organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Benzo­yl[1-(2-hy­droxy­ethyl)imidazolidin-2-yl­­idene]aceto­nitrile

aInstitute of Carbon Fiber and Composites, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China, and bLaboratory for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
*Correspondence e-mail: yucy@iccas.ac.cn, tianyh@mail.buct.edu.cn

(Received 30 October 2007; accepted 4 November 2007; online 6 December 2007)

In the title compound, C14H15N3O2, the C=C(H)—C=O grouping and the imidazolidine ring are coplanar as a result of an intra­molecular N—H⋯O hydrogen bond and extended electronic conjugation. Inter­molecular N—H⋯O and O—H⋯N hydrogen bonds help to establish the packing.

Related literature

For related literature, see: Wang & Huang (1996[Wang, L.-B. & Huang, Z.-T. (1996). Synth. Commun. 26, 459-473.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15N3O2

  • Mr = 257.29

  • Monoclinic, P 21 /c

  • a = 8.3748 (17) Å

  • b = 14.633 (3) Å

  • c = 10.784 (2) Å

  • β = 107.33 (3)°

  • V = 1261.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 (2) K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.36. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.982, Tmax = 0.994

  • 9551 measured reflections

  • 2994 independent reflections

  • 2534 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.103

  • S = 1.10

  • 2994 reflections

  • 180 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Selected torsion angles (°)

C5—N1—C3—C4 −12.82 (13)
C5—N2—C4—C3 −18.34 (13)
N1—C3—C4—N2 17.71 (12)
C4—N2—C5—N1 11.16 (14)
C3—N1—C5—N2 1.74 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.881 (16) 2.318 (16) 2.9557 (15) 129.3 (13)
N2—H2⋯O2 0.881 (16) 1.953 (16) 2.6252 (15) 132.0 (14)
O1—H1⋯N3ii 0.87 (2) 2.04 (2) 2.8794 (16) 160.9 (17)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Version 1.36. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Heterocyclic ketene aminals (HKAs) are versatile synthons for heterocyclic synthesis. The title compound, (I), (Fig. 1), which possesses a β-hydroxyethyl group on the nitrogen atom of the imidazolidine ring, is a member of this family (Wang & Huang, 1996).

Due to the extended conjugation in the molecule, some abnormal geometrical parameters occur. For example, O2—C8 = 1.2487 (14) Å, which is longer than a normal double bond; the length of N1—C5 [1.3435 (16) Å] and N2—C5 [1.3366 (16) Å] are shorter than those of normal C—N single bonds; the length of C5—C6 [1.4348 (17) Å] double bond is longer than that of a normal C=C bond. The atoms of imidazoline ring in this compound (I) are approximately coplanar, in which, the torsion angle of C3—N1—C5—N2 is 1.74 (17)°, the torsion angle of C4—N2—C5—N1 is 11.16 (14)°, and the torsion angle of C5—N1—C3—C4 is -12.82 (13)°.

The molecules are linked by intermolecular N—H···O hydrogen bonds and O—H···N bonds (Table 1). There is also an intramolecular hydrogen bond involving the O2 and amide N2 atoms.

Related literature top

For related literature, see: Wang & Huang (1996).

Experimental top

The title compound was prepared according to the procedure of Wang & Huang (1996) and recrystallized from methanol in 86% yield to yield colourless prisms of (I) (m.p. 449–450 K). IR: ν= 3400 (OH), 3240 (NH), 2180 (CN), 1580 (CO), 1560, 1545 cm-1. 1H-NMR (DMSO-d6): δ= 9.83 (1H, s), 7.34–7.62 (5H, m), 4.44 (1H, s), 3.56–3.84 p.p.m. (8H, m), 13C-NMR (DMSO-d6): δ= 189.8, 163.6, 140.6, 129.8, 127.6, 127.4, 121.6, 64.5, 59.6, 50.4, 48.9, 41.6 p.p.m.. MS: m/z = 257 (M+, 29),226 (7), 212 (6), 160 (14), 105 (100). Anal. Calcd. for C14H15N3O2: C 65.35, H 5.88, N 16.33; found: C 65.39, H 5.77, N 16.42.

Refinement top

The N– and O-bound H atoms were located in a difference map and freely refined. The C-bound H atoms were placed in geometrically idealized positions (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

Heterocyclic ketene aminals (HKAs) are versatile synthons for heterocyclic synthesis. The title compound, (I), (Fig. 1), which possesses a β-hydroxyethyl group on the nitrogen atom of the imidazolidine ring, is a member of this family (Wang & Huang, 1996).

Due to the extended conjugation in the molecule, some abnormal geometrical parameters occur. For example, O2—C8 = 1.2487 (14) Å, which is longer than a normal double bond; the length of N1—C5 [1.3435 (16) Å] and N2—C5 [1.3366 (16) Å] are shorter than those of normal C—N single bonds; the length of C5—C6 [1.4348 (17) Å] double bond is longer than that of a normal C=C bond. The atoms of imidazoline ring in this compound (I) are approximately coplanar, in which, the torsion angle of C3—N1—C5—N2 is 1.74 (17)°, the torsion angle of C4—N2—C5—N1 is 11.16 (14)°, and the torsion angle of C5—N1—C3—C4 is -12.82 (13)°.

The molecules are linked by intermolecular N—H···O hydrogen bonds and O—H···N bonds (Table 1). There is also an intramolecular hydrogen bond involving the O2 and amide N2 atoms.

For related literature, see: Wang & Huang (1996).

Computing details top

Data collection: (CrystalClear; Rigaku, 2005); cell refinement: (CrystalClear; Rigaku, 2005); data reduction: (CrystalClear; Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Ellipsoids are drawn at the 40% probability level (H atoms represented by arbitrary spheres). The intramolecular hydrogen bond is indicated by a dashed line.
[Figure 2] Fig. 2. Packing diagram for (I), viewed down the b axis with hydrogen bonds indicated by dashed lines.
(E)-Benzoyl[1-(2-hydroxyethyl)imidazolidin-2-ylidene]acetonitrile top
Crystal data top
C14H15N3O2F(000) = 544
Mr = 257.29Dx = 1.355 Mg m3
Monoclinic, P21/cMelting point = 449–450 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.3748 (17) ÅCell parameters from 4329 reflections
b = 14.633 (3) Åθ = 2.3–22.5°
c = 10.784 (2) ŵ = 0.09 mm1
β = 107.33 (3)°T = 113 K
V = 1261.6 (4) Å3Prism, colourless
Z = 40.10 × 0.08 × 0.06 mm
Data collection top
Rigaku Saturn
diffractometer
2994 independent reflections
Radiation source: rotating anode2534 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.036
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.4°
ω and φ scansh = 1111
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1918
Tmin = 0.982, Tmax = 0.994l = 1411
9551 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.2093P]
where P = (Fo2 + 2Fc2)/3
2994 reflections(Δ/σ)max < 0.001
180 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H15N3O2V = 1261.6 (4) Å3
Mr = 257.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3748 (17) ŵ = 0.09 mm1
b = 14.633 (3) ÅT = 113 K
c = 10.784 (2) Å0.10 × 0.08 × 0.06 mm
β = 107.33 (3)°
Data collection top
Rigaku Saturn
diffractometer
2994 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2534 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.994Rint = 0.036
9551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.32 e Å3
2994 reflectionsΔρmin = 0.18 e Å3
180 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30219 (13)0.59907 (7)0.03041 (9)0.0280 (2)
H10.323 (2)0.6459 (13)0.0116 (18)0.044 (5)*
O20.91862 (10)0.56888 (6)0.57744 (8)0.0186 (2)
N10.47423 (12)0.51059 (7)0.28326 (10)0.0171 (2)
N20.72478 (13)0.46439 (7)0.39657 (10)0.0170 (2)
N30.41182 (14)0.73000 (8)0.45144 (11)0.0259 (3)
C10.30005 (16)0.63405 (9)0.15308 (12)0.0195 (3)
H1A0.19540.66870.14320.023*
H1B0.39570.67600.18760.023*
C20.31137 (15)0.55527 (9)0.24601 (11)0.0169 (3)
H2A0.28780.57810.32520.020*
H2B0.22440.50970.20490.020*
C30.49585 (16)0.42196 (9)0.22523 (12)0.0201 (3)
H3A0.46650.42640.12950.024*
H3B0.42640.37400.24830.024*
C40.68186 (16)0.40238 (9)0.28553 (12)0.0210 (3)
H4A0.70160.33780.31350.025*
H4B0.74610.41670.22440.025*
C50.61006 (14)0.53014 (8)0.38307 (11)0.0150 (2)
C60.63996 (14)0.60969 (8)0.46455 (11)0.0154 (2)
C70.51223 (15)0.67519 (9)0.45570 (11)0.0178 (3)
C80.80273 (14)0.62602 (8)0.55445 (11)0.0151 (2)
C100.79435 (15)0.79899 (9)0.56137 (12)0.0194 (3)
H100.73380.79990.47160.023*
C110.83750 (16)0.88063 (9)0.62852 (13)0.0236 (3)
H110.80660.93720.58480.028*
C120.92588 (16)0.87938 (10)0.75974 (13)0.0238 (3)
H120.95410.93520.80620.029*
C130.97302 (16)0.79694 (10)0.82305 (12)0.0225 (3)
H131.03420.79640.91270.027*
C90.83921 (14)0.71581 (8)0.62480 (11)0.0154 (2)
C140.93138 (15)0.71500 (9)0.75621 (12)0.0194 (3)
H140.96540.65860.79970.023*
H20.827 (2)0.4743 (11)0.4482 (16)0.031 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0475 (6)0.0210 (5)0.0173 (5)0.0073 (4)0.0125 (4)0.0009 (4)
O20.0197 (4)0.0155 (5)0.0179 (4)0.0038 (3)0.0016 (3)0.0001 (3)
N10.0172 (5)0.0146 (5)0.0186 (5)0.0013 (4)0.0041 (4)0.0033 (4)
N20.0173 (5)0.0137 (5)0.0188 (5)0.0001 (4)0.0033 (4)0.0040 (4)
N30.0213 (6)0.0246 (6)0.0289 (6)0.0036 (5)0.0030 (4)0.0091 (5)
C10.0230 (6)0.0166 (6)0.0188 (6)0.0009 (5)0.0063 (5)0.0014 (5)
C20.0148 (6)0.0179 (6)0.0175 (6)0.0019 (5)0.0038 (4)0.0002 (5)
C30.0223 (6)0.0159 (6)0.0215 (6)0.0022 (5)0.0057 (5)0.0054 (5)
C40.0232 (6)0.0161 (6)0.0223 (6)0.0000 (5)0.0049 (5)0.0064 (5)
C50.0166 (6)0.0148 (6)0.0142 (5)0.0014 (4)0.0053 (4)0.0016 (4)
C60.0172 (6)0.0129 (6)0.0160 (6)0.0005 (4)0.0050 (4)0.0008 (4)
C70.0179 (6)0.0182 (6)0.0160 (6)0.0020 (5)0.0031 (4)0.0047 (5)
C80.0191 (6)0.0139 (6)0.0129 (5)0.0001 (4)0.0055 (4)0.0016 (4)
C100.0188 (6)0.0172 (6)0.0207 (6)0.0008 (5)0.0034 (5)0.0015 (5)
C110.0222 (6)0.0159 (7)0.0331 (7)0.0005 (5)0.0087 (5)0.0024 (5)
C120.0190 (6)0.0216 (7)0.0326 (7)0.0043 (5)0.0102 (5)0.0144 (5)
C130.0188 (6)0.0300 (8)0.0185 (6)0.0027 (5)0.0055 (5)0.0079 (5)
C90.0144 (6)0.0155 (6)0.0166 (6)0.0007 (4)0.0052 (4)0.0029 (4)
C140.0181 (6)0.0219 (7)0.0181 (6)0.0003 (5)0.0054 (5)0.0014 (5)
Geometric parameters (Å, º) top
O1—C11.4235 (15)C4—H4A0.9900
O1—H10.87 (2)C4—H4B0.9900
O2—C81.2487 (14)C5—C61.4348 (17)
N1—C51.3435 (16)C6—C71.4182 (17)
N1—C21.4569 (16)C6—C81.4381 (17)
N1—C31.4744 (16)C8—C91.5022 (16)
N2—C51.3366 (16)C10—C111.3879 (18)
N2—C41.4595 (16)C10—C91.3920 (17)
N2—H20.881 (16)C10—H100.9500
N3—C71.1530 (16)C11—C121.388 (2)
C1—C21.5119 (17)C11—H110.9500
C1—H1A0.9900C12—C131.384 (2)
C1—H1B0.9900C12—H120.9500
C2—H2A0.9900C13—C141.3889 (18)
C2—H2B0.9900C13—H130.9500
C3—C41.5258 (18)C9—C141.3974 (17)
C3—H3A0.9900C14—H140.9500
C3—H3B0.9900
C1—O1—H1105.2 (12)H4A—C4—H4B109.3
C5—N1—C2128.69 (10)N2—C5—N1110.10 (11)
C5—N1—C3110.22 (10)N2—C5—C6121.91 (11)
C2—N1—C3120.06 (10)N1—C5—C6127.95 (11)
C5—N2—C4111.39 (10)C7—C6—C5121.11 (11)
C5—N2—H2118.7 (11)C7—C6—C8118.52 (11)
C4—N2—H2125.1 (11)C5—C6—C8120.35 (11)
O1—C1—C2109.04 (10)N3—C7—C6177.90 (13)
O1—C1—H1A109.9O2—C8—C6123.17 (11)
C2—C1—H1A109.9O2—C8—C9117.15 (10)
O1—C1—H1B109.9C6—C8—C9119.68 (10)
C2—C1—H1B109.9C11—C10—C9120.40 (12)
H1A—C1—H1B108.3C11—C10—H10119.8
N1—C2—C1113.19 (10)C9—C10—H10119.8
N1—C2—H2A108.9C10—C11—C12119.83 (13)
C1—C2—H2A108.9C10—C11—H11120.1
N1—C2—H2B108.9C12—C11—H11120.1
C1—C2—H2B108.9C13—C12—C11120.10 (12)
H2A—C2—H2B107.8C13—C12—H12120.0
N1—C3—C4102.90 (10)C11—C12—H12120.0
N1—C3—H3A111.2C12—C13—C14120.37 (12)
C4—C3—H3A111.2C12—C13—H13119.8
N1—C3—H3B111.2C14—C13—H13119.8
C4—C3—H3B111.2C10—C9—C14119.50 (11)
H3A—C3—H3B109.1C10—C9—C8122.15 (11)
N2—C4—C3101.74 (10)C14—C9—C8118.20 (11)
N2—C4—H4A111.4C13—C14—C9119.77 (12)
C3—C4—H4A111.4C13—C14—H14120.1
N2—C4—H4B111.4C9—C14—H14120.1
C3—C4—H4B111.4
C5—N1—C2—C189.49 (14)C7—C6—C8—O2173.51 (11)
C3—N1—C2—C1103.33 (13)C5—C6—C8—O28.42 (18)
O1—C1—C2—N169.56 (13)C7—C6—C8—C96.98 (16)
C5—N1—C3—C412.82 (13)C5—C6—C8—C9171.09 (10)
C2—N1—C3—C4177.82 (10)C9—C10—C11—C120.02 (19)
C5—N2—C4—C318.34 (13)C10—C11—C12—C130.94 (19)
N1—C3—C4—N217.71 (12)C11—C12—C13—C140.45 (19)
C4—N2—C5—N111.16 (14)C11—C10—C9—C141.39 (18)
C4—N2—C5—C6166.78 (11)C11—C10—C9—C8176.84 (11)
C2—N1—C5—N2169.93 (11)O2—C8—C9—C10133.69 (12)
C3—N1—C5—N21.74 (14)C6—C8—C9—C1045.85 (16)
C2—N1—C5—C612.3 (2)O2—C8—C9—C1441.82 (15)
C3—N1—C5—C6179.52 (11)C6—C8—C9—C14138.64 (12)
N2—C5—C6—C7174.96 (11)C12—C13—C14—C90.96 (18)
N1—C5—C6—C77.49 (19)C10—C9—C14—C131.87 (18)
N2—C5—C6—C87.02 (17)C8—C9—C14—C13177.50 (10)
N1—C5—C6—C8170.52 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.881 (16)2.318 (16)2.9557 (15)129.3 (13)
N2—H2···O20.881 (16)1.953 (16)2.6252 (15)132.0 (14)
O1—H1···N3ii0.87 (2)2.04 (2)2.8794 (16)160.9 (17)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H15N3O2
Mr257.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)8.3748 (17), 14.633 (3), 10.784 (2)
β (°) 107.33 (3)
V3)1261.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.982, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
9551, 2994, 2534
Rint0.036
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.103, 1.10
No. of reflections2994
No. of parameters180
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.18

Computer programs: (CrystalClear; Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Selected torsion angles (º) top
C5—N1—C3—C412.82 (13)C4—N2—C5—N111.16 (14)
C5—N2—C4—C318.34 (13)C3—N1—C5—N21.74 (14)
N1—C3—C4—N217.71 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.881 (16)2.318 (16)2.9557 (15)129.3 (13)
N2—H2···O20.881 (16)1.953 (16)2.6252 (15)132.0 (14)
O1—H1···N3ii0.87 (2)2.04 (2)2.8794 (16)160.9 (17)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+3/2, z1/2.
 

Acknowledgements

We thank Haibin Song at Nankai University for the X-ray crystallographic determination.

References

First citationBruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRigaku (2005). CrystalClear. Version 1.36. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWang, L.-B. & Huang, Z.-T. (1996). Synth. Commun. 26, 459–473.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds