organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

S-2-(Adamant-1-yl)-4-methyl­phenyl N,N-di­methyl­thio­carbamate

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, CU, México, DF 04510, Mexico
*Correspondence e-mail: joseivan@servidor.unam.mx

(Received 18 October 2007; accepted 12 December 2007; online 21 December 2007)

The title compound, C20H27NOS, was obtained from the corresponding O-thio­carbamate. The structure features a C=O bond distance of 1.209 (2) Å and an sp3-hybridized S atom [C—S—C = 101.66 (1)°]. The steric bulk of the 1-adamantyl substituent on the 2-position of the aromatic ring is reflected in the S—C—C—C torsion angle [−7.5 (3)°].

Related literature

For related literature, see: Bennett et al. (1999[Bennett, S. M. W., Brown, S. M., Conole, G., Dennis, M. R., Fraser, P. K., Radojevic, S., McPartlin, M., Topping, C. M. & Woodward, W. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3127-3132.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Bruno et al. (2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); Flores-Figueroa et al. (2005[Flores-Figueroa, A., Arista-M, V., Talancón-Sánchez, D. & Castillo, I. (2005). J. Braz. Chem. Soc. 16, 397-403.]); Higgs & Carrano (2002[Higgs, T. C. & Carrano, C. J. (2002). Eur. J. Org. Chem. pp. 3632-3645.]); Newman & Karnes (1966[Newman, M. S. & Karnes, H. A. (1966). J. Org. Chem. 31, 3980-3984.]).

[Scheme 1]

Experimental

Crystal data
  • C20H27NOS

  • Mr = 329.49

  • Triclinic, [P \overline 1]

  • a = 6.6161 (7) Å

  • b = 11.2113 (12) Å

  • c = 13.2231 (14) Å

  • α = 101.287 (2)°

  • β = 103.753 (2)°

  • γ = 103.025 (2)°

  • V = 895.40 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 (2) K

  • 0.40 × 0.18 × 0.14 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: none

  • 7346 measured reflections

  • 3147 independent reflections

  • 2231 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.120

  • S = 0.94

  • 3147 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.625) and SAINT-Plus (Version 7.01A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1997[Bruker (1997). SMART (Version 5.625) and SAINT-Plus (Version 7.01A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 6.10. University of Göttingen, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Newman–Kwart thermal rearrangement of O-thiocarbamates to the corresponding S-thiocarbamates is a widely used reaction for the preparation of benzenethiols (Newman & Karnes, 1966). The presence of bulky substituents on the 2-position of phenols represents a synthetic challenge in this methodology, and the experimental difficulties have been attributed by our group to the steric congestion around the thiocarbamate moiety (Flores-Figueroa et al., 2005). We herein report the preparation (see Experimental and Scheme) of the title compound S-2-adamant-1-yl-4- methylphenyl N,N-dimethylthiocarbamate (I).

Compound (I) crystallizes in the triclinic space group P-1 by slow evaporation of a concentrated 2-propanol solution. A search of the Cambridge Crystallographic Database (Version 5.19; Allen, 2002) using CONQUEST, Version 1.4; Bruno et al., 2002) revealed that (I) represents one of the very few examples of aromatic S-thiocarbamates with sterically demanding substituents adjacent to the S atom. Its structure, which is depicted with atom numbering scheme in Fig. 1, features a C=O bond length of 1.209 (2) Å, and C—S 1.780 (3) Å (Table 1). The bond lengths and angles of the thiocarbamate group of (I) are comparable to those of related compounds (Higgs & Carrano, 2002, Bennett et al., 1999). The steric congestion around the S-thiocarbamate group is reflected in the torsion angle of -7.5 (3)° between the S—C(aromatic) and the adjacent C(aromatic)- C(orthosubsituent) bond (S—C1—C2—C10).

Molecules of (I) pack in chains on the 100 plane, as shown in Fig. 2. These chains are formed by intermolecular C—H···O interactions between the O atom of one molecule and C8—H8B on an adjacent molecule, with C8···O and H8B···O distances of 3.294 (3) and 2.534 (2) Å, respectively. The C and H atoms are located on one of the NMe2 groups of a the S-thiocarbamate moiety, and the corresponding C—H···O angle is 136.1 (2)°.

Related literature top

For related literature, see: Bennett et al. (1999); Allen (2002); Bruno et al. (2002); Flores-Figueroa et al. (2005); Higgs & Carrano (2002); Newman & Karnes (1966).

Experimental top

O-2-adamant-1-yl-4-methylphenyl N,N-dimethylthiocarbamate (0.26 g, 0.80 mmol) was heated to 593–603 K for 2 h in a round bottom flask equipped with a teflon stopcock. After cooling to room temperature, the material was disolved in dichloromethane, filtered, and evaporated to dryness (30 ml). The solid obtained was disolved in hot 2-propanol, and upon cooling starting material precipitated. After filtering, the mother liquor yielded yellow crystals of (I) by slow evaporation of the solvent. Yield: 0.06 g (23%); m.p. 407–408 K; IR (CHCl3) 3011, 2903, 2852, 1710, 1655, 1598, 1451, 1406, 1365, 1261, 1170, 1100, 1066, 1029, 910 cm-1; 1H NMR (300 MHz, CDCl3, TMS internal reference) δ 7.24 (1H, d, ArH), 7.13 (1H, d, ArH), 6.94 (1H, dd, ArH), 3.02 (6H, s, NMe), 2.28 (3H, s, ArMe), 2.12 (6H, s, AdH), 2.02 (3H, s, AdH), 1.69 (6H, s, AdH); EI mass spectrum: m/z 329 (M+, 18%).

Structure description top

Newman–Kwart thermal rearrangement of O-thiocarbamates to the corresponding S-thiocarbamates is a widely used reaction for the preparation of benzenethiols (Newman & Karnes, 1966). The presence of bulky substituents on the 2-position of phenols represents a synthetic challenge in this methodology, and the experimental difficulties have been attributed by our group to the steric congestion around the thiocarbamate moiety (Flores-Figueroa et al., 2005). We herein report the preparation (see Experimental and Scheme) of the title compound S-2-adamant-1-yl-4- methylphenyl N,N-dimethylthiocarbamate (I).

Compound (I) crystallizes in the triclinic space group P-1 by slow evaporation of a concentrated 2-propanol solution. A search of the Cambridge Crystallographic Database (Version 5.19; Allen, 2002) using CONQUEST, Version 1.4; Bruno et al., 2002) revealed that (I) represents one of the very few examples of aromatic S-thiocarbamates with sterically demanding substituents adjacent to the S atom. Its structure, which is depicted with atom numbering scheme in Fig. 1, features a C=O bond length of 1.209 (2) Å, and C—S 1.780 (3) Å (Table 1). The bond lengths and angles of the thiocarbamate group of (I) are comparable to those of related compounds (Higgs & Carrano, 2002, Bennett et al., 1999). The steric congestion around the S-thiocarbamate group is reflected in the torsion angle of -7.5 (3)° between the S—C(aromatic) and the adjacent C(aromatic)- C(orthosubsituent) bond (S—C1—C2—C10).

Molecules of (I) pack in chains on the 100 plane, as shown in Fig. 2. These chains are formed by intermolecular C—H···O interactions between the O atom of one molecule and C8—H8B on an adjacent molecule, with C8···O and H8B···O distances of 3.294 (3) and 2.534 (2) Å, respectively. The C and H atoms are located on one of the NMe2 groups of a the S-thiocarbamate moiety, and the corresponding C—H···O angle is 136.1 (2)°.

For related literature, see: Bennett et al. (1999); Allen (2002); Bruno et al. (2002); Flores-Figueroa et al. (2005); Higgs & Carrano (2002); Newman & Karnes (1966).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT-Plus (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with atom numbering scheme. Thermal ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. View of the chains of (I) along the 001 axis.
[Figure 3] Fig. 3. The formation of the title compound.
S-2-(Adamant-1-yl)-4-methylphenyl N,N-dimethylthiocarbamate top
Crystal data top
C20H27NOSZ = 2
Mr = 329.49F(000) = 356
Triclinic, P1Dx = 1.222 Mg m3
Dm = No Mg m3
Dm measured by ?
Hall symbol: -P 1Melting point = 407–408 K
a = 6.6161 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2113 (12) ÅCell parameters from 3272 reflections
c = 13.2231 (14) Åθ = 2.8–25.3°
α = 101.287 (2)°µ = 0.19 mm1
β = 103.753 (2)°T = 298 K
γ = 103.025 (2)°Prism, pale yellow
V = 895.40 (16) Å30.40 × 0.18 × 0.14 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2231 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
Detector resolution: 0.83 pixels mm-1h = 77
ω scansk = 1313
7346 measured reflectionsl = 1515
3147 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0685P)2]
where P = (Fo2 + 2Fc2)/3
3147 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H27NOSγ = 103.025 (2)°
Mr = 329.49V = 895.40 (16) Å3
Triclinic, P1Z = 2
a = 6.6161 (7) ÅMo Kα radiation
b = 11.2113 (12) ŵ = 0.19 mm1
c = 13.2231 (14) ÅT = 298 K
α = 101.287 (2)°0.40 × 0.18 × 0.14 mm
β = 103.753 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2231 reflections with I > 2σ(I)
7346 measured reflectionsRint = 0.035
3147 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.94Δρmax = 0.24 e Å3
3147 reflectionsΔρmin = 0.20 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Hydrogen atoms were placed in idealized positions, and the isotropic thermal parameters were assigned the values Uiso = 1.2 times the thermal parameter of the parent atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1.02047 (9)0.84253 (6)0.64328 (4)0.0637 (2)
O0.6891 (3)0.73897 (17)0.46508 (13)0.0809 (5)
N0.9990 (3)0.68642 (18)0.46352 (15)0.0678 (5)
C10.8226 (3)0.91300 (19)0.67862 (16)0.0523 (5)
C20.7344 (3)0.89238 (17)0.76267 (15)0.0445 (5)
C30.6039 (3)0.96867 (18)0.78793 (15)0.0491 (5)
H30.54470.95810.84390.059*
C40.5563 (3)1.05877 (19)0.73570 (17)0.0558 (5)
C50.6397 (4)1.0725 (2)0.65162 (19)0.0686 (6)
H50.60551.12980.61290.082*
C60.7731 (4)1.0025 (2)0.62444 (18)0.0677 (6)
H60.83191.01490.56870.081*
C70.8757 (3)0.7468 (2)0.50903 (17)0.0569 (5)
C81.2191 (4)0.6925 (3)0.5174 (2)0.0866 (8)
H8A1.28960.77430.56770.130*
H8B1.29610.67940.46500.130*
H8C1.21840.62780.55540.130*
C90.9060 (5)0.6114 (3)0.3519 (2)0.0997 (9)
H9A0.75290.60180.32950.150*
H9B0.93000.52930.34570.150*
H9C0.97390.65350.30680.150*
C100.7760 (3)0.79486 (17)0.82641 (14)0.0432 (4)
C110.6436 (3)0.78732 (18)0.90815 (16)0.0500 (5)
H11A0.68020.87040.95780.060*
H11B0.49000.76300.86970.060*
C120.6891 (3)0.69145 (19)0.97190 (17)0.0573 (5)
H120.60230.68921.02250.069*
C130.6294 (4)0.56006 (19)0.89568 (18)0.0620 (6)
H13A0.47540.53250.85750.074*
H13B0.66110.49990.93640.074*
C140.7607 (3)0.56505 (19)0.81512 (16)0.0577 (6)
H140.72250.48070.76530.069*
C151.0029 (4)0.6065 (2)0.87625 (18)0.0619 (6)
H15A1.03640.54490.91490.074*
H15B1.08710.61050.82550.074*
C161.0633 (3)0.73657 (19)0.95584 (16)0.0551 (5)
H161.21810.76170.99560.066*
C171.0176 (3)0.83282 (18)0.89292 (15)0.0488 (5)
H17A1.10750.83830.84480.059*
H17B1.05530.91580.94290.059*
C180.7109 (3)0.65985 (18)0.75146 (15)0.0511 (5)
H18A0.55690.63440.71360.061*
H18B0.78940.65960.69810.061*
C190.9301 (4)0.7322 (2)1.03520 (16)0.0609 (6)
H19A0.96800.81531.08510.073*
H19B0.96060.67241.07650.073*
C200.4196 (4)1.1399 (2)0.7697 (2)0.0765 (7)
H20A0.51081.22410.80800.115*
H20B0.34581.10420.81590.115*
H20C0.31481.14340.70700.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0487 (3)0.0885 (5)0.0537 (4)0.0209 (3)0.0188 (3)0.0120 (3)
O0.0518 (10)0.1095 (14)0.0698 (10)0.0296 (9)0.0059 (8)0.0049 (9)
N0.0541 (11)0.0814 (13)0.0627 (12)0.0224 (9)0.0183 (10)0.0021 (10)
C10.0471 (12)0.0579 (13)0.0518 (12)0.0150 (10)0.0138 (10)0.0152 (10)
C20.0359 (10)0.0484 (11)0.0438 (10)0.0103 (8)0.0082 (8)0.0066 (9)
C30.0452 (11)0.0514 (12)0.0477 (11)0.0136 (9)0.0118 (9)0.0092 (9)
C40.0535 (12)0.0515 (13)0.0551 (13)0.0165 (10)0.0059 (10)0.0085 (10)
C50.0780 (16)0.0654 (15)0.0669 (15)0.0287 (13)0.0137 (13)0.0276 (12)
C60.0729 (15)0.0761 (16)0.0634 (14)0.0218 (13)0.0281 (12)0.0290 (13)
C70.0478 (13)0.0665 (14)0.0544 (13)0.0119 (10)0.0168 (11)0.0141 (11)
C80.0637 (16)0.113 (2)0.097 (2)0.0411 (15)0.0336 (15)0.0275 (17)
C90.098 (2)0.109 (2)0.0790 (18)0.0339 (17)0.0264 (16)0.0097 (16)
C100.0382 (10)0.0461 (11)0.0444 (10)0.0123 (8)0.0124 (8)0.0092 (9)
C110.0463 (11)0.0502 (12)0.0549 (12)0.0156 (9)0.0189 (10)0.0101 (10)
C120.0628 (14)0.0587 (13)0.0575 (13)0.0175 (10)0.0284 (11)0.0181 (11)
C130.0646 (14)0.0538 (13)0.0668 (14)0.0121 (11)0.0201 (12)0.0187 (11)
C140.0672 (14)0.0426 (12)0.0574 (13)0.0161 (10)0.0153 (11)0.0034 (10)
C150.0680 (14)0.0621 (14)0.0652 (14)0.0336 (11)0.0209 (12)0.0197 (11)
C160.0473 (11)0.0620 (13)0.0521 (12)0.0191 (10)0.0061 (10)0.0128 (10)
C170.0427 (11)0.0510 (12)0.0471 (11)0.0115 (9)0.0111 (9)0.0052 (9)
C180.0463 (11)0.0534 (12)0.0470 (11)0.0118 (9)0.0104 (9)0.0052 (9)
C190.0755 (15)0.0596 (14)0.0483 (12)0.0231 (11)0.0146 (11)0.0159 (10)
C200.0871 (17)0.0680 (16)0.0764 (16)0.0414 (13)0.0149 (14)0.0122 (13)
Geometric parameters (Å, º) top
S—C11.780 (2)C11—H11A0.9700
S—C71.790 (2)C11—H11B0.9700
O—C71.209 (2)C12—C131.520 (3)
N—C71.345 (3)C12—C191.530 (3)
N—C81.441 (3)C12—H120.9800
N—C91.454 (3)C13—C141.527 (3)
C1—C61.395 (3)C13—H13A0.9700
C1—C21.406 (3)C13—H13B0.9700
C2—C31.395 (3)C14—C181.524 (3)
C2—C101.539 (3)C14—C151.529 (3)
C3—C41.382 (3)C14—H140.9800
C3—H30.9300C15—C161.527 (3)
C4—C51.373 (3)C15—H15A0.9700
C4—C201.500 (3)C15—H15B0.9700
C5—C61.370 (3)C16—C191.523 (3)
C5—H50.9300C16—C171.525 (3)
C6—H60.9300C16—H160.9800
C8—H8A0.9600C17—H17A0.9700
C8—H8B0.9600C17—H17B0.9700
C8—H8C0.9600C18—H18A0.9700
C9—H9A0.9600C18—H18B0.9700
C9—H9B0.9600C19—H19A0.9700
C9—H9C0.9600C19—H19B0.9700
C10—C181.541 (3)C20—H20A0.9600
C10—C171.545 (2)C20—H20B0.9600
C10—C111.548 (2)C20—H20C0.9600
C11—C121.528 (3)
C1—S—C7101.66 (10)C13—C12—H12109.2
C7—N—C8124.42 (19)C11—C12—H12109.2
C7—N—C9118.09 (19)C19—C12—H12109.2
C8—N—C9117.48 (19)C12—C13—C14108.95 (17)
C6—C1—C2120.18 (19)C12—C13—H13A109.9
C6—C1—S115.61 (16)C14—C13—H13A109.9
C2—C1—S123.90 (15)C12—C13—H13B109.9
C3—C2—C1115.62 (18)C14—C13—H13B109.9
C3—C2—C10120.07 (17)H13A—C13—H13B108.3
C1—C2—C10124.31 (16)C18—C14—C13109.78 (17)
C4—C3—C2124.62 (19)C18—C14—C15109.31 (17)
C4—C3—H3117.7C13—C14—C15109.31 (17)
C2—C3—H3117.7C18—C14—H14109.5
C5—C4—C3117.73 (19)C13—C14—H14109.5
C5—C4—C20120.8 (2)C15—C14—H14109.5
C3—C4—C20121.5 (2)C16—C15—C14109.94 (16)
C6—C5—C4120.4 (2)C16—C15—H15A109.7
C6—C5—H5119.8C14—C15—H15A109.7
C4—C5—H5119.8C16—C15—H15B109.7
C5—C6—C1121.3 (2)C14—C15—H15B109.7
C5—C6—H6119.3H15A—C15—H15B108.2
C1—C6—H6119.3C19—C16—C17109.52 (17)
O—C7—N124.6 (2)C19—C16—C15110.29 (18)
O—C7—S123.20 (17)C17—C16—C15108.77 (16)
N—C7—S112.24 (16)C19—C16—H16109.4
N—C8—H8A109.5C17—C16—H16109.4
N—C8—H8B109.5C15—C16—H16109.4
H8A—C8—H8B109.5C16—C17—C10111.20 (15)
N—C8—H8C109.5C16—C17—H17A109.4
H8A—C8—H8C109.5C10—C17—H17A109.4
H8B—C8—H8C109.5C16—C17—H17B109.4
N—C9—H9A109.5C10—C17—H17B109.4
N—C9—H9B109.5H17A—C17—H17B108.0
H9A—C9—H9B109.5C14—C18—C10111.19 (16)
N—C9—H9C109.5C14—C18—H18A109.4
H9A—C9—H9C109.5C10—C18—H18A109.4
H9B—C9—H9C109.5C14—C18—H18B109.4
C2—C10—C18111.72 (15)C10—C18—H18B109.4
C2—C10—C17110.27 (15)H18A—C18—H18B108.0
C18—C10—C17109.83 (14)C16—C19—C12108.76 (16)
C2—C10—C11112.25 (15)C16—C19—H19A109.9
C18—C10—C11106.19 (15)C12—C19—H19A109.9
C17—C10—C11106.37 (15)C16—C19—H19B109.9
C12—C11—C10111.62 (15)C12—C19—H19B109.9
C12—C11—H11A109.3H19A—C19—H19B108.3
C10—C11—H11A109.3C4—C20—H20A109.5
C12—C11—H11B109.3C4—C20—H20B109.5
C10—C11—H11B109.3H20A—C20—H20B109.5
H11A—C11—H11B108.0C4—C20—H20C109.5
C13—C12—C11110.19 (18)H20A—C20—H20C109.5
C13—C12—C19109.73 (17)H20B—C20—H20C109.5
C11—C12—C19109.23 (16)
C7—S—C1—C669.82 (18)C2—C10—C11—C12179.21 (15)
C7—S—C1—C2116.52 (17)C18—C10—C11—C1258.4 (2)
C6—C1—C2—C31.7 (3)C17—C10—C11—C1258.5 (2)
S—C1—C2—C3171.68 (14)C10—C11—C12—C1359.9 (2)
C6—C1—C2—C10179.12 (18)C10—C11—C12—C1960.7 (2)
S—C1—C2—C107.5 (3)C11—C12—C13—C1458.5 (2)
C1—C2—C3—C40.9 (3)C19—C12—C13—C1461.8 (2)
C10—C2—C3—C4179.92 (17)C12—C13—C14—C1859.5 (2)
C2—C3—C4—C51.3 (3)C12—C13—C14—C1560.4 (2)
C2—C3—C4—C20178.19 (19)C18—C14—C15—C1661.3 (2)
C3—C4—C5—C62.8 (3)C13—C14—C15—C1658.9 (2)
C20—C4—C5—C6176.8 (2)C14—C15—C16—C1958.6 (2)
C4—C5—C6—C12.0 (4)C14—C15—C16—C1761.5 (2)
C2—C1—C6—C50.4 (3)C19—C16—C17—C1061.6 (2)
S—C1—C6—C5173.55 (18)C15—C16—C17—C1059.0 (2)
C8—N—C7—O177.8 (2)C2—C10—C17—C16179.34 (15)
C9—N—C7—O3.2 (4)C18—C10—C17—C1655.8 (2)
C8—N—C7—S2.8 (3)C11—C10—C17—C1658.72 (19)
C9—N—C7—S176.25 (19)C13—C14—C18—C1061.8 (2)
C1—S—C7—O1.6 (2)C15—C14—C18—C1058.1 (2)
C1—S—C7—N177.83 (16)C2—C10—C18—C14177.91 (15)
C3—C2—C10—C18124.16 (18)C17—C10—C18—C1455.2 (2)
C1—C2—C10—C1856.7 (2)C11—C10—C18—C1459.4 (2)
C3—C2—C10—C17113.39 (18)C17—C16—C19—C1260.7 (2)
C1—C2—C10—C1765.7 (2)C15—C16—C19—C1259.0 (2)
C3—C2—C10—C115.0 (2)C13—C12—C19—C1660.8 (2)
C1—C2—C10—C11175.85 (17)C11—C12—C19—C1660.1 (2)

Experimental details

Crystal data
Chemical formulaC20H27NOS
Mr329.49
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.6161 (7), 11.2113 (12), 13.2231 (14)
α, β, γ (°)101.287 (2), 103.753 (2), 103.025 (2)
V3)895.40 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.40 × 0.18 × 0.14
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7346, 3147, 2231
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.120, 0.94
No. of reflections3147
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: SMART (Bruker, 1997), SAINT-Plus (Bruker, 1997), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected geometric parameters (Å, º) top
S—C11.780 (2)N—C71.345 (3)
S—C71.790 (2)N—C81.441 (3)
O—C71.209 (2)N—C91.454 (3)
C1—S—C7101.66 (10)C2—C1—S123.90 (15)
C7—N—C8124.42 (19)O—C7—N124.6 (2)
C7—N—C9118.09 (19)O—C7—S123.20 (17)
C8—N—C9117.48 (19)N—C7—S112.24 (16)
C6—C1—S115.61 (16)
 

Acknowledgements

IC and RH thank DGAPA–UNAM for financial support (PAPIIT IN216806).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBennett, S. M. W., Brown, S. M., Conole, G., Dennis, M. R., Fraser, P. K., Radojevic, S., McPartlin, M., Topping, C. M. & Woodward, W. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 3127–3132.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1997). SMART (Version 5.625) and SAINT-Plus (Version 7.01A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFlores-Figueroa, A., Arista-M, V., Talancón-Sánchez, D. & Castillo, I. (2005). J. Braz. Chem. Soc. 16, 397–403.  Web of Science CrossRef CAS Google Scholar
First citationHiggs, T. C. & Carrano, C. J. (2002). Eur. J. Org. Chem. pp. 3632–3645.  CrossRef Google Scholar
First citationNewman, M. S. & Karnes, H. A. (1966). J. Org. Chem. 31, 3980–3984.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 6.10. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds