organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,6-Bis[1-(2-iso­propyl­phenyl­imino)­ethyl]­pyridine

aCentro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
*Correspondence e-mail: gagrifog@cantv.net, abriceno@ivic.ve

(Received 22 October 2007; accepted 17 November 2007; online 6 December 2007)

The title compound, C27H31N3, has E substitution at each imine double bond where the two N atoms adopt a transtrans relationship. The benzene rings are twisted out of the mean plane of the pyridine ring; the mean planes of the aromatic groups are rotated by 63.0 (1) and 72.58 (8)°. The crystal structure is sustained mainly by C—H⋯π and hydro­phobic methyl–methyl inter­actions.

Related literature

For related literature, see: Alyea & Merrel (1974[Alyea, E. C. & Merrel, P. H. (1974). Synth. React. Inorg. Met.-Org. Chem. 4, 535-544.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555-1573.]); Bianchini & Hon Man (2000[Bianchini, C. & Hon Man, L. (2000). Organometallics, 19, 1833-1840.]); Britovsek et al. (1999[Britovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., MacTavish, S. J., Redshaw, C., Solan, G. A., Strömberg, S., White, A. J. P. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 8728-8740.]); Huang et al. (2006[Huang, Y.-B., Ma, X.-L., Zheng, S.-N., Chen, J.-X. & Wei, C.-X. (2006). Acta Cryst. E62, o3044-o3045.]); Mentes et al. (2001[Mentes, A., Fawcett, J. & Kemmitt, R. D. W. (2001). Acta Cryst. E57, o424-o425.]); Orrell et al. (1997[Orrell, K. G., Osborne, G. A., Šik, V., Webba da Silva, M., Hursthouse, M. B., Hibbs, D. E., Abdul Malik, K. M. & Vassilev, N. G. (1997). J. Organomet. Chem. 538, 171-183.]); Small & Brookhart (1998[Small, B. L. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 7143-7144.]); Togni & Venanzi (1994[Togni, A. & Venanzi, L. M. (1994). Angew. Chem. Int. Ed. 33, 497-526.]); Çetinkaya et al. (1999[Çetinkaya, B., Çetinkaya, E., Brookhart, M. & White, P. S. (1999). J. Mol. Catal. A Chem. 142, 101-112.]).

[Scheme 1]

Experimental

Crystal data
  • C27H31N3

  • Mr = 397.55

  • Monoclinic, P 21 /c

  • a = 16.9462 (18) Å

  • b = 6.791 (4) Å

  • c = 21.801 (4) Å

  • β = 104.551 (13)°

  • V = 2428.3 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 295 (2) K

  • 0.48 × 0.40 × 0.20 mm

Data collection
  • Rigaku AFC-7S diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.963, Tmax = 0.987

  • 4402 measured reflections

  • 4248 independent reflections

  • 2520 reflections with I > 2σ(I)

  • Rint = 0.016

  • 3 standard reflections every 150 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.188

  • S = 1.02

  • 4248 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the rings N1/C1–C5, C8–C13 and C19–C24, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯N1 0.96 2.46 2.799 (3) 100
C14—H14⋯N2 0.98 2.46 2.830 (4) 101
C18—H18A⋯N1 0.96 2.47 2.819 (3) 101
C25—H25⋯N3 0.98 2.39 2.892 (4) 111
C3—H3⋯Cg1i 0.93 2.75 3.450 (3) 133
C23—H23⋯Cg2ii 0.93 2.97 3.801 (4) 149
C12—H12⋯Cg3ii 0.93 3.16 3.961 (10) 146
C15—H15BCg1iii 0.96 3.17 3.757 (13) 121
C15—H15CCg1iii 0.96 3.44 3.757 (13) 102
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y, -z+1.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993[Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. Version 5.1.0. MSC, The Woodlands, Texas, USA.]); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999[Molecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXTL-NT (Bruker, 1998[Bruker (1998). SHELXTL-NT. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL-NT and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The development of new ligand politopics bearing nitrogen heterocyclic units has been receiving increasing interest in the coordination chemistry of transition-metal based homogeneous catalysis (Togni & Venanzi, 1994). In this context, the planar tridentate–or potentially bidentate–ligand 2,6-bis(imino)pyridine and its derivatives (Orrell et al., 1997) have attracted great attention and the bis(arylimino)pyridine ligand [2,6-(ArN?CR)2C5H3N] by (Alyea & Merrel, 1974). There are several recent examples of reactions catalyzed by complexes bearing the ligand 2,6-bis(arylimino)pyridine ligands such as epoxidation of olefins (Çetinkaya et al., 1999), cyclopropanation of styrene (Bianchini et al., 2000). Specially, it has been nearly a decade since sterically demanding bis(arylimino)pyridine ligands were found to impart transitions metals, iron and cobalt, catalytic activities for olefin polymerization (Small & Brookhart, 1998; Britovsek et al., 1999). Many reports have appared in the literature concerning the effects (sterically and/or electronic) of ligand modifications, to find a structure–activity relationships. The crystal structure of different 2,6-bis(arylimino)pyridine ligands and their transition metal complexes offer the possibilty to compare directly structural parameters. Here we report the synthesis and crystal structure of the title compound, (I), (Fig. 1).

The molecule adopts a nonplanar conformation in which an E configuration around each C?N imine group is observed, likewise the two N atoms display a trans-trans relationship. The conformation of the system N–N–N system is of course different in each case. In general, X-ray structures of bis(arylimino)pyridines reveal that in the solid state the imino nitrogen atoms prefer to be disposed trans with respect to the central pyridine nitrogen (Mentes, et al. 2001; Huang et al., 2006) in order to minimize the interaction between the nitrogen lone pairs. The phenyl rings in (I) are twisted out of the mean plane of the pyridine ring, the mean planes of C8–C13 and C19–C24 being rotated by 63.0 (1)° and 72.58 (8)°, respectively. This molecular conformation is determined by the formation of pairs of intramolecular C—H···N hydrogen bonds, involving methyl groups with the N of the pyridine ring and isopropyl groups with imine groups with a range of distances C···N = 2.799 (3)–2.892 (4) Å (Fig. 2). These interactions lead to the formation of five-membered rings described by graph-set simbol S(5) (Bernstein et al., 1995).

The crystal structure of (I) consists of dimers linked by self-complementary C—H···π interactions related by an inversion centre C15···Cg1 = 3.757 Å; were Cg1 is the centroid of the N1,C1–C5 ring (Fig. 2). Neighbouring dimers are connected through additional C—H···π between phenyl rings (Fig. 3), generating supramolecular sheets parallel to the c axis. Details of geometrical parameters of these hydrogen bonding interactions are summarized in Table 2. Finally, the stacking of adjacent sheets is sustained by hydrophobic methyl-methyl interactions along the a axis (Fig. 4).

Related literature top

For related literature, see: Alyea & Merrel (1974); Bernstein et al. (1995); Bianchini & Hon Man (2000); Britovsek et al. (1999); Huang et al. (2006); Mentes et al. (2001); Orrell et al. (1997); Small & Brookhart (1998); Togni & Venanzi (1994); Çetinkaya et al. (1999).

Experimental top

The tile compound was synthetized by condensation of 2,6-diacetylpiridine (1.63 g, 10 mmol) with 2-iso-propylaniline (2.74 g, 20.3 mmol) in 25 ml dry methanol and five drops of formic acid. The solution was refluxed for 18 h. Upon slow cooling to room temperature and overnight to 273 K. Yellow prisms of (I) were obtained and filtered with a yield 75%. 1H-NMR (300 MHz, CDCl3 ); (δ, p.p.m.) 1.16 (d, 12 H), 2.23(s, 6H), 2.75(sept,2 H), 6. 54(tt, 2H), 7.08(tt, 2 H), 7.20(tt, 2 H), 7.44(dd, 2 H), 7.95(t, 1 H), 8.43(d, 2 H). Elemental analysis calcd. for C27H31N3 (%): C 81.57; H 7.85; N 10.57%. Found: C 81.33; H 7.69; N 10.41%.

Refinement top

All H atoms bound to carbon were included in calculated positions (C—H = 0.93–096 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

The development of new ligand politopics bearing nitrogen heterocyclic units has been receiving increasing interest in the coordination chemistry of transition-metal based homogeneous catalysis (Togni & Venanzi, 1994). In this context, the planar tridentate–or potentially bidentate–ligand 2,6-bis(imino)pyridine and its derivatives (Orrell et al., 1997) have attracted great attention and the bis(arylimino)pyridine ligand [2,6-(ArN?CR)2C5H3N] by (Alyea & Merrel, 1974). There are several recent examples of reactions catalyzed by complexes bearing the ligand 2,6-bis(arylimino)pyridine ligands such as epoxidation of olefins (Çetinkaya et al., 1999), cyclopropanation of styrene (Bianchini et al., 2000). Specially, it has been nearly a decade since sterically demanding bis(arylimino)pyridine ligands were found to impart transitions metals, iron and cobalt, catalytic activities for olefin polymerization (Small & Brookhart, 1998; Britovsek et al., 1999). Many reports have appared in the literature concerning the effects (sterically and/or electronic) of ligand modifications, to find a structure–activity relationships. The crystal structure of different 2,6-bis(arylimino)pyridine ligands and their transition metal complexes offer the possibilty to compare directly structural parameters. Here we report the synthesis and crystal structure of the title compound, (I), (Fig. 1).

The molecule adopts a nonplanar conformation in which an E configuration around each C?N imine group is observed, likewise the two N atoms display a trans-trans relationship. The conformation of the system N–N–N system is of course different in each case. In general, X-ray structures of bis(arylimino)pyridines reveal that in the solid state the imino nitrogen atoms prefer to be disposed trans with respect to the central pyridine nitrogen (Mentes, et al. 2001; Huang et al., 2006) in order to minimize the interaction between the nitrogen lone pairs. The phenyl rings in (I) are twisted out of the mean plane of the pyridine ring, the mean planes of C8–C13 and C19–C24 being rotated by 63.0 (1)° and 72.58 (8)°, respectively. This molecular conformation is determined by the formation of pairs of intramolecular C—H···N hydrogen bonds, involving methyl groups with the N of the pyridine ring and isopropyl groups with imine groups with a range of distances C···N = 2.799 (3)–2.892 (4) Å (Fig. 2). These interactions lead to the formation of five-membered rings described by graph-set simbol S(5) (Bernstein et al., 1995).

The crystal structure of (I) consists of dimers linked by self-complementary C—H···π interactions related by an inversion centre C15···Cg1 = 3.757 Å; were Cg1 is the centroid of the N1,C1–C5 ring (Fig. 2). Neighbouring dimers are connected through additional C—H···π between phenyl rings (Fig. 3), generating supramolecular sheets parallel to the c axis. Details of geometrical parameters of these hydrogen bonding interactions are summarized in Table 2. Finally, the stacking of adjacent sheets is sustained by hydrophobic methyl-methyl interactions along the a axis (Fig. 4).

For related literature, see: Alyea & Merrel (1974); Bernstein et al. (1995); Bianchini & Hon Man (2000); Britovsek et al. (1999); Huang et al. (2006); Mentes et al. (2001); Orrell et al. (1997); Small & Brookhart (1998); Togni & Venanzi (1994); Çetinkaya et al. (1999).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SHELXTL-NT (Bruker, 1998); program(s) used to refine structure: SHELXTL-NT (Bruker, 1998); molecular graphics: SHELXTL-NT (Bruker, 1998) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL-NT (Bruker, 1998) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level (H atoms omitted for clarity).
[Figure 2] Fig. 2. Ball and stick representation, showing the centrosymmetric dimer generated by C—H···π interactions (dashed lines). Most H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Ball and stick representation, showing side C—H···π interactions between adjacent molecules (dashed lines). Most H atoms have been omitted for clarity.
[Figure 4] Fig. 4. View of the packing of (I) along the b axis
2,6-Bis[1-(2-isopropylphenylimino)ethyl]pyridine top
Crystal data top
C27H31N3F(000) = 856
Mr = 397.55Dx = 1.087 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 16.9462 (18) Åθ = 32.2–38.4°
b = 6.791 (4) ŵ = 0.06 mm1
c = 21.801 (4) ÅT = 295 K
β = 104.551 (13)°Prism, yellow
V = 2428.3 (16) Å30.48 × 0.40 × 0.20 mm
Z = 4
Data collection top
Rigaku AFC-7S
diffractometer
2520 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ω/2θ scansh = 020
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.963, Tmax = 0.987l = 2525
4402 measured reflections3 standard reflections every 150 reflections
4248 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0887P)2 + 0.6215P]
where P = (Fo2 + 2Fc2)/3
4248 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C27H31N3V = 2428.3 (16) Å3
Mr = 397.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.9462 (18) ŵ = 0.06 mm1
b = 6.791 (4) ÅT = 295 K
c = 21.801 (4) Å0.48 × 0.40 × 0.20 mm
β = 104.551 (13)°
Data collection top
Rigaku AFC-7S
diffractometer
2520 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.963, Tmax = 0.9873 standard reflections every 150 reflections
4402 measured reflections intensity decay: none
4248 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
4248 reflectionsΔρmin = 0.18 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.05494 (11)0.3071 (3)0.34591 (9)0.0579 (5)
C10.11172 (13)0.2115 (4)0.32418 (11)0.0557 (6)
N20.14528 (12)0.2343 (3)0.36370 (10)0.0626 (6)
C20.10199 (15)0.0180 (4)0.30294 (12)0.0628 (7)
H20.14270.04460.28850.075*
N30.23456 (12)0.2431 (3)0.29399 (10)0.0677 (6)
C30.03083 (15)0.0796 (4)0.30372 (12)0.0638 (7)
H30.02330.21020.29070.077*
C40.02878 (14)0.0191 (4)0.32408 (12)0.0610 (7)
H40.07780.04280.32380.073*
C50.01505 (14)0.2114 (4)0.34492 (11)0.0550 (6)
C60.07766 (14)0.3213 (4)0.36847 (12)0.0588 (6)
C70.05481 (19)0.5194 (4)0.39720 (18)0.0984 (11)
H7A0.02090.58590.37450.148*
H7B0.02560.50430.44080.148*
H7C0.10330.59550.39480.148*
C80.20994 (14)0.3228 (4)0.38484 (13)0.0656 (7)
C90.23417 (16)0.2357 (5)0.43497 (13)0.0732 (8)
C100.3013 (2)0.3205 (6)0.45150 (17)0.0961 (11)
H100.31810.26960.48580.115*
C110.3430 (2)0.4763 (7)0.4187 (2)0.1101 (13)
H110.38760.52850.43070.132*
C120.3195 (2)0.5553 (6)0.3686 (2)0.1071 (12)
H120.34830.66010.34610.129*
C130.25291 (17)0.4787 (5)0.35161 (16)0.0873 (9)
H130.23660.53230.31750.105*
C140.1887 (2)0.0594 (5)0.46845 (15)0.0950 (10)
H140.17380.02040.43560.114*
C150.1087 (2)0.1186 (7)0.51467 (17)0.1210 (13)
H15A0.07770.19960.49320.181*
H15B0.07800.00250.53060.181*
H15C0.12010.19090.54930.181*
C160.2374 (3)0.0741 (8)0.5009 (2)0.173 (2)
H16A0.28720.11170.47120.260*
H16B0.24980.00550.53580.260*
H16C0.20600.18980.51620.260*
C170.18765 (14)0.3230 (4)0.32340 (12)0.0599 (6)
C180.20231 (18)0.5140 (4)0.35833 (19)0.0993 (11)
H18A0.15160.58320.35290.149*
H18B0.23950.59250.34200.149*
H18C0.22520.48920.40260.149*
C190.30842 (15)0.3356 (4)0.28902 (13)0.0647 (7)
C200.38249 (15)0.2764 (4)0.32815 (13)0.0679 (7)
C210.45263 (16)0.3592 (5)0.31692 (15)0.0803 (8)
H210.50300.32300.34270.096*
C220.45021 (17)0.4919 (5)0.26932 (16)0.0860 (9)
H220.49830.54390.26300.103*
C230.37679 (18)0.5477 (5)0.23106 (16)0.0920 (10)
H230.37450.63790.19860.110*
C240.30616 (17)0.4692 (5)0.24102 (15)0.0856 (9)
H240.25610.50700.21500.103*
C250.38646 (18)0.1294 (6)0.38095 (15)0.0966 (11)
H250.33020.10350.38280.116*
C260.4307 (3)0.2107 (8)0.4446 (2)0.168 (2)
H26A0.43170.11340.47670.252*
H26B0.40300.32640.45360.252*
H26C0.48550.24430.44390.252*
C270.4219 (5)0.0611 (8)0.3690 (3)0.236 (4)
H27A0.42220.14950.40350.354*
H27B0.47670.04100.36560.354*
H27C0.38980.11660.33030.354*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0471 (11)0.0610 (13)0.0652 (12)0.0048 (10)0.0137 (9)0.0046 (10)
C10.0489 (13)0.0587 (15)0.0586 (14)0.0008 (11)0.0121 (11)0.0055 (12)
N20.0496 (11)0.0725 (14)0.0655 (13)0.0081 (10)0.0142 (9)0.0009 (11)
C20.0577 (14)0.0622 (17)0.0693 (16)0.0020 (13)0.0173 (12)0.0003 (13)
N30.0527 (12)0.0752 (15)0.0763 (14)0.0045 (11)0.0183 (11)0.0030 (12)
C30.0672 (16)0.0561 (15)0.0671 (16)0.0067 (13)0.0149 (13)0.0039 (13)
C40.0566 (14)0.0612 (16)0.0639 (15)0.0085 (13)0.0127 (12)0.0029 (13)
C50.0528 (14)0.0574 (15)0.0537 (14)0.0035 (11)0.0115 (11)0.0052 (11)
C60.0554 (14)0.0571 (15)0.0656 (15)0.0063 (12)0.0185 (12)0.0044 (12)
C70.084 (2)0.074 (2)0.155 (3)0.0210 (17)0.062 (2)0.032 (2)
C80.0478 (14)0.0778 (18)0.0709 (17)0.0125 (13)0.0142 (12)0.0101 (15)
C90.0609 (16)0.092 (2)0.0688 (17)0.0269 (15)0.0208 (13)0.0149 (16)
C100.076 (2)0.131 (3)0.090 (2)0.035 (2)0.0366 (18)0.029 (2)
C110.067 (2)0.135 (3)0.135 (3)0.006 (2)0.038 (2)0.036 (3)
C120.071 (2)0.117 (3)0.135 (3)0.016 (2)0.027 (2)0.005 (3)
C130.0643 (17)0.098 (2)0.101 (2)0.0080 (18)0.0230 (16)0.0075 (19)
C140.103 (2)0.105 (3)0.080 (2)0.026 (2)0.0289 (18)0.008 (2)
C150.115 (3)0.144 (4)0.092 (2)0.015 (3)0.005 (2)0.014 (3)
C160.193 (5)0.163 (4)0.175 (5)0.063 (4)0.069 (4)0.040 (4)
C170.0464 (13)0.0598 (15)0.0724 (16)0.0031 (12)0.0132 (12)0.0073 (13)
C180.0725 (18)0.0693 (19)0.168 (3)0.0142 (16)0.052 (2)0.027 (2)
C190.0505 (14)0.0728 (17)0.0737 (17)0.0027 (13)0.0213 (12)0.0031 (15)
C200.0533 (15)0.0814 (19)0.0700 (17)0.0003 (14)0.0174 (12)0.0014 (15)
C210.0514 (15)0.095 (2)0.094 (2)0.0048 (15)0.0187 (14)0.0033 (19)
C220.0593 (17)0.095 (2)0.111 (2)0.0059 (16)0.0351 (17)0.006 (2)
C230.0702 (19)0.097 (2)0.112 (3)0.0009 (17)0.0287 (17)0.030 (2)
C240.0594 (16)0.098 (2)0.099 (2)0.0039 (16)0.0182 (15)0.0255 (19)
C250.0681 (18)0.131 (3)0.089 (2)0.0062 (19)0.0168 (16)0.030 (2)
C260.213 (5)0.196 (5)0.084 (3)0.006 (4)0.016 (3)0.025 (3)
C270.437 (11)0.107 (4)0.206 (6)0.065 (6)0.157 (7)0.059 (4)
Geometric parameters (Å, º) top
N1—C11.342 (3)C14—H140.9800
N1—C51.348 (3)C15—H15A0.9600
C1—C21.389 (4)C15—H15B0.9600
C1—C171.496 (3)C15—H15C0.9600
N2—C61.270 (3)C16—H16A0.9600
N2—C81.424 (3)C16—H16B0.9600
C2—C31.380 (3)C16—H16C0.9600
C2—H20.9300C17—C181.493 (4)
N3—C171.263 (3)C18—H18A0.9600
N3—C191.429 (3)C18—H18B0.9600
C3—C41.376 (3)C18—H18C0.9600
C3—H30.9300C19—C241.378 (4)
C4—C51.382 (3)C19—C201.388 (4)
C4—H40.9300C20—C211.391 (4)
C5—C61.490 (3)C20—C251.512 (4)
C6—C71.494 (4)C21—C221.367 (4)
C7—H7A0.9600C21—H210.9300
C7—H7B0.9600C22—C231.366 (4)
C7—H7C0.9600C22—H220.9300
C8—C131.383 (4)C23—C241.376 (4)
C8—C91.392 (4)C23—H230.9300
C9—C101.401 (4)C24—H240.9300
C9—C141.509 (4)C25—C271.476 (6)
C10—C111.369 (5)C25—C261.506 (6)
C10—H100.9300C25—H250.9800
C11—C121.363 (5)C26—H26A0.9600
C11—H110.9300C26—H26B0.9600
C12—C131.375 (4)C26—H26C0.9600
C12—H120.9300C27—H27A0.9600
C13—H130.9300C27—H27B0.9600
C14—C161.516 (5)C27—H27C0.9600
C14—C151.526 (4)
C1—N1—C5117.9 (2)C14—C15—H15C109.5
N1—C1—C2122.6 (2)H15A—C15—H15C109.5
N1—C1—C17117.0 (2)H15B—C15—H15C109.5
C2—C1—C17120.3 (2)C14—C16—H16A109.5
C6—N2—C8121.9 (2)C14—C16—H16B109.5
C3—C2—C1118.8 (2)H16A—C16—H16B109.5
C3—C2—H2120.6C14—C16—H16C109.5
C1—C2—H2120.6H16A—C16—H16C109.5
C17—N3—C19121.6 (2)H16B—C16—H16C109.5
C4—C3—C2119.0 (2)N3—C17—C18126.0 (2)
C4—C3—H3120.5N3—C17—C1116.2 (2)
C2—C3—H3120.5C18—C17—C1117.9 (2)
C3—C4—C5119.3 (2)C17—C18—H18A109.5
C3—C4—H4120.3C17—C18—H18B109.5
C5—C4—H4120.3H18A—C18—H18B109.5
N1—C5—C4122.4 (2)C17—C18—H18C109.5
N1—C5—C6116.9 (2)H18A—C18—H18C109.5
C4—C5—C6120.7 (2)H18B—C18—H18C109.5
N2—C6—C5116.4 (2)C24—C19—C20120.4 (2)
N2—C6—C7125.9 (2)C24—C19—N3119.3 (2)
C5—C6—C7117.6 (2)C20—C19—N3120.0 (2)
C6—C7—H7A109.5C19—C20—C21117.1 (3)
C6—C7—H7B109.5C19—C20—C25121.3 (2)
H7A—C7—H7B109.5C21—C20—C25121.6 (3)
C6—C7—H7C109.5C22—C21—C20122.4 (3)
H7A—C7—H7C109.5C22—C21—H21118.8
H7B—C7—H7C109.5C20—C21—H21118.8
C13—C8—C9121.1 (3)C23—C22—C21119.7 (3)
C13—C8—N2120.0 (2)C23—C22—H22120.2
C9—C8—N2118.5 (3)C21—C22—H22120.2
C8—C9—C10116.5 (3)C22—C23—C24119.4 (3)
C8—C9—C14120.1 (3)C22—C23—H23120.3
C10—C9—C14123.4 (3)C24—C23—H23120.3
C11—C10—C9121.9 (3)C23—C24—C19121.0 (3)
C11—C10—H10119.0C23—C24—H24119.5
C9—C10—H10119.0C19—C24—H24119.5
C12—C11—C10120.4 (3)C27—C25—C26110.7 (4)
C12—C11—H11119.8C27—C25—C20112.8 (3)
C10—C11—H11119.8C26—C25—C20112.1 (3)
C11—C12—C13119.4 (4)C27—C25—H25107.0
C11—C12—H12120.3C26—C25—H25107.0
C13—C12—H12120.3C20—C25—H25107.0
C12—C13—C8120.6 (3)C25—C26—H26A109.5
C12—C13—H13119.7C25—C26—H26B109.5
C8—C13—H13119.7H26A—C26—H26B109.5
C9—C14—C16115.4 (3)C25—C26—H26C109.5
C9—C14—C15111.8 (3)H26A—C26—H26C109.5
C16—C14—C15110.3 (3)H26B—C26—H26C109.5
C9—C14—H14106.2C25—C27—H27A109.5
C16—C14—H14106.2C25—C27—H27B109.5
C15—C14—H14106.2H27A—C27—H27B109.5
C14—C15—H15A109.5C25—C27—H27C109.5
C14—C15—H15B109.5H27A—C27—H27C109.5
H15A—C15—H15B109.5H27B—C27—H27C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N10.962.462.799 (3)100
C14—H14···N20.982.462.830 (4)101
C18—H18A···N10.962.472.819 (3)101
C25—H25···N30.982.392.892 (4)111
C3—H3···Cg1i0.932.753.450 (3)133
C23—H23···Cg2ii0.932.973.801 (4)149
C12—H12···Cg3ii0.933.163.961 (10)146
C15—H15B···Cg1iii0.963.173.757 (13)121
C15—H15C···Cg1iii0.963.443.757 (13)102
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC27H31N3
Mr397.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)16.9462 (18), 6.791 (4), 21.801 (4)
β (°) 104.551 (13)
V3)2428.3 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.48 × 0.40 × 0.20
Data collection
DiffractometerRigaku AFC-7S
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.963, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
4402, 4248, 2520
Rint0.016
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.188, 1.02
No. of reflections4248
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993), TEXSAN (Molecular Structure Corporation, 1999), SHELXTL-NT (Bruker, 1998) and DIAMOND (Brandenburg, 1999), SHELXTL-NT (Bruker, 1998) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···N10.962.462.799 (3)100
C14—H14···N20.982.462.830 (4)101
C18—H18A···N10.962.472.819 (3)101
C25—H25···N30.982.392.892 (4)111
C3—H3···Cg1i0.932.753.450 (3)133
C23—H23···Cg2ii0.932.973.801 (4)149
C12—H12···Cg3ii0.933.1593.961 (10)146
C15—H15B···Cg1iii0.963.1703.757 (13)121
C15—H15C···Cg1iii0.963.4363.757 (13)102
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y, z+1.
 

Acknowledgements

The authors thank FONACIT–MCT, Venezuela, for financial support (project LAB-199700821)

References

First citationAlyea, E. C. & Merrel, P. H. (1974). Synth. React. Inorg. Met.-Org. Chem. 4, 535–544.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBianchini, C. & Hon Man, L. (2000). Organometallics, 19, 1833–1840.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Release 2.1c. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBritovsek, G. J. P., Bruce, M., Gibson, V. C., Kimberley, B. S., Maddox, P. J., Mastroianni, S., MacTavish, S. J., Redshaw, C., Solan, G. A., Strömberg, S., White, A. J. P. & Williams, D. J. (1999). J. Am. Chem. Soc. 121, 8728–8740.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SHELXTL-NT. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationÇetinkaya, B., Çetinkaya, E., Brookhart, M. & White, P. S. (1999). J. Mol. Catal. A Chem. 142, 101–112.  Web of Science CrossRef Google Scholar
First citationHuang, Y.-B., Ma, X.-L., Zheng, S.-N., Chen, J.-X. & Wei, C.-X. (2006). Acta Cryst. E62, o3044–o3045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMentes, A., Fawcett, J. & Kemmitt, R. D. W. (2001). Acta Cryst. E57, o424–o425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMolecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. Version 5.1.0. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationMolecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, The Woodlands, Texas, USA.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationOrrell, K. G., Osborne, G. A., Šik, V., Webba da Silva, M., Hursthouse, M. B., Hibbs, D. E., Abdul Malik, K. M. & Vassilev, N. G. (1997). J. Organomet. Chem. 538, 171–183.  CSD CrossRef CAS Web of Science Google Scholar
First citationSmall, B. L. & Brookhart, M. (1998). J. Am. Chem. Soc. 120, 7143–7144.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTogni, A. & Venanzi, L. M. (1994). Angew. Chem. Int. Ed. 33, 497–526.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds