O atoms occupy the axial positions whereas four O atoms from the two chelating dibenzoyl­methanate ligands and the O atom from the ethanol mol­ecule are situated in the equatorial plane. Inter­molecular hydrogen bonds between one of the `-yl' O atoms and the ethanol OH group assemble mol­ecules into a centrosymmetric dimer.

Related literature

For literature on the structural chemistry of uran­yl(VI) complexes with dibenzoyl­methanate and unidentate ligands, see: Alagar et al. (2003[Alagar, M., Rajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Kannan, S. & Natarajan, S. (2003). Acta Cryst. E59, m524-m526.], 2004[Alagar, M., Kannan, S., Rajagopal, K., Venugopal, V., Krishnakumar, R. V., Nandhini, M. S. & Natarajan, S. (2004). Acta Cryst. E60, m773-m775.]); Fun, Kannan, Chantrapromma et al. (2002[Fun, H.-K., Kannan, S., Chantrapromma, S., Razak, I. A. & Usman, A. (2002). Acta Cryst. E58, m463-m465.]); Fun, Kannan, Usman et al. (2002[Fun, H.-K., Kannan, S., Usman, A., Razak, I. A. & Chantrapromma, S. (2002). Acta Cryst. C58, m368-m370.]); Kannan & Gerguson (1997[Kannan, S. & Gerguson, G. (1997). Inorg. Chem. 36, 1724-1725.]); Kannan et al. (1995[Kannan, S., Venugopal, V., Pillai, M. R. A., Droege, P. A. & Barnes, C. L. (1995). Polyhedron, 15, 97-101.], 1997[Kannan, S., Pillai, M. R. A., Venugopal, V., Droege, P. A. & Barnes, C. L. (1997). Inorg. Chim. Acta, 254, 113-117.], 2000[Kannan, S., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, e545-e546.]); Linert et al. (2001[Linert, W., Fukuda, Y. & Camard, A. (2001). Coord. Chem. Rev. 218, 113-152.]); Mizuoka & Ikeda (2004[Mizuoka, K. & Ikeda, Y. (2004). Radiochim. Acta, 92, 631-635.]); Rajagopal et al. (2002[Rajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Kannan, S. & Natarajan, S. (2002). Acta Cryst. E58, m316-m318.]).

[Scheme 1]

Experimental

Crystal data
  • [U(C15H11O2)2O2(C2H6O)]

  • Mr = 762.57

  • Monoclinic, P 21 /c

  • a = 9.088 (5) Å

  • b = 12.141 (7) Å

  • c = 25.878 (13) Å

  • β = 99.126 (16)°

  • V = 2819 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.81 mm−1

  • T = 173 (2) K

  • 0.40 × 0.30 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.205, Tmax = 0.594

  • 26257 measured reflections

  • 6442 independent reflections

  • 4539 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.083

  • S = 1.01

  • 6442 reflections

  • 362 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

U1—O1 1.762 (4)
U1—O2 1.787 (4)
U1—O4 2.288 (4)
U1—O6 2.339 (4)
U1—O5 2.347 (4)
U1—O3 2.365 (4)
U1—O7 2.464 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H6⋯O2i 0.86 1.94 2.765 (5) 162
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (MSC/Rigaku, 2006[MSC/Rigaku (2006). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]) and DIRDIF99 (Beurskens et al., 1999[Beurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Structural chemistry of uranyl(VI) complexes with dibenzoylmethanate (dbm) and unidentate ligands (L) has been extensively explored (Kannan et al., 1997a,b, 1995, 2000; Rajagopal et al., 2002; Fun, Kannan, S., Chantrapromma et al. 2002;Fun, Kannan, S., Usman et al. 2002 Alagar et al., 2003, 2004). Generally, two dbm and one L are placed in an equatorial plane of the uranyl(VI) ion (UO22+). This results in a UO2(dbm)2L complex with a pentagonal-bipyramidal geometry around the uranium atom. In our previous study, we also used UO2(dbm)2DMSO complex (DMSO = dimethyl sulfoxide) as a precursor of a corresponding uranyl(V) complex, [UVO2(dbm)2DMSO]- (Mizuoka & Ikeda, 2004). In our recent experiment, we obtained crystals of the title compound, UO2(dbm)2EtOH (I), suitable for single-crystal X-ray analysis. In this paper, we report results of the structure determination of I to accumulate more structural data in a series of UO2(dbm)2L complexes.

The molecular structure of I is shown in Fig. 1. The uranium atom in I is surrounded by seven O atoms; two O are at the axial positions, and the remaining five O from dbm and EtOH in the equatorial plane. As a consequence, the coordination geometry around U in I is pentagonal bipyramidal. The deviations of the O atoms in dbm and EtOH from the equatorial plane are within 0.1 Å.

Bond lengths in I are listed in Table 1, and are similar to the structural parameters of other UO2(dbm)2L complexes reported previously. As an exception, the bond length between U and O of EtOH [U1–O7 = 2.464 (4) Å] seems to be slightly longer than the corresponding bond lengths in the UO2(dbm)2L complexes (L = di-substituted sulfoxides, dibenzoylacetone, and triphenylphosphine oxide), while shorter than those with H2O, malonanilide, and camphor. It is likely that the bond length between U and O of L (U–OL) depends on donicity of L (Linert et al. 2001). In this discussion, the steric effect of L should also be taken into account. However, it is not the case of I, because there seems to be no significant steric hindrance due to EtOH in its molecular structure shown in Fig. 1.

Intermolecular hydrogen bond between OH group of ethanol and the -yl oxygen, O7–H6···O2i [symmetry operation: (i) 1 - x, 1 - y, 1 - z], was observed between the neighboring complex molecules (Table 2). This results in a dimeric aggregate of I as shown in Fig. 2.

Related literature top

For literature on the structural chemistry of uranyl(VI) complexes with dibenzoylmethanate and unidentate ligands, see: Alagar et al. (2003, 2004); Fun, Kannan, Chantrapromma et al. (2002); Fun, Kannan, Usman et al. (2002); Kannan & Gerguson (1997); Kannan et al. (1995, 1997, 2000); Linert et al. (2001); Mizuoka & Ikeda (2004); Rajagopal et al. (2002).

Experimental top

Solution of uranyl nitrate hexahydrate (1.20 g) in 2 ml of ethanol was added to a hot solution (10 ml) of dibenzoylmethane (Hdbm, 0.523 g) in 10 ml of ethanol with vigorous stirring. After addition of 1 N NaOH (3 ml), the solution was concentrated by heating, and then cooled to room temperature. Deposited crystals of the title compound were filtered off, washed with ethanol, and dried under the ambient atmosphere.

Refinement top

The structure was solved by direct methods, SIR97 (Altomare et al., 1999) and expanded using Fourier techniques (Beurskens et al., 1999). The H atom from the OH group was located from a difference map and the remaining H atoms were placed at calculated positions. All H atoms were refined as riding on their parent atoms with Uiso(H) = 1.2Ueq(C,O).

Structure description top

Structural chemistry of uranyl(VI) complexes with dibenzoylmethanate (dbm) and unidentate ligands (L) has been extensively explored (Kannan et al., 1997a,b, 1995, 2000; Rajagopal et al., 2002; Fun, Kannan, S., Chantrapromma et al. 2002;Fun, Kannan, S., Usman et al. 2002 Alagar et al., 2003, 2004). Generally, two dbm and one L are placed in an equatorial plane of the uranyl(VI) ion (UO22+). This results in a UO2(dbm)2L complex with a pentagonal-bipyramidal geometry around the uranium atom. In our previous study, we also used UO2(dbm)2DMSO complex (DMSO = dimethyl sulfoxide) as a precursor of a corresponding uranyl(V) complex, [UVO2(dbm)2DMSO]- (Mizuoka & Ikeda, 2004). In our recent experiment, we obtained crystals of the title compound, UO2(dbm)2EtOH (I), suitable for single-crystal X-ray analysis. In this paper, we report results of the structure determination of I to accumulate more structural data in a series of UO2(dbm)2L complexes.

The molecular structure of I is shown in Fig. 1. The uranium atom in I is surrounded by seven O atoms; two O are at the axial positions, and the remaining five O from dbm and EtOH in the equatorial plane. As a consequence, the coordination geometry around U in I is pentagonal bipyramidal. The deviations of the O atoms in dbm and EtOH from the equatorial plane are within 0.1 Å.

Bond lengths in I are listed in Table 1, and are similar to the structural parameters of other UO2(dbm)2L complexes reported previously. As an exception, the bond length between U and O of EtOH [U1–O7 = 2.464 (4) Å] seems to be slightly longer than the corresponding bond lengths in the UO2(dbm)2L complexes (L = di-substituted sulfoxides, dibenzoylacetone, and triphenylphosphine oxide), while shorter than those with H2O, malonanilide, and camphor. It is likely that the bond length between U and O of L (U–OL) depends on donicity of L (Linert et al. 2001). In this discussion, the steric effect of L should also be taken into account. However, it is not the case of I, because there seems to be no significant steric hindrance due to EtOH in its molecular structure shown in Fig. 1.

Intermolecular hydrogen bond between OH group of ethanol and the -yl oxygen, O7–H6···O2i [symmetry operation: (i) 1 - x, 1 - y, 1 - z], was observed between the neighboring complex molecules (Table 2). This results in a dimeric aggregate of I as shown in Fig. 2.

For literature on the structural chemistry of uranyl(VI) complexes with dibenzoylmethanate and unidentate ligands, see: Alagar et al. (2003, 2004); Fun, Kannan, Chantrapromma et al. (2002); Fun, Kannan, Usman et al. (2002); Kannan & Gerguson (1997); Kannan et al. (1995, 1997, 2000); Linert et al. (2001); Mizuoka & Ikeda (2004); Rajagopal et al. (2002).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (MSC/Rigaku, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999) and DIRDIFF99 (Beurskens et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Farrugia, 1997); software used to prepare material for publication: CrystalStructure (MSC/Rigaku, 2006).

Figures top
[Figure 1] Fig. 1. : Molecular structure of UO2(dbm)2EtOH (I) with displacement elipsoids shown at the 50% probability level. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. : Structure of the dimeric aggregate of I [molecules are related by the symmetry operation (i) 1 - x, 1 - y, 1 - z]. Dashed lines indicate intermolecular –OH···Oyl hydrogen bonds between neighboring molecules. Hydrogen atoms except for the OH group are omitted for clarity.
Bis(2-benzoyl-1-phenylethenolato-κ2O,O')(ethanol-κO)dioxidouranium(VI) top
Crystal data top
[U(C15H11O2)2O2(C2H6O)]F(000) = 1472
Mr = 762.57Dx = 1.797 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 22955 reflections
a = 9.088 (5) Åθ = 3.0–27.6°
b = 12.141 (7) ŵ = 5.81 mm1
c = 25.878 (13) ÅT = 173 K
β = 99.126 (16)°Platelet, orange
V = 2819 (3) Å30.40 × 0.30 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6442 independent reflections
Radiation source: fine-focus sealed tube4539 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1111
Absorption correction: numerical
(Higashi, 1999)
k = 1515
Tmin = 0.205, Tmax = 0.594l = 3333
26257 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0288P)2 + 2.9796P]
where P = (Fo2 + 2Fc2)/3
6442 reflections(Δ/σ)max = 0.001
362 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.69 e Å3
0 constraints
Crystal data top
[U(C15H11O2)2O2(C2H6O)]V = 2819 (3) Å3
Mr = 762.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.088 (5) ŵ = 5.81 mm1
b = 12.141 (7) ÅT = 173 K
c = 25.878 (13) Å0.40 × 0.30 × 0.10 mm
β = 99.126 (16)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6442 independent reflections
Absorption correction: numerical
(Higashi, 1999)
4539 reflections with I > 2σ(I)
Tmin = 0.205, Tmax = 0.594Rint = 0.097
26257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.01Δρmax = 1.05 e Å3
6442 reflectionsΔρmin = 0.69 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.56596 (2)0.415650 (18)0.597530 (8)0.03064 (7)
O10.4826 (4)0.3391 (4)0.64300 (17)0.0415 (10)
O20.6473 (4)0.4912 (4)0.54993 (16)0.0403 (10)
O30.4712 (4)0.2914 (3)0.52999 (16)0.0396 (10)
O40.7334 (4)0.2763 (3)0.59376 (15)0.0382 (10)
O50.7648 (4)0.4744 (4)0.66069 (17)0.0419 (11)
O60.4991 (5)0.5764 (4)0.63790 (18)0.0491 (12)
O70.3209 (4)0.4808 (3)0.55377 (15)0.0372 (10)
H60.32870.50440.52300.031*
C10.2955 (7)0.2313 (5)0.4362 (2)0.0387 (14)
H10.27660.30170.44980.046*
C20.1947 (7)0.1867 (6)0.3973 (3)0.0450 (16)
H20.10630.22600.38390.054*
C30.2210 (7)0.0843 (6)0.3772 (2)0.0469 (16)
H30.15060.05350.35000.056*
C40.3477 (7)0.0271 (6)0.3962 (2)0.0453 (16)
H40.36460.04330.38220.054*
C50.4521 (7)0.0717 (5)0.4360 (2)0.0387 (14)
H50.54040.03210.44910.046*
C60.4260 (6)0.1754 (5)0.4566 (2)0.0312 (13)
C70.5299 (6)0.2243 (5)0.5012 (2)0.0327 (13)
C80.6823 (6)0.1955 (5)0.5101 (2)0.0330 (13)
H80.72190.15630.48370.040*
C90.7770 (6)0.2221 (5)0.5562 (2)0.0322 (13)
C100.9351 (6)0.1858 (5)0.5657 (2)0.0319 (13)
C111.0087 (7)0.1396 (5)0.5280 (3)0.0390 (15)
H110.95580.12680.49380.047*
C121.1592 (7)0.1116 (5)0.5393 (3)0.0461 (17)
H121.20810.08050.51300.055*
C131.2362 (7)0.1291 (5)0.5885 (3)0.0472 (17)
H131.33860.10990.59630.057*
C141.1658 (7)0.1747 (6)0.6271 (3)0.0483 (17)
H141.21990.18730.66110.058*
C151.0173 (7)0.2017 (5)0.6160 (3)0.0417 (15)
H150.96910.23160.64290.050*
C161.0565 (8)0.4803 (6)0.7029 (3)0.0546 (18)
H161.01760.41990.68170.066*
C171.2082 (8)0.4842 (8)0.7233 (3)0.068 (2)
H171.27220.42690.71520.082*
C181.2655 (8)0.5694 (8)0.7546 (3)0.061 (2)
H181.36840.57050.76880.073*
C191.1746 (8)0.6530 (8)0.7653 (3)0.067 (2)
H191.21370.71210.78730.080*
C201.0220 (7)0.6511 (7)0.7435 (3)0.064 (2)
H200.95970.71080.74990.076*
C210.9625 (6)0.5643 (5)0.7134 (2)0.0352 (14)
C220.8030 (6)0.5595 (5)0.6885 (2)0.0326 (14)
C230.7037 (7)0.6423 (5)0.6961 (2)0.0348 (14)
H230.73740.69880.72060.042*
C240.5560 (6)0.6478 (5)0.6700 (2)0.0313 (13)
C250.4577 (6)0.7408 (5)0.6784 (2)0.0309 (12)
C260.4787 (7)0.8051 (5)0.7236 (2)0.0416 (15)
H260.56000.78970.75050.050*
C270.3832 (8)0.8908 (5)0.7299 (3)0.0504 (18)
H270.39870.93320.76110.060*
C280.2655 (8)0.9151 (6)0.6909 (3)0.0522 (17)
H280.20010.97420.69540.063*
C290.2423 (7)0.8526 (6)0.6448 (3)0.0452 (16)
H290.16250.86970.61770.054*
C300.3369 (7)0.7660 (5)0.6394 (2)0.0374 (14)
H300.31970.72240.60850.045*
C310.1778 (7)0.4503 (6)0.5666 (3)0.054 (2)
H31A0.19220.41650.60180.065*
H31B0.13160.39440.54120.065*
C320.0755 (8)0.5455 (7)0.5659 (4)0.069 (2)
H32A0.01980.52070.57500.083*
H32B0.05860.57820.53080.083*
H32C0.11990.60060.59130.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.02771 (11)0.03283 (12)0.03087 (11)0.00087 (12)0.00310 (8)0.00756 (11)
O10.032 (2)0.051 (3)0.040 (2)0.004 (2)0.002 (2)0.006 (2)
O20.032 (2)0.046 (3)0.042 (2)0.002 (2)0.001 (2)0.002 (2)
O30.034 (2)0.040 (3)0.042 (2)0.0005 (19)0.004 (2)0.014 (2)
O40.042 (2)0.039 (3)0.032 (2)0.007 (2)0.001 (2)0.0085 (19)
O50.030 (2)0.050 (3)0.045 (3)0.001 (2)0.002 (2)0.018 (2)
O60.039 (2)0.048 (3)0.058 (3)0.006 (2)0.001 (2)0.023 (2)
O70.034 (2)0.046 (3)0.032 (2)0.006 (2)0.0067 (19)0.0010 (19)
C10.039 (3)0.034 (4)0.042 (3)0.010 (3)0.004 (3)0.005 (3)
C20.043 (4)0.044 (4)0.047 (4)0.004 (3)0.002 (3)0.004 (3)
C30.044 (3)0.058 (4)0.037 (3)0.018 (4)0.000 (3)0.006 (4)
C40.050 (4)0.047 (4)0.036 (3)0.010 (3)0.001 (3)0.008 (3)
C50.044 (3)0.036 (4)0.034 (3)0.002 (3)0.000 (3)0.004 (3)
C60.036 (3)0.031 (3)0.025 (3)0.008 (3)0.002 (3)0.002 (2)
C70.034 (3)0.029 (3)0.035 (3)0.002 (3)0.005 (3)0.002 (3)
C80.029 (3)0.041 (4)0.028 (3)0.003 (3)0.002 (3)0.006 (3)
C90.033 (3)0.024 (3)0.041 (3)0.000 (2)0.006 (3)0.003 (3)
C100.034 (3)0.027 (3)0.035 (3)0.002 (3)0.010 (3)0.003 (3)
C110.043 (3)0.034 (4)0.041 (4)0.002 (3)0.010 (3)0.001 (3)
C120.034 (3)0.049 (5)0.059 (4)0.006 (3)0.020 (4)0.002 (3)
C130.037 (3)0.040 (4)0.065 (5)0.005 (3)0.009 (4)0.000 (3)
C140.040 (4)0.049 (4)0.050 (4)0.007 (3)0.013 (3)0.003 (3)
C150.039 (3)0.041 (4)0.042 (4)0.006 (3)0.000 (3)0.005 (3)
C160.045 (4)0.051 (5)0.061 (5)0.002 (4)0.013 (4)0.000 (4)
C170.047 (4)0.074 (6)0.080 (6)0.006 (4)0.004 (4)0.005 (5)
C180.039 (4)0.097 (7)0.045 (4)0.018 (5)0.000 (4)0.009 (4)
C190.043 (4)0.105 (7)0.052 (5)0.031 (5)0.008 (4)0.022 (5)
C200.033 (4)0.088 (6)0.071 (6)0.015 (4)0.014 (4)0.037 (5)
C210.032 (3)0.047 (4)0.027 (3)0.010 (3)0.004 (3)0.000 (3)
C220.035 (3)0.037 (4)0.029 (3)0.005 (3)0.014 (3)0.000 (2)
C230.040 (3)0.033 (3)0.032 (3)0.011 (3)0.008 (3)0.007 (3)
C240.035 (3)0.031 (3)0.031 (3)0.006 (3)0.018 (3)0.002 (2)
C250.038 (3)0.027 (3)0.030 (3)0.005 (3)0.011 (3)0.004 (2)
C260.049 (4)0.043 (4)0.032 (3)0.003 (3)0.003 (3)0.008 (3)
C270.069 (5)0.040 (4)0.042 (4)0.010 (3)0.010 (4)0.014 (3)
C280.068 (5)0.041 (4)0.048 (4)0.017 (4)0.011 (4)0.003 (4)
C290.044 (4)0.051 (4)0.041 (4)0.005 (3)0.006 (3)0.003 (3)
C300.045 (3)0.036 (4)0.033 (3)0.002 (3)0.008 (3)0.006 (3)
C310.035 (3)0.068 (5)0.057 (5)0.005 (3)0.000 (4)0.006 (4)
C320.042 (4)0.082 (6)0.084 (6)0.009 (4)0.009 (4)0.016 (5)
Geometric parameters (Å, º) top
U1—O11.762 (4)C14—C151.374 (9)
U1—O21.787 (4)C14—H140.9500
U1—O42.288 (4)C15—H150.9500
U1—O62.339 (4)C16—C211.384 (9)
U1—O52.347 (4)C16—C171.396 (10)
U1—O32.365 (4)C16—H160.9500
U1—O72.464 (4)C17—C181.365 (11)
O3—C71.278 (6)C17—H170.9500
O4—C91.288 (6)C18—C191.365 (11)
O5—C221.276 (7)C18—H180.9500
O6—C241.253 (7)C19—C201.411 (10)
O7—C311.440 (7)C19—H190.9500
O7—H60.8596C20—C211.370 (9)
C1—C21.362 (9)C20—H200.9500
C1—C61.395 (8)C21—C221.492 (8)
C1—H10.9500C22—C231.385 (8)
C2—C31.383 (9)C23—C241.405 (8)
C2—H20.9500C23—H230.9500
C3—C41.368 (9)C24—C251.477 (8)
C3—H30.9500C25—C261.395 (8)
C4—C51.395 (9)C25—C301.403 (8)
C4—H40.9500C26—C271.381 (8)
C5—C61.403 (8)C26—H260.9500
C5—H50.9500C27—C281.380 (10)
C6—C71.492 (8)C27—H270.9500
C7—C81.411 (8)C28—C291.401 (9)
C8—C91.392 (8)C28—H280.9500
C8—H80.9500C29—C301.380 (8)
C9—C101.486 (8)C29—H290.9500
C10—C111.386 (8)C30—H300.9500
C10—C151.408 (9)C31—C321.481 (10)
C11—C121.394 (9)C31—H31A0.9900
C11—H110.9500C31—H31B0.9900
C12—C131.368 (10)C32—H32A0.9800
C12—H120.9500C32—H32B0.9800
C13—C141.383 (9)C32—H32C0.9800
C13—H130.9500
O1—U1—O2178.36 (19)C12—C13—H13119.8
O1—U1—O489.86 (18)C14—C13—H13119.8
O2—U1—O490.00 (17)C15—C14—C13119.8 (7)
O1—U1—O688.42 (19)C15—C14—H14120.1
O2—U1—O692.55 (19)C13—C14—H14120.1
O4—U1—O6149.05 (15)C14—C15—C10121.2 (6)
O1—U1—O593.46 (18)C14—C15—H15119.4
O2—U1—O588.12 (18)C10—C15—H15119.4
O4—U1—O579.09 (15)C21—C16—C17120.3 (7)
O6—U1—O570.19 (15)C21—C16—H16119.9
O1—U1—O390.71 (18)C17—C16—H16119.9
O2—U1—O387.70 (18)C18—C17—C16120.6 (8)
O4—U1—O370.35 (14)C18—C17—H17119.7
O6—U1—O3140.55 (15)C16—C17—H17119.7
O5—U1—O3149.14 (14)C17—C18—C19119.9 (7)
O1—U1—O791.33 (17)C17—C18—H18120.0
O2—U1—O787.75 (16)C19—C18—H18120.0
O4—U1—O7140.97 (14)C18—C19—C20119.6 (7)
O6—U1—O769.97 (15)C18—C19—H19120.2
O5—U1—O7139.70 (14)C20—C19—H19120.2
O3—U1—O770.62 (14)C21—C20—C19120.9 (7)
C7—O3—U1134.5 (4)C21—C20—H20119.5
C9—O4—U1134.1 (4)C19—C20—H20119.5
C22—O5—U1138.5 (4)C20—C21—C16118.6 (6)
C24—O6—U1139.8 (4)C20—C21—C22123.0 (6)
C31—O7—U1126.5 (4)C16—C21—C22118.3 (6)
C31—O7—H6120.6O5—C22—C23122.9 (6)
U1—O7—H6109.3O5—C22—C21115.7 (5)
C2—C1—C6121.2 (6)C23—C22—C21121.4 (5)
C2—C1—H1119.4C22—C23—C24124.0 (6)
C6—C1—H1119.4C22—C23—H23118.0
C1—C2—C3119.9 (7)C24—C23—H23118.0
C1—C2—H2120.0O6—C24—C23123.3 (5)
C3—C2—H2120.0O6—C24—C25115.5 (5)
C4—C3—C2120.6 (6)C23—C24—C25121.2 (5)
C4—C3—H3119.7C26—C25—C30117.9 (6)
C2—C3—H3119.7C26—C25—C24123.1 (6)
C3—C4—C5120.2 (6)C30—C25—C24118.9 (5)
C3—C4—H4119.9C27—C26—C25121.1 (6)
C5—C4—H4119.9C27—C26—H26119.4
C4—C5—C6119.5 (6)C25—C26—H26119.4
C4—C5—H5120.2C28—C27—C26120.2 (6)
C6—C5—H5120.2C28—C27—H27119.9
C1—C6—C5118.5 (6)C26—C27—H27119.9
C1—C6—C7119.7 (5)C27—C28—C29120.0 (6)
C5—C6—C7121.7 (5)C27—C28—H28120.0
O3—C7—C8123.5 (5)C29—C28—H28120.0
O3—C7—C6115.6 (5)C30—C29—C28119.3 (6)
C8—C7—C6120.9 (5)C30—C29—H29120.4
C9—C8—C7122.7 (5)C28—C29—H29120.4
C9—C8—H8118.6C29—C30—C25121.5 (6)
C7—C8—H8118.6C29—C30—H30119.3
O4—C9—C8122.9 (5)C25—C30—H30119.3
O4—C9—C10115.6 (5)O7—C31—C32112.6 (6)
C8—C9—C10121.6 (5)O7—C31—H31A109.1
C11—C10—C15117.6 (6)C32—C31—H31A109.1
C11—C10—C9124.4 (6)O7—C31—H31B109.1
C15—C10—C9118.0 (5)C32—C31—H31B109.1
C10—C11—C12121.1 (7)H31A—C31—H31B107.8
C10—C11—H11119.5C31—C32—H32A109.5
C12—C11—H11119.5C31—C32—H32B109.5
C13—C12—C11119.9 (6)H32A—C32—H32B109.5
C13—C12—H12120.1C31—C32—H32C109.5
C11—C12—H12120.1H32A—C32—H32C109.5
C12—C13—C14120.4 (6)H32B—C32—H32C109.5
O1—U1—O3—C7115.6 (5)C7—C8—C9—O41.0 (9)
O2—U1—O3—C764.8 (5)C7—C8—C9—C10176.9 (5)
O4—U1—O3—C726.0 (5)O4—C9—C10—C11171.1 (5)
O6—U1—O3—C7156.0 (5)C8—C9—C10—C1110.8 (9)
O5—U1—O3—C717.7 (7)O4—C9—C10—C157.3 (8)
O7—U1—O3—C7153.2 (6)C8—C9—C10—C15170.7 (6)
O1—U1—O4—C9129.1 (5)C15—C10—C11—C121.0 (9)
O2—U1—O4—C949.3 (5)C9—C10—C11—C12177.4 (6)
O6—U1—O4—C9144.2 (5)C10—C11—C12—C130.4 (10)
O5—U1—O4—C9137.3 (5)C11—C12—C13—C140.2 (10)
O3—U1—O4—C938.3 (5)C12—C13—C14—C150.6 (11)
O7—U1—O4—C937.2 (6)C13—C14—C15—C101.2 (10)
O1—U1—O5—C2299.8 (6)C11—C10—C15—C141.4 (9)
O2—U1—O5—C2280.7 (6)C9—C10—C15—C14177.1 (6)
O4—U1—O5—C22171.0 (6)C21—C16—C17—C181.2 (12)
O6—U1—O5—C2212.7 (5)C16—C17—C18—C191.3 (12)
O3—U1—O5—C22163.0 (5)C17—C18—C19—C200.6 (12)
O7—U1—O5—C223.6 (7)C18—C19—C20—C212.6 (13)
O1—U1—O6—C24100.7 (7)C19—C20—C21—C162.7 (11)
O2—U1—O6—C2480.7 (7)C19—C20—C21—C22178.5 (7)
O4—U1—O6—C2413.6 (8)C17—C16—C21—C200.8 (11)
O5—U1—O6—C246.4 (6)C17—C16—C21—C22176.8 (6)
O3—U1—O6—C24170.1 (6)U1—O5—C22—C2316.0 (9)
O7—U1—O6—C24167.3 (7)U1—O5—C22—C21164.9 (4)
O1—U1—O7—C312.7 (5)C20—C21—C22—O5178.6 (6)
O2—U1—O7—C31175.9 (5)C16—C21—C22—O52.7 (8)
O4—U1—O7—C3188.7 (5)C20—C21—C22—C232.3 (9)
O6—U1—O7—C3190.6 (5)C16—C21—C22—C23178.2 (6)
O5—U1—O7—C3199.7 (5)O5—C22—C23—C247.2 (9)
O3—U1—O7—C3187.6 (5)C21—C22—C23—C24173.8 (5)
C6—C1—C2—C30.1 (9)U1—O6—C24—C233.9 (10)
C1—C2—C3—C40.1 (10)U1—O6—C24—C25175.3 (4)
C2—C3—C4—C50.2 (10)C22—C23—C24—O61.6 (9)
C3—C4—C5—C60.3 (9)C22—C23—C24—C25177.5 (5)
C2—C1—C6—C50.2 (9)O6—C24—C25—C26156.8 (6)
C2—C1—C6—C7176.9 (5)C23—C24—C25—C2624.0 (8)
C4—C5—C6—C10.3 (8)O6—C24—C25—C3022.9 (8)
C4—C5—C6—C7176.7 (5)C23—C24—C25—C30156.3 (5)
U1—O3—C7—C810.9 (9)C30—C25—C26—C270.2 (9)
U1—O3—C7—C6169.8 (4)C24—C25—C26—C27179.5 (6)
C1—C6—C7—O324.7 (8)C25—C26—C27—C280.7 (10)
C5—C6—C7—O3152.3 (5)C26—C27—C28—C290.1 (11)
C1—C6—C7—C8156.1 (6)C27—C28—C29—C301.1 (10)
C5—C6—C7—C826.9 (8)C28—C29—C30—C251.6 (10)
O3—C7—C8—C911.7 (10)C26—C25—C30—C291.0 (9)
C6—C7—C8—C9167.5 (5)C24—C25—C30—C29179.3 (5)
U1—O4—C9—C834.8 (8)U1—O7—C31—C32137.6 (5)
U1—O4—C9—C10147.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H6···O2i0.861.942.765 (5)162
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[U(C15H11O2)2O2(C2H6O)]
Mr762.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)9.088 (5), 12.141 (7), 25.878 (13)
β (°) 99.126 (16)
V3)2819 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.81
Crystal size (mm)0.40 × 0.30 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(Higashi, 1999)
Tmin, Tmax0.205, 0.594
No. of measured, independent and
observed [I > 2σ(I)] reflections
26257, 6442, 4539
Rint0.097
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.083, 1.01
No. of reflections6442
No. of parameters362
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.69

Computer programs: PROCESS-AUTO (Rigaku, 2006), PROCESS-AUTO (Rigaku, 2006), CrystalStructure (MSC/Rigaku, 2006), SIR97 (Altomare et al., 1999) and DIRDIFF99 (Beurskens et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPIII (Farrugia, 1997).

Selected bond lengths (Å) top
U1—O11.762 (4)U1—O52.347 (4)
U1—O21.787 (4)U1—O32.365 (4)
U1—O42.288 (4)U1—O72.464 (4)
U1—O62.339 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H6···O2i0.861.942.765 (5)162
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationAlagar, M., Kannan, S., Rajagopal, K., Venugopal, V., Krishnakumar, R. V., Nandhini, M. S. & Natarajan, S. (2004). Acta Cryst. E60, m773–m775.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlagar, M., Rajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Kannan, S. & Natarajan, S. (2003). Acta Cryst. E59, m524–m526.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBeurskens, P. T., Beurskens, G., de Gelder, R., García-Granda, S., Israel, R., Gould, R. O. & Smits, J. M. M. (1999). The DIRDIF99 Program System. Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kannan, S., Chantrapromma, S., Razak, I. A. & Usman, A. (2002). Acta Cryst. E58, m463–m465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Kannan, S., Usman, A., Razak, I. A. & Chantrapromma, S. (2002). Acta Cryst. C58, m368–m370.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKannan, S. & Gerguson, G. (1997). Inorg. Chem. 36, 1724–1725.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKannan, S., Pillai, M. R. A., Venugopal, V., Droege, P. A. & Barnes, C. L. (1997). Inorg. Chim. Acta, 254, 113–117.  CSD CrossRef CAS Web of Science Google Scholar
First citationKannan, S., Shanmuga Sundara Raj, S. & Fun, H.-K. (2000). Acta Cryst. C56, e545–e546.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKannan, S., Venugopal, V., Pillai, M. R. A., Droege, P. A. & Barnes, C. L. (1995). Polyhedron, 15, 97–101.  CSD CrossRef Web of Science Google Scholar
First citationLinert, W., Fukuda, Y. & Camard, A. (2001). Coord. Chem. Rev. 218, 113–152.  Web of Science CrossRef CAS Google Scholar
First citationMizuoka, K. & Ikeda, Y. (2004). Radiochim. Acta, 92, 631–635.  Web of Science CrossRef CAS Google Scholar
First citationMSC/Rigaku (2006). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRajagopal, K., Krishnakumar, R. V., Subha Nandhini, M., Kannan, S. & Natarajan, S. (2002). Acta Cryst. E58, m316–m318.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds