metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{1-[1-(3-Carb­oxy­propanamido)eth­yl]-1′,2-bis­­(di­phenyl­phosphino)ferrocene-κ2P,P′}di­chloridoplatinum(II) di­chloro­methane 1.25-solvate

aDepartment of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706, USA, bOrganic Chemistry, Department of Chemistry, Lund University, PO Box 124, SE22100 Lund, Sweden, cDepartment of Chemistry, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, South Africa, and dBiochemistry, Department of Chemistry, Lund University, PO Box 124, SE22100 Lund, Sweden
*Correspondence e-mail: laraharris@wisc.edu

(Received 30 October 2007; accepted 2 December 2007; online 12 December 2007)

The dinuclear title compound, [FePtCl2(C17H14P)(C23H23NO3P)]·1.25CH2Cl2, has a slightly distorted cis-PtCl2P2 square-planar geometry around the Pt atom, and the ferrocenylphosphine ligands are staggered at an angle of 29.4 (2)° about Pt. In the crystal structure, the complex forms centrosymmetric dimers via two strong inter­molecular O—H⋯O bonds resulting in R22(8) rings. A weak intra­molecular N—H⋯Cl bond leads to an S(8) motif. The solvent is highly disordered and has not been modelled with discrete atoms.

Related literature

For background, see: Beagley et al. (2003[Beagley, P., Blackie, M. A. L., Chibale, K., Clarkson, C., Meijboom, R., Moss, J. R., Smith, P. J. & Su, H. (2003). Dalton Trans. pp. 3046-3051.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Bjelosevic et al. (2006[Bjelosevic, H., Spégel, C., Sykfont Snygg, Å., Gorton, L., Elmroth, S. K. C. & Persson, T. (2006). Tetrahedron, 62, 4519-4527.]); Clemente et al. (1986[Clemente, D. A., Pilloni, G., Corain, B., Longato, B. & Tiripicchio-Camellini, M. (1986). Inorg. Chim. Acta, 115, L9-L11.]); Fouda et al. (2007[Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613-625.]); Spencer & Bjelosevic (2007[Spencer, L. C. & Bjelosevic, H. (2007). Acta Cryst. E63, m1536.]); Top et al. (2003[Top, S., Vessières, A., Leclercq, G., Quivy, J., Tang, J., Vaissermann, J., Huché, M. & Jaouen, G. (2003). Chem. Eur. J. 9, 5223-5236.]); Van Staveren & Metzler-Nolte (2004[Van Staveren, D. R. & Metzler-Nolte, N. (2004). Chem. Rev. 104, 5931-5985.]). For disordered solvent treatment, see: Spek (1983[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]). Related structures were found from the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [FePtCl2(C17H14P)(C23H23NO3P)]·1.25CH2Cl2

  • Mr = 1069.64

  • Monoclinic, P 21 /n

  • a = 13.0154 (8) Å

  • b = 15.7866 (10) Å

  • c = 19.3403 (12) Å

  • β = 100.916 (1)°

  • V = 3901.9 (4) Å3

  • Z = 4

  • Mo- Kα radiation

  • μ = 4.39 mm−1

  • T = 100 (2) K

  • 0.35 × 0.33 × 0.30 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS (Version 2.05), SAINT (Version 6.22), SHELXTL (Version 6.10), and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.309, Tmax = 0.353 (expected range = 0.235–0.268)

  • 56419 measured reflections

  • 10833 independent reflections

  • 9395 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.065

  • S = 1.08

  • 10833 reflections

  • 453 parameters

  • H-atom parameters constrained

  • Δρmax = 1.45 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—P2 2.2575 (6)
Pt1—P1 2.2592 (6)
Pt1—Cl1 2.3588 (6)
Pt1—Cl2 2.3592 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.84 1.82 2.656 (3) 177
N1—H1⋯Cl1 0.88 2.69 3.477 (2) 150
Symmetry code: (i) -x+2, -y, -z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SADABS (Version 2.05), SAINT (Version 6.22), SHELXTL (Version 6.10), and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SADABS (Version 2.05), SAINT (Version 6.22), SHELXTL (Version 6.10), and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003[Bruker (2003). SADABS (Version 2.05), SAINT (Version 6.22), SHELXTL (Version 6.10), and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), publCIF (Westrip, 2007[Westrip, S. P. (2007). publCIF. In preparation.]) and modiCIFer (Guzei, 2007[Guzei, I. A. (2007). modiCIFer. University of Wisconsin-Madison, USA.]).

Supporting information


Comment top

Many ferrocenyl compounds have found interesting biological applications (Fouda et al., 2007). With the rapid growth of bioorganometallic chemistry, the number of bioconjugates of ferrocene with proteins, DNA, RNA, carbohydrates, hormones etc. are increasing (Van Staveren & Metzler-Nolte, 2004). The electrochemical properties of ferrocene seem to improve the biological applications of already existing drugs (Beagley et al., 2003, Top et al., 2003).

Here we report the title compound, (I), a solvated platinum(II) complex with substituted 1,1'-bis(diphenylphosphino)ferrocene. The substituent is aimed to act as a linker arm with polar functionalities in order to increase the solubility of the compound in polar solvents. The carboxylic acid moiety is likely to facilitate further functionalization towards the synthesis of biologically active molecules.

The geometry around atom Pt1 in (I) is a slightly distorted square planar with the two phosphorous atoms cis to each other (Table 1). The P2—Pt1—P1 angle of 97.55 (2)° is significantly larger than 90° due to the geometry of the ferrocenyl moiety. The other bond angles about the Pt atom in (I) are consistent with those seen in related structures (Allen, 2002). Around Pt1, atoms P1 and Cl2 are slightly below and atoms P2 and Cl1 are slightly above the least squares plane defined by atoms Pt1, P1, P2, Cl1, and Cl2. This distorted square planar geometry is typical of this class of compounds with a cis substitution pattern around the central platinum(II) atom.

Atom Fe1 is almost equidistant from the centroids of the two five membered rings: Fe1···Cg(C1—C5) = 1.6404 (12) Å and Fe1···Cg(C36—C40) = 1.6512 (12) Å. The two five-membered rings are staggered about Pt1 with an angle of 29.4 (2)° calculated by taking the average and standard deviation of the dihedral angles C1-Centroid 1-Centroid 2-C40, C2- Centroid 1-Centroid 2-C39, C3-Centroid 1-Centroid 2 –C38, C4-Centroid 1-Centroid 2-C37, and C5-Centroid 1-Centroid 2-C36. This angle is slightly larger than the twist angle of 24.7 (2)° between the two five-membered rings in the complex PtCl2(1-[1',2-bis(diphenylphosphino)ferrocenyl]ethylacetate) dichloromethane solvate (Spencer & Bjelosevic, 2007). A dihedral angle of 4.22 (17) ° is formed between the cyclopentadienyl rings. This angle is similar to the angles of 5.9° for the similar complexes PtCl2[1,1'-bis(diphenylphosphino)ferrocene) (Clemente et al., 1986) and 4.32 (18)° for PtCl2(1-[1',2-bis(diphenylphosphino)ferrocenyl]ethylacetate) dichloromethane solvate (Spencer & Bjelosevic, 2007). The other geometrical parameters are typical.

Compound (I) participates in one intramolecular N—H···Cl and intermolecular O—H···O hydrogen bonding interations (Table 2). The intramolecular hydrogen-bonding interaction of the type N—H···Cl which leads to the motif S(8) (Bernstein et al., 1995) may be regarded as weak, as its H···Cl separation of 2.69Å corresponds to a mean of 2.4 (1)Å for similar interactions in the Cambridge Structural Database (CSD; Version 5.28; August 2007 update; Allen, 2002). The prameters for the strong O—H···O interaction are comparable to those of similar hydrogen bonds. This interaction forms dimers of compound (I) and can be described using graph set notation by the motif R22(8) (Bernstein et al., 1995).

Related literature top

For backgrouund, see: Allen (2002); Beagley et al. (2003); Bernstein et al. (1995); Bjelosevic et al. (2006); Clemente et al. (1986); Fouda et al. (2007); Spencer & Bjelosevic (2007); Top et al. (2003); Van Staveren & Metzler-Nolte (2004).

Experimental top

(1,5-cyclooctadiene)platinum(II)chloride, (128 mg, 0.342 mmol), was added to a mixture of 1-[1-[(3-carboxy-1-oxopropyl)amino]ethyl]-1',2-bis(diphenylphosphino)ferrocene (Bjelosevic et al., 2006), (241 mg, 0.346 mmol) in dry CH2Cl2 (20 ml). The resulting solution was stirred under N2 atmosphere at room temperature for one hour and then reduced to about 5 ml. Dry Et2O (35 ml) was added under stirring, resulting in precipitation of a yellow product. The product was collected, washed with dry Et2O and evaporated under reduced pressure over night at room temperature to give the title compound as a yellow powder (293 mg, 88%). 1H NMR (400 MHz, CD2Cl2, p.p.m.): δ 1.93 (d, 3H, J = 6.8 Hz, –CHCH3), 1.95–2.45 (m, 4H, –CH2CH2-), 3.40–5.10 (m, 7H, ferrocene), 6.90–8.33 (m, 22H, PPh, –CHCH3 and –CHNHCO–), 11.50–12.55 (br s, 1H, –COOH). 31P NMR (202 MHz, CD2Cl2, p.p.m. relative to H3PO4): δ 14.41 (d, JPP' = 8.3 Hz, 195Pt satellites JPtP = 3778 Hz), 8.91 (d, JPP'= 8.3 Hz, 195Pt satellites JPtP = 3761 Hz). HRMS (FAB+) m/z calculated for C40H37Cl2FeNO3P2Pt: 962.0623, found 962.0626 [M]+. El. anal: C 49.80, H 3.95, N 1.37. Crystallization from CH2Cl2/hexane solution, by slow evaporation at room temperature, resulted in yellow blocks of (I).

Refinement top

Compound (I) co-crystallizes with approximately 1.25 solvent molecules of dichloromethane per platinum complex. A significant amount of time was invested in identifying and refining the disordered dichloromethane solvent molecules. Bond length restraints were applied to model the molecules but the resulting isotropic displacement coefficients suggested the molecules were mobile. In addition, the refinement was computationally unstable. Option SQUEEZE of program PLATON (Spek, 2003) was used to correct the diffraction data for diffuse scattering effects and to identify the solvate molecules. PLATON calculated the upper limit of volume that can be occupied by the solvent to be 476.2 Å3, or 12.2% of the unit cell volume. The program calculated 216 electrons in the unit cell for the diffuse species. This approximately corresponds to 1.25 molecules of dichloromethane (52.5 electrons) per compound (I).

All H-atoms were placed in idealized locations (C—H = 0.95–1.00 Å, N—H = 0.86 Å, O—H = 0.84 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

The highest difference peak is 0.xxÅ from Pt1.

Structure description top

Many ferrocenyl compounds have found interesting biological applications (Fouda et al., 2007). With the rapid growth of bioorganometallic chemistry, the number of bioconjugates of ferrocene with proteins, DNA, RNA, carbohydrates, hormones etc. are increasing (Van Staveren & Metzler-Nolte, 2004). The electrochemical properties of ferrocene seem to improve the biological applications of already existing drugs (Beagley et al., 2003, Top et al., 2003).

Here we report the title compound, (I), a solvated platinum(II) complex with substituted 1,1'-bis(diphenylphosphino)ferrocene. The substituent is aimed to act as a linker arm with polar functionalities in order to increase the solubility of the compound in polar solvents. The carboxylic acid moiety is likely to facilitate further functionalization towards the synthesis of biologically active molecules.

The geometry around atom Pt1 in (I) is a slightly distorted square planar with the two phosphorous atoms cis to each other (Table 1). The P2—Pt1—P1 angle of 97.55 (2)° is significantly larger than 90° due to the geometry of the ferrocenyl moiety. The other bond angles about the Pt atom in (I) are consistent with those seen in related structures (Allen, 2002). Around Pt1, atoms P1 and Cl2 are slightly below and atoms P2 and Cl1 are slightly above the least squares plane defined by atoms Pt1, P1, P2, Cl1, and Cl2. This distorted square planar geometry is typical of this class of compounds with a cis substitution pattern around the central platinum(II) atom.

Atom Fe1 is almost equidistant from the centroids of the two five membered rings: Fe1···Cg(C1—C5) = 1.6404 (12) Å and Fe1···Cg(C36—C40) = 1.6512 (12) Å. The two five-membered rings are staggered about Pt1 with an angle of 29.4 (2)° calculated by taking the average and standard deviation of the dihedral angles C1-Centroid 1-Centroid 2-C40, C2- Centroid 1-Centroid 2-C39, C3-Centroid 1-Centroid 2 –C38, C4-Centroid 1-Centroid 2-C37, and C5-Centroid 1-Centroid 2-C36. This angle is slightly larger than the twist angle of 24.7 (2)° between the two five-membered rings in the complex PtCl2(1-[1',2-bis(diphenylphosphino)ferrocenyl]ethylacetate) dichloromethane solvate (Spencer & Bjelosevic, 2007). A dihedral angle of 4.22 (17) ° is formed between the cyclopentadienyl rings. This angle is similar to the angles of 5.9° for the similar complexes PtCl2[1,1'-bis(diphenylphosphino)ferrocene) (Clemente et al., 1986) and 4.32 (18)° for PtCl2(1-[1',2-bis(diphenylphosphino)ferrocenyl]ethylacetate) dichloromethane solvate (Spencer & Bjelosevic, 2007). The other geometrical parameters are typical.

Compound (I) participates in one intramolecular N—H···Cl and intermolecular O—H···O hydrogen bonding interations (Table 2). The intramolecular hydrogen-bonding interaction of the type N—H···Cl which leads to the motif S(8) (Bernstein et al., 1995) may be regarded as weak, as its H···Cl separation of 2.69Å corresponds to a mean of 2.4 (1)Å for similar interactions in the Cambridge Structural Database (CSD; Version 5.28; August 2007 update; Allen, 2002). The prameters for the strong O—H···O interaction are comparable to those of similar hydrogen bonds. This interaction forms dimers of compound (I) and can be described using graph set notation by the motif R22(8) (Bernstein et al., 1995).

For backgrouund, see: Allen (2002); Beagley et al. (2003); Bernstein et al. (1995); Bjelosevic et al. (2006); Clemente et al. (1986); Fouda et al. (2007); Spencer & Bjelosevic (2007); Top et al. (2003); Van Staveren & Metzler-Nolte (2004).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL (Bruker, 2003); molecular graphics: SHELXTL (Bruker, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2003), PLATON (Spek, 2003) publCIF (Westrip, 2007) and modiCIFer (Guzei, 2007).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I) drawn with 30% probability ellipsoids. All hydrogen atoms attached to carbon atoms are omitted for clarity.
[Figure 2] Fig. 2. : A centrosymmetric dimer of compound (I) formed due to the intermolecular hydrogen bonding interaction. The intermolecular hydrogen bond and intramolecular hydrogen bond are shown with the thinner dashed lines. [Symmetry transformation: i: -x + 2, -y, -z.]
{1-[1-(3-Carboxypropanamido)ethyl]-1',2-bis(diphenylphosphino)ferrocene- κ2P,P'}dichloridoplatinum(II) dichloromethane 1.25-solvate top
Crystal data top
[FePtCl2(C17H14P)(C23H23NO3P)]·1.25CH2Cl2F(000) = 2114
Mr = 1069.64Dx = 1.821 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 21973 reflections
a = 13.0154 (8) Åθ = 2.2–29.6°
b = 15.7866 (10) ŵ = 4.39 mm1
c = 19.3403 (12) ÅT = 100 K
β = 100.916 (1)°Block, yellow
V = 3901.9 (4) Å30.35 × 0.33 × 0.30 mm
Z = 4
Data collection top
Bruker SMART1000 CCD
diffractometer
10833 independent reflections
Radiation source: fine-focus sealed tube9395 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 29.6°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1818
Tmin = 0.309, Tmax = 0.353k = 2121
56419 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0366P)2 + 0.9654P]
where P = (Fo2 + 2Fc2)/3
10833 reflections(Δ/σ)max = 0.001
453 parametersΔρmax = 1.45 e Å3
0 restraintsΔρmin = 0.49 e Å3
0 constraints
Crystal data top
[FePtCl2(C17H14P)(C23H23NO3P)]·1.25CH2Cl2V = 3901.9 (4) Å3
Mr = 1069.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.0154 (8) ŵ = 4.39 mm1
b = 15.7866 (10) ÅT = 100 K
c = 19.3403 (12) Å0.35 × 0.33 × 0.30 mm
β = 100.916 (1)°
Data collection top
Bruker SMART1000 CCD
diffractometer
10833 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
9395 reflections with I > 2σ(I)
Tmin = 0.309, Tmax = 0.353Rint = 0.036
56419 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.08Δρmax = 1.45 e Å3
10833 reflectionsΔρmin = 0.49 e Å3
453 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.517748 (7)0.236711 (6)0.227608 (5)0.01205 (3)
Fe10.40957 (3)0.25793 (2)0.007455 (19)0.01408 (7)
Cl10.67981 (5)0.17995 (4)0.28377 (3)0.02068 (13)
Cl20.52630 (5)0.32416 (4)0.32745 (3)0.01833 (12)
P10.50312 (5)0.13556 (4)0.14368 (3)0.01277 (12)
P20.38650 (5)0.32092 (4)0.17376 (3)0.01277 (12)
O10.79978 (17)0.22592 (16)0.02709 (11)0.0341 (5)
O21.05274 (17)0.10838 (14)0.00910 (12)0.0318 (5)
H21.05340.06310.01360.048*
O30.93828 (15)0.03658 (14)0.05916 (11)0.0305 (5)
N10.73423 (17)0.25400 (14)0.12523 (13)0.0182 (4)
H10.74350.24690.17110.022*
C10.45365 (19)0.13779 (16)0.00883 (13)0.0174 (5)
H1A0.40730.08680.01400.021*
C20.4742 (2)0.18988 (18)0.06440 (13)0.0202 (5)
H2A0.44300.18280.11550.024*
C30.5439 (2)0.25468 (17)0.03527 (14)0.0187 (5)
H30.56920.30170.06240.022*
C40.56845 (19)0.24502 (15)0.03934 (14)0.0157 (5)
C50.51106 (18)0.17171 (16)0.05675 (13)0.0142 (5)
C60.64074 (19)0.30043 (17)0.09061 (13)0.0171 (5)
H60.60160.31650.12840.021*
C70.6698 (2)0.38307 (18)0.05800 (15)0.0241 (6)
H7A0.70970.41910.09490.036*
H7B0.60590.41260.03560.036*
H7C0.71250.37050.02260.036*
C80.8071 (2)0.22138 (18)0.09118 (16)0.0239 (6)
C90.8993 (2)0.1799 (2)0.13841 (16)0.0270 (6)
H9A0.87920.12220.15090.032*
H9B0.91800.21290.18250.032*
C100.9939 (2)0.1743 (2)0.10304 (17)0.0284 (6)
H10A0.99830.22680.07570.034*
H10B1.05800.17070.13980.034*
C110.9903 (2)0.09984 (19)0.05495 (16)0.0251 (6)
C120.59865 (18)0.05016 (16)0.16185 (13)0.0157 (5)
C130.67153 (19)0.03441 (16)0.11885 (14)0.0178 (5)
H130.67580.07110.08060.021*
C140.7377 (2)0.03525 (17)0.13238 (15)0.0219 (6)
H140.78760.04590.10330.026*
C150.7315 (2)0.08917 (17)0.18795 (16)0.0242 (6)
H150.77550.13760.19600.029*
C160.66108 (19)0.07251 (17)0.23194 (15)0.0200 (5)
H160.65850.10850.27090.024*
C170.59439 (19)0.00311 (16)0.21893 (14)0.0189 (5)
H170.54590.00810.24890.023*
C180.38247 (18)0.07400 (16)0.13510 (13)0.0141 (5)
C190.36812 (19)0.00308 (16)0.09043 (13)0.0166 (5)
H190.42070.01210.06470.020*
C200.2775 (2)0.04485 (17)0.08379 (14)0.0219 (5)
H200.26670.09110.05180.026*
C210.2025 (2)0.02546 (18)0.12373 (15)0.0237 (6)
H210.14030.05820.11910.028*
C220.2191 (2)0.04204 (18)0.17043 (14)0.0217 (5)
H220.16890.05410.19900.026*
C230.30772 (19)0.09213 (17)0.17606 (13)0.0178 (5)
H230.31760.13870.20770.021*
C240.26636 (19)0.31782 (16)0.20920 (14)0.0168 (5)
C250.2685 (2)0.28888 (17)0.27762 (14)0.0197 (5)
H250.33110.26590.30430.024*
C260.1784 (2)0.29372 (18)0.30681 (16)0.0259 (6)
H260.18010.27490.35370.031*
C270.0872 (2)0.32574 (18)0.26774 (17)0.0283 (7)
H270.02620.32900.28790.034*
C280.0838 (2)0.35315 (19)0.19946 (17)0.0277 (6)
H280.02050.37520.17290.033*
C290.17282 (19)0.34854 (17)0.16937 (15)0.0215 (5)
H290.17000.36620.12210.026*
C300.4300 (2)0.43184 (16)0.18119 (13)0.0161 (5)
C310.3561 (2)0.49628 (17)0.16439 (14)0.0204 (5)
H310.28390.48250.15210.024*
C320.3874 (2)0.57983 (18)0.16548 (15)0.0272 (6)
H320.33660.62330.15410.033*
C330.4933 (2)0.60076 (18)0.18318 (14)0.0255 (6)
H330.51460.65840.18430.031*
C340.5667 (2)0.53766 (18)0.19900 (14)0.0239 (6)
H340.63890.55160.21030.029*
C350.5351 (2)0.45313 (17)0.19849 (13)0.0176 (5)
H350.58610.40980.21010.021*
C360.33884 (18)0.31513 (16)0.07995 (13)0.0152 (5)
C370.35963 (19)0.37625 (16)0.02881 (13)0.0176 (5)
H370.40480.42770.03920.021*
C380.3063 (2)0.35052 (18)0.03852 (14)0.0219 (5)
H380.30820.38010.08400.026*
C390.2515 (2)0.27440 (18)0.03070 (14)0.0202 (5)
H390.20840.24130.06980.024*
C400.2707 (2)0.25155 (16)0.04190 (15)0.0168 (5)
H400.24210.20080.06270.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01341 (5)0.01136 (5)0.01105 (5)0.00026 (3)0.00150 (3)0.00018 (3)
Fe10.01480 (16)0.01564 (18)0.01161 (17)0.00201 (13)0.00204 (13)0.00002 (13)
Cl10.0199 (3)0.0201 (3)0.0190 (3)0.0042 (2)0.0041 (2)0.0016 (2)
Cl20.0228 (3)0.0180 (3)0.0140 (3)0.0016 (2)0.0032 (2)0.0037 (2)
P10.0125 (3)0.0119 (3)0.0137 (3)0.0011 (2)0.0020 (2)0.0003 (2)
P20.0134 (3)0.0122 (3)0.0130 (3)0.0009 (2)0.0033 (2)0.0007 (2)
O10.0255 (11)0.0534 (15)0.0224 (11)0.0109 (10)0.0022 (9)0.0106 (10)
O20.0305 (11)0.0261 (12)0.0414 (13)0.0034 (9)0.0135 (10)0.0064 (10)
O30.0255 (10)0.0285 (12)0.0391 (13)0.0023 (9)0.0104 (9)0.0088 (10)
N10.0158 (10)0.0208 (12)0.0176 (11)0.0015 (8)0.0020 (9)0.0007 (8)
C10.0191 (11)0.0160 (12)0.0173 (12)0.0012 (9)0.0040 (10)0.0051 (10)
C20.0223 (12)0.0258 (15)0.0133 (12)0.0031 (10)0.0058 (10)0.0029 (10)
C30.0213 (12)0.0211 (14)0.0151 (12)0.0024 (10)0.0068 (10)0.0024 (10)
C40.0135 (11)0.0160 (12)0.0182 (12)0.0021 (9)0.0048 (9)0.0006 (9)
C50.0131 (10)0.0147 (12)0.0152 (11)0.0017 (9)0.0041 (9)0.0003 (9)
C60.0147 (11)0.0177 (13)0.0191 (12)0.0001 (9)0.0035 (9)0.0009 (10)
C70.0240 (13)0.0186 (14)0.0293 (15)0.0036 (10)0.0040 (11)0.0040 (11)
C80.0175 (12)0.0259 (15)0.0270 (15)0.0025 (10)0.0009 (11)0.0081 (12)
C90.0190 (13)0.0311 (16)0.0294 (15)0.0060 (11)0.0012 (11)0.0057 (12)
C100.0180 (12)0.0279 (16)0.0369 (17)0.0028 (11)0.0007 (12)0.0074 (13)
C110.0180 (12)0.0235 (15)0.0319 (16)0.0034 (10)0.0001 (11)0.0033 (12)
C120.0138 (11)0.0121 (12)0.0205 (13)0.0009 (9)0.0009 (9)0.0028 (9)
C130.0171 (11)0.0153 (12)0.0202 (13)0.0001 (9)0.0015 (10)0.0016 (10)
C140.0147 (11)0.0207 (14)0.0307 (15)0.0009 (10)0.0053 (11)0.0064 (11)
C150.0169 (12)0.0152 (13)0.0370 (16)0.0025 (10)0.0037 (11)0.0022 (11)
C160.0163 (11)0.0156 (13)0.0258 (14)0.0029 (9)0.0021 (10)0.0026 (10)
C170.0167 (11)0.0150 (13)0.0246 (14)0.0005 (9)0.0027 (10)0.0017 (10)
C180.0135 (10)0.0141 (12)0.0139 (11)0.0007 (9)0.0009 (9)0.0028 (9)
C190.0198 (12)0.0141 (12)0.0155 (12)0.0006 (9)0.0021 (10)0.0006 (9)
C200.0241 (13)0.0178 (13)0.0219 (14)0.0041 (10)0.0004 (11)0.0023 (11)
C210.0200 (12)0.0225 (14)0.0274 (15)0.0035 (10)0.0011 (11)0.0070 (11)
C220.0176 (12)0.0252 (14)0.0241 (14)0.0017 (10)0.0085 (10)0.0047 (11)
C230.0192 (12)0.0169 (13)0.0177 (12)0.0029 (9)0.0043 (10)0.0006 (10)
C240.0172 (11)0.0144 (12)0.0205 (13)0.0026 (9)0.0078 (10)0.0042 (10)
C250.0232 (12)0.0154 (12)0.0228 (13)0.0017 (10)0.0102 (11)0.0009 (10)
C260.0336 (15)0.0171 (13)0.0324 (16)0.0035 (11)0.0202 (13)0.0031 (12)
C270.0271 (14)0.0187 (14)0.0449 (18)0.0018 (11)0.0214 (13)0.0050 (13)
C280.0193 (13)0.0246 (15)0.0414 (18)0.0022 (11)0.0110 (12)0.0066 (13)
C290.0185 (12)0.0201 (14)0.0269 (14)0.0016 (10)0.0071 (11)0.0026 (11)
C300.0218 (12)0.0117 (12)0.0155 (12)0.0005 (9)0.0049 (10)0.0000 (9)
C310.0227 (12)0.0182 (13)0.0202 (13)0.0029 (10)0.0036 (10)0.0003 (10)
C320.0405 (17)0.0147 (14)0.0269 (15)0.0042 (12)0.0082 (13)0.0040 (11)
C330.0412 (16)0.0141 (13)0.0201 (13)0.0041 (11)0.0031 (12)0.0013 (10)
C340.0293 (14)0.0211 (14)0.0201 (14)0.0084 (11)0.0013 (11)0.0005 (11)
C350.0209 (12)0.0171 (13)0.0144 (12)0.0008 (10)0.0019 (10)0.0000 (10)
C360.0133 (10)0.0162 (12)0.0159 (12)0.0037 (9)0.0020 (9)0.0018 (9)
C370.0201 (12)0.0142 (12)0.0190 (12)0.0029 (9)0.0047 (10)0.0008 (10)
C380.0253 (13)0.0237 (14)0.0155 (12)0.0092 (11)0.0009 (10)0.0033 (10)
C390.0188 (12)0.0239 (14)0.0161 (12)0.0055 (10)0.0012 (10)0.0037 (10)
C400.0125 (11)0.0179 (13)0.0197 (13)0.0027 (9)0.0023 (10)0.0036 (9)
Geometric parameters (Å, º) top
Pt1—P22.2575 (6)C13—H130.9500
Pt1—P12.2592 (6)C14—C151.385 (4)
Pt1—Cl12.3588 (6)C14—H140.9500
Pt1—Cl22.3592 (6)C15—C161.389 (4)
Fe1—C52.007 (2)C15—H150.9500
Fe1—C12.023 (3)C16—C171.391 (4)
Fe1—C362.029 (2)C16—H160.9500
Fe1—C402.044 (3)C17—H170.9500
Fe1—C372.045 (3)C18—C231.396 (3)
Fe1—C42.053 (3)C18—C191.405 (3)
Fe1—C22.058 (2)C19—C201.386 (3)
Fe1—C392.066 (3)C19—H190.9500
Fe1—C382.069 (3)C20—C211.389 (4)
Fe1—C32.071 (3)C20—H200.9500
P1—C51.797 (2)C21—C221.387 (4)
P1—C121.823 (2)C21—H210.9500
P1—C181.827 (2)C22—C231.386 (4)
P2—C361.805 (3)C22—H220.9500
P2—C241.823 (2)C23—H230.9500
P2—C301.837 (3)C24—C251.395 (4)
O1—C81.227 (4)C24—C291.398 (4)
O2—C111.318 (3)C25—C261.396 (4)
O2—H20.8400C25—H250.9500
O3—C111.218 (3)C26—C271.377 (4)
N1—C81.354 (3)C26—H260.9500
N1—C61.469 (3)C27—C281.382 (4)
N1—H10.8800C27—H270.9500
C1—C21.418 (4)C28—C291.394 (4)
C1—C51.447 (3)C28—H280.9500
C1—H1A1.0000C29—H290.9500
C2—C31.412 (4)C30—C351.387 (3)
C2—H2A1.0000C30—C311.395 (4)
C3—C41.426 (4)C31—C321.379 (4)
C3—H31.0000C31—H310.9500
C4—C51.451 (3)C32—C331.396 (4)
C4—C61.510 (4)C32—H320.9500
C6—C71.527 (4)C33—C341.374 (4)
C6—H61.0000C33—H330.9500
C7—H7A0.9800C34—C351.395 (4)
C7—H7B0.9800C34—H340.9500
C7—H7C0.9800C35—H350.9500
C8—C91.513 (4)C36—C371.443 (3)
C9—C101.520 (4)C36—C401.445 (3)
C9—H9A0.9900C37—C381.414 (4)
C9—H9B0.9900C37—H371.0000
C10—C111.494 (4)C38—C391.420 (4)
C10—H10A0.9900C38—H381.0000
C10—H10B0.9900C39—C401.425 (4)
C12—C131.397 (3)C39—H391.0000
C12—C171.397 (4)C40—H401.0000
C13—C141.391 (4)
P2—Pt1—P197.55 (2)C8—C9—H9B109.3
P2—Pt1—Cl1165.62 (2)C10—C9—H9B109.3
P1—Pt1—Cl190.50 (2)H9A—C9—H9B107.9
P2—Pt1—Cl286.98 (2)C11—C10—C9113.2 (2)
P1—Pt1—Cl2170.47 (2)C11—C10—H10A108.9
Cl1—Pt1—Cl286.90 (2)C9—C10—H10A108.9
C5—Fe1—C142.09 (10)C11—C10—H10B108.9
C5—Fe1—C36108.51 (10)C9—C10—H10B108.9
C1—Fe1—C36134.73 (10)H10A—C10—H10B107.8
C5—Fe1—C40110.79 (10)O3—C11—O2123.4 (3)
C1—Fe1—C40107.39 (10)O3—C11—C10123.7 (3)
C36—Fe1—C4041.56 (10)O2—C11—C10112.8 (3)
C5—Fe1—C37136.80 (10)C13—C12—C17119.8 (2)
C1—Fe1—C37176.16 (10)C13—C12—P1122.2 (2)
C36—Fe1—C3741.49 (10)C17—C12—P1118.02 (18)
C40—Fe1—C3769.19 (10)C14—C13—C12119.7 (2)
C5—Fe1—C441.86 (9)C14—C13—H13120.2
C1—Fe1—C469.79 (10)C12—C13—H13120.2
C36—Fe1—C4113.55 (10)C15—C14—C13120.4 (2)
C40—Fe1—C4143.12 (11)C15—C14—H14119.8
C37—Fe1—C4111.75 (10)C13—C14—H14119.8
C5—Fe1—C269.55 (10)C14—C15—C16120.1 (2)
C1—Fe1—C240.66 (10)C14—C15—H15120.0
C36—Fe1—C2174.72 (11)C16—C15—H15120.0
C40—Fe1—C2133.95 (11)C15—C16—C17120.0 (3)
C37—Fe1—C2143.05 (11)C15—C16—H16120.0
C4—Fe1—C268.53 (10)C17—C16—H16120.0
C5—Fe1—C39140.90 (11)C16—C17—C12120.0 (2)
C1—Fe1—C39110.79 (11)C16—C17—H17120.0
C36—Fe1—C3968.87 (10)C12—C17—H17120.0
C40—Fe1—C3940.57 (10)C23—C18—C19119.1 (2)
C37—Fe1—C3967.93 (10)C23—C18—P1121.26 (19)
C4—Fe1—C39176.24 (11)C19—C18—P1119.44 (18)
C2—Fe1—C39109.33 (11)C20—C19—C18120.2 (2)
C5—Fe1—C38176.98 (11)C20—C19—H19119.9
C1—Fe1—C38140.86 (11)C18—C19—H19119.9
C36—Fe1—C3868.88 (10)C19—C20—C21120.2 (3)
C40—Fe1—C3868.42 (11)C19—C20—H20119.9
C37—Fe1—C3840.20 (10)C21—C20—H20119.9
C4—Fe1—C38137.27 (11)C22—C21—C20119.5 (2)
C2—Fe1—C38113.19 (11)C22—C21—H21120.2
C39—Fe1—C3840.16 (11)C20—C21—H21120.2
C5—Fe1—C369.11 (10)C23—C22—C21120.9 (2)
C1—Fe1—C368.23 (10)C23—C22—H22119.5
C36—Fe1—C3144.53 (10)C21—C22—H22119.5
C40—Fe1—C3173.90 (11)C22—C23—C18119.9 (2)
C37—Fe1—C3115.32 (10)C22—C23—H23120.1
C4—Fe1—C340.45 (10)C18—C23—H23120.1
C2—Fe1—C340.00 (10)C25—C24—C29119.7 (2)
C39—Fe1—C3135.99 (11)C25—C24—P2120.1 (2)
C38—Fe1—C3112.01 (11)C29—C24—P2120.19 (19)
C5—P1—C12104.91 (11)C24—C25—C26119.9 (3)
C5—P1—C18106.54 (11)C24—C25—H25120.1
C12—P1—C1899.63 (11)C26—C25—H25120.1
C5—P1—Pt1115.84 (8)C27—C26—C25120.1 (3)
C12—P1—Pt1115.01 (8)C27—C26—H26120.0
C18—P1—Pt1113.28 (8)C25—C26—H26120.0
C36—P2—C24102.74 (11)C26—C27—C28120.5 (3)
C36—P2—C3099.73 (12)C26—C27—H27119.8
C24—P2—C30105.64 (11)C28—C27—H27119.8
C36—P2—Pt1121.32 (8)C27—C28—C29120.2 (3)
C24—P2—Pt1116.02 (9)C27—C28—H28119.9
C30—P2—Pt1109.28 (8)C29—C28—H28119.9
C11—O2—H2109.5C28—C29—C24119.6 (3)
C8—N1—C6124.3 (2)C28—C29—H29120.2
C8—N1—H1117.8C24—C29—H29120.2
C6—N1—H1117.8C35—C30—C31119.0 (2)
C2—C1—C5108.0 (2)C35—C30—P2121.66 (19)
C2—C1—Fe170.98 (15)C31—C30—P2119.2 (2)
C5—C1—Fe168.37 (14)C32—C31—C30120.4 (3)
C2—C1—H1A126.0C32—C31—H31119.8
C5—C1—H1A126.0C30—C31—H31119.8
Fe1—C1—H1A126.0C31—C32—C33120.3 (3)
C3—C2—C1108.5 (2)C31—C32—H32119.8
C3—C2—Fe170.50 (15)C33—C32—H32119.8
C1—C2—Fe168.36 (14)C34—C33—C32119.7 (3)
C3—C2—H2A125.8C34—C33—H33120.1
C1—C2—H2A125.8C32—C33—H33120.1
Fe1—C2—H2A125.8C33—C34—C35120.0 (3)
C2—C3—C4109.3 (2)C33—C34—H34120.0
C2—C3—Fe169.50 (15)C35—C34—H34120.0
C4—C3—Fe169.10 (14)C30—C35—C34120.6 (2)
C2—C3—H3125.3C30—C35—H35119.7
C4—C3—H3125.3C34—C35—H35119.7
Fe1—C3—H3125.3C37—C36—C40107.0 (2)
C3—C4—C5107.1 (2)C37—C36—P2125.56 (19)
C3—C4—C6126.5 (2)C40—C36—P2127.4 (2)
C5—C4—C6126.4 (2)C37—C36—Fe169.86 (14)
C3—C4—Fe170.45 (15)C40—C36—Fe169.76 (14)
C5—C4—Fe167.39 (13)P2—C36—Fe1127.05 (13)
C6—C4—Fe1127.34 (17)C38—C37—C36108.4 (2)
C1—C5—C4107.1 (2)C38—C37—Fe170.81 (15)
C1—C5—P1126.21 (19)C36—C37—Fe168.65 (14)
C4—C5—P1126.43 (19)C38—C37—H37125.8
C1—C5—Fe169.54 (14)C36—C37—H37125.8
C4—C5—Fe170.75 (14)Fe1—C37—H37125.8
P1—C5—Fe1120.70 (12)C37—C38—C39108.3 (2)
N1—C6—C4111.7 (2)C37—C38—Fe168.99 (14)
N1—C6—C7111.5 (2)C39—C38—Fe169.80 (15)
C4—C6—C7113.3 (2)C37—C38—H38125.8
N1—C6—H6106.6C39—C38—H38125.8
C4—C6—H6106.6Fe1—C38—H38125.8
C7—C6—H6106.6C38—C39—C40108.7 (2)
C6—C7—H7A109.5C38—C39—Fe170.03 (15)
C6—C7—H7B109.5C40—C39—Fe168.86 (15)
H7A—C7—H7B109.5C38—C39—H39125.6
C6—C7—H7C109.5C40—C39—H39125.6
H7A—C7—H7C109.5Fe1—C39—H39125.6
H7B—C7—H7C109.5C39—C40—C36107.6 (2)
O1—C8—N1122.8 (3)C39—C40—Fe170.56 (15)
O1—C8—C9122.4 (3)C36—C40—Fe168.68 (14)
N1—C8—C9114.8 (3)C39—C40—H40126.2
C8—C9—C10111.8 (3)C36—C40—H40126.2
C8—C9—H9A109.3Fe1—C40—H40126.2
C10—C9—H9A109.3
P2—Pt1—P1—C555.66 (9)Pt1—P1—C12—C1765.6 (2)
Cl1—Pt1—P1—C5112.39 (9)C17—C12—C13—C141.4 (4)
Cl2—Pt1—P1—C5173.58 (14)P1—C12—C13—C14175.5 (2)
P2—Pt1—P1—C12178.43 (9)C12—C13—C14—C150.3 (4)
Cl1—Pt1—P1—C1210.38 (9)C13—C14—C15—C162.0 (4)
Cl2—Pt1—P1—C1263.65 (16)C14—C15—C16—C172.0 (4)
P2—Pt1—P1—C1867.88 (9)C15—C16—C17—C120.4 (4)
Cl1—Pt1—P1—C18124.06 (9)C13—C12—C17—C161.3 (4)
Cl2—Pt1—P1—C1850.04 (16)P1—C12—C17—C16175.7 (2)
P1—Pt1—P2—C3620.67 (10)C5—P1—C18—C23126.6 (2)
Cl1—Pt1—P2—C36102.85 (13)C12—P1—C18—C23124.6 (2)
Cl2—Pt1—P2—C36167.75 (10)Pt1—P1—C18—C232.0 (2)
P1—Pt1—P2—C24105.09 (9)C5—P1—C18—C1958.4 (2)
Cl1—Pt1—P2—C24131.39 (12)C12—P1—C18—C1950.4 (2)
Cl2—Pt1—P2—C2466.49 (9)Pt1—P1—C18—C19173.11 (17)
P1—Pt1—P2—C30135.66 (8)C23—C18—C19—C204.2 (4)
Cl1—Pt1—P2—C3012.14 (13)P1—C18—C19—C20179.4 (2)
Cl2—Pt1—P2—C3052.76 (8)C18—C19—C20—C213.0 (4)
C5—Fe1—C1—C2119.3 (2)C19—C20—C21—C220.2 (4)
C36—Fe1—C1—C2176.22 (15)C20—C21—C22—C232.2 (4)
C40—Fe1—C1—C2138.72 (16)C21—C22—C23—C181.0 (4)
C37—Fe1—C1—C2165.6 (15)C19—C18—C23—C222.2 (4)
C4—Fe1—C1—C280.21 (16)P1—C18—C23—C22177.3 (2)
C39—Fe1—C1—C295.82 (16)C36—P2—C24—C25155.4 (2)
C38—Fe1—C1—C261.8 (2)C30—P2—C24—C25100.5 (2)
C3—Fe1—C1—C236.78 (15)Pt1—P2—C24—C2520.7 (2)
C36—Fe1—C1—C564.51 (19)C36—P2—C24—C2928.0 (2)
C40—Fe1—C1—C5102.00 (15)C30—P2—C24—C2976.1 (2)
C37—Fe1—C1—C575.2 (16)Pt1—P2—C24—C29162.68 (18)
C4—Fe1—C1—C539.06 (14)C29—C24—C25—C262.4 (4)
C2—Fe1—C1—C5119.3 (2)P2—C24—C25—C26174.2 (2)
C39—Fe1—C1—C5144.91 (14)C24—C25—C26—C271.0 (4)
C38—Fe1—C1—C5178.95 (16)C25—C26—C27—C280.1 (4)
C3—Fe1—C1—C582.50 (15)C26—C27—C28—C290.1 (4)
C5—C1—C2—C30.8 (3)C27—C28—C29—C241.5 (4)
Fe1—C1—C2—C359.27 (18)C25—C24—C29—C282.6 (4)
C5—C1—C2—Fe158.51 (16)P2—C24—C29—C28174.0 (2)
C5—Fe1—C2—C381.51 (16)C36—P2—C30—C35111.1 (2)
C1—Fe1—C2—C3120.1 (2)C24—P2—C30—C35142.7 (2)
C36—Fe1—C2—C3150.8 (11)Pt1—P2—C30—C3517.2 (2)
C40—Fe1—C2—C3178.90 (16)C36—P2—C30—C3164.5 (2)
C37—Fe1—C2—C361.5 (2)C24—P2—C30—C3141.8 (2)
C4—Fe1—C2—C336.54 (15)Pt1—P2—C30—C31167.27 (18)
C39—Fe1—C2—C3140.16 (16)C35—C30—C31—C320.4 (4)
C38—Fe1—C2—C397.11 (17)P2—C30—C31—C32176.1 (2)
C5—Fe1—C2—C138.61 (15)C30—C31—C32—C330.2 (4)
C36—Fe1—C2—C130.6 (12)C31—C32—C33—C340.5 (4)
C40—Fe1—C2—C161.0 (2)C32—C33—C34—C351.1 (4)
C37—Fe1—C2—C1178.41 (17)C31—C30—C35—C340.1 (4)
C4—Fe1—C2—C183.58 (16)P2—C30—C35—C34175.5 (2)
C39—Fe1—C2—C199.72 (16)C33—C34—C35—C300.8 (4)
C38—Fe1—C2—C1142.77 (15)C24—P2—C36—C37123.0 (2)
C3—Fe1—C2—C1120.1 (2)C30—P2—C36—C3714.4 (2)
C1—C2—C3—C40.3 (3)Pt1—P2—C36—C37105.3 (2)
Fe1—C2—C3—C457.70 (18)C24—P2—C36—C4054.6 (2)
C1—C2—C3—Fe157.96 (17)C30—P2—C36—C40163.2 (2)
C5—Fe1—C3—C282.70 (17)Pt1—P2—C36—C4077.0 (2)
C1—Fe1—C3—C237.37 (15)C24—P2—C36—Fe1146.42 (16)
C36—Fe1—C3—C2175.56 (17)C30—P2—C36—Fe1104.96 (17)
C40—Fe1—C3—C27.5 (11)Pt1—P2—C36—Fe114.8 (2)
C37—Fe1—C3—C2144.25 (16)C5—Fe1—C36—C37141.43 (15)
C4—Fe1—C3—C2121.3 (2)C1—Fe1—C36—C37178.93 (15)
C39—Fe1—C3—C260.5 (2)C40—Fe1—C36—C37117.8 (2)
C38—Fe1—C3—C2100.31 (17)C4—Fe1—C36—C3796.73 (15)
C5—Fe1—C3—C438.64 (14)C2—Fe1—C36—C37151.1 (11)
C1—Fe1—C3—C483.98 (16)C39—Fe1—C36—C3780.15 (16)
C36—Fe1—C3—C454.2 (2)C38—Fe1—C36—C3736.95 (15)
C40—Fe1—C3—C4128.8 (10)C3—Fe1—C36—C3761.7 (2)
C37—Fe1—C3—C494.40 (16)C5—Fe1—C36—C40100.75 (16)
C2—Fe1—C3—C4121.3 (2)C1—Fe1—C36—C4061.1 (2)
C39—Fe1—C3—C4178.17 (16)C37—Fe1—C36—C40117.8 (2)
C38—Fe1—C3—C4138.34 (15)C4—Fe1—C36—C40145.45 (15)
C2—C3—C4—C50.3 (3)C2—Fe1—C36—C4033.2 (12)
Fe1—C3—C4—C557.59 (16)C39—Fe1—C36—C4037.67 (15)
C2—C3—C4—C6179.5 (2)C38—Fe1—C36—C4080.86 (16)
Fe1—C3—C4—C6122.6 (2)C3—Fe1—C36—C40179.51 (18)
C2—C3—C4—Fe157.94 (19)C5—Fe1—C36—P221.49 (19)
C5—Fe1—C4—C3119.0 (2)C1—Fe1—C36—P261.1 (2)
C1—Fe1—C4—C379.78 (16)C40—Fe1—C36—P2122.2 (2)
C36—Fe1—C4—C3149.10 (15)C37—Fe1—C36—P2119.9 (2)
C40—Fe1—C4—C3172.08 (17)C4—Fe1—C36—P223.2 (2)
C37—Fe1—C4—C3104.00 (16)C2—Fe1—C36—P289.0 (11)
C2—Fe1—C4—C336.15 (15)C39—Fe1—C36—P2159.9 (2)
C39—Fe1—C4—C319.7 (16)C38—Fe1—C36—P2156.9 (2)
C38—Fe1—C4—C365.3 (2)C3—Fe1—C36—P258.2 (3)
C1—Fe1—C4—C539.27 (14)C40—C36—C37—C380.3 (3)
C36—Fe1—C4—C591.86 (16)P2—C36—C37—C38178.37 (18)
C40—Fe1—C4—C553.0 (2)Fe1—C36—C37—C3859.85 (17)
C37—Fe1—C4—C5136.96 (14)C40—C36—C37—Fe160.18 (16)
C2—Fe1—C4—C582.89 (15)P2—C36—C37—Fe1121.78 (19)
C39—Fe1—C4—C5138.8 (16)C5—Fe1—C37—C38179.41 (16)
C38—Fe1—C4—C5175.69 (15)C1—Fe1—C37—C38108.3 (16)
C3—Fe1—C4—C5119.0 (2)C36—Fe1—C37—C38119.7 (2)
C5—Fe1—C4—C6119.4 (3)C40—Fe1—C37—C3880.80 (17)
C1—Fe1—C4—C6158.7 (2)C4—Fe1—C37—C38138.88 (16)
C36—Fe1—C4—C627.5 (3)C2—Fe1—C37—C3856.1 (2)
C40—Fe1—C4—C666.4 (3)C39—Fe1—C37—C3837.08 (16)
C37—Fe1—C4—C617.6 (3)C3—Fe1—C37—C3894.74 (17)
C2—Fe1—C4—C6157.7 (3)C5—Fe1—C37—C3659.7 (2)
C39—Fe1—C4—C6101.8 (16)C1—Fe1—C37—C3611.4 (16)
C38—Fe1—C4—C656.3 (3)C40—Fe1—C37—C3638.88 (14)
C3—Fe1—C4—C6121.6 (3)C4—Fe1—C37—C36101.44 (15)
C2—C1—C5—C41.0 (3)C2—Fe1—C37—C36175.76 (17)
Fe1—C1—C5—C461.11 (16)C39—Fe1—C37—C3682.60 (16)
C2—C1—C5—P1173.86 (18)C38—Fe1—C37—C36119.7 (2)
Fe1—C1—C5—P1113.71 (19)C3—Fe1—C37—C36145.58 (15)
C2—C1—C5—Fe160.14 (17)C36—C37—C38—C390.4 (3)
C3—C4—C5—C10.8 (3)Fe1—C37—C38—C3958.91 (18)
C6—C4—C5—C1179.1 (2)C36—C37—C38—Fe158.52 (17)
Fe1—C4—C5—C160.33 (16)C5—Fe1—C38—C378 (2)
C3—C4—C5—P1174.00 (18)C1—Fe1—C38—C37174.21 (16)
C6—C4—C5—P16.1 (4)C36—Fe1—C38—C3738.10 (15)
Fe1—C4—C5—P1114.48 (19)C40—Fe1—C38—C3782.88 (16)
C3—C4—C5—Fe159.53 (17)C4—Fe1—C38—C3764.2 (2)
C6—C4—C5—Fe1120.6 (2)C2—Fe1—C38—C37147.14 (15)
C12—P1—C5—C187.3 (2)C39—Fe1—C38—C37120.0 (2)
C18—P1—C5—C117.7 (2)C3—Fe1—C38—C37103.67 (16)
Pt1—P1—C5—C1144.74 (18)C5—Fe1—C38—C39112 (2)
C12—P1—C5—C498.8 (2)C1—Fe1—C38—C3954.3 (2)
C18—P1—C5—C4156.1 (2)C36—Fe1—C38—C3981.86 (16)
Pt1—P1—C5—C429.1 (2)C40—Fe1—C38—C3937.08 (15)
C12—P1—C5—Fe1173.35 (13)C37—Fe1—C38—C39120.0 (2)
C18—P1—C5—Fe168.30 (16)C4—Fe1—C38—C39175.84 (16)
Pt1—P1—C5—Fe158.70 (15)C2—Fe1—C38—C3992.90 (17)
C36—Fe1—C5—C1137.46 (14)C3—Fe1—C38—C39136.37 (16)
C40—Fe1—C5—C193.26 (15)C37—C38—C39—C400.3 (3)
C37—Fe1—C5—C1174.57 (15)Fe1—C38—C39—C4058.11 (18)
C4—Fe1—C5—C1117.6 (2)C37—C38—C39—Fe158.41 (17)
C2—Fe1—C5—C137.34 (14)C5—Fe1—C39—C38175.56 (16)
C39—Fe1—C5—C158.5 (2)C1—Fe1—C39—C38146.77 (15)
C38—Fe1—C5—C1167.4 (19)C36—Fe1—C39—C3881.90 (16)
C3—Fe1—C5—C180.22 (15)C40—Fe1—C39—C38120.5 (2)
C1—Fe1—C5—C4117.6 (2)C37—Fe1—C39—C3837.12 (15)
C36—Fe1—C5—C4104.94 (15)C4—Fe1—C39—C3848.7 (16)
C40—Fe1—C5—C4149.14 (15)C2—Fe1—C39—C38103.39 (16)
C37—Fe1—C5—C467.83 (19)C3—Fe1—C39—C3867.0 (2)
C2—Fe1—C5—C480.26 (15)C5—Fe1—C39—C4055.1 (2)
C39—Fe1—C5—C4176.07 (16)C1—Fe1—C39—C4092.77 (16)
C38—Fe1—C5—C475 (2)C36—Fe1—C39—C4038.56 (15)
C3—Fe1—C5—C437.38 (15)C37—Fe1—C39—C4083.34 (16)
C1—Fe1—C5—P1120.8 (2)C4—Fe1—C39—C40169.1 (15)
C36—Fe1—C5—P116.67 (17)C2—Fe1—C39—C40136.16 (15)
C40—Fe1—C5—P127.53 (18)C38—Fe1—C39—C40120.5 (2)
C37—Fe1—C5—P153.8 (2)C3—Fe1—C39—C40172.51 (15)
C4—Fe1—C5—P1121.6 (2)C38—C39—C40—C360.1 (3)
C2—Fe1—C5—P1158.13 (18)Fe1—C39—C40—C3658.92 (16)
C39—Fe1—C5—P162.3 (2)C38—C39—C40—Fe158.82 (18)
C38—Fe1—C5—P147 (2)C37—C36—C40—C390.1 (3)
C3—Fe1—C5—P1158.99 (18)P2—C36—C40—C39178.13 (18)
C8—N1—C6—C463.6 (3)Fe1—C36—C40—C3960.11 (17)
C8—N1—C6—C764.3 (3)C37—C36—C40—Fe160.24 (16)
C3—C4—C6—N1113.9 (3)P2—C36—C40—Fe1121.8 (2)
C5—C4—C6—N165.9 (3)C5—Fe1—C40—C39146.41 (15)
Fe1—C4—C6—N1153.75 (18)C1—Fe1—C40—C39101.88 (16)
C3—C4—C6—C713.0 (4)C36—Fe1—C40—C39118.8 (2)
C5—C4—C6—C7167.2 (2)C37—Fe1—C40—C3979.97 (16)
Fe1—C4—C6—C779.4 (3)C4—Fe1—C40—C39178.82 (17)
C6—N1—C8—O12.0 (4)C2—Fe1—C40—C3965.2 (2)
C6—N1—C8—C9177.1 (2)C38—Fe1—C40—C3936.72 (16)
O1—C8—C9—C1020.2 (4)C3—Fe1—C40—C3958.5 (11)
N1—C8—C9—C10158.9 (2)C5—Fe1—C40—C3694.80 (16)
C8—C9—C10—C1182.7 (3)C1—Fe1—C40—C36139.32 (15)
C9—C10—C11—O321.9 (4)C37—Fe1—C40—C3638.82 (14)
C9—C10—C11—O2160.6 (3)C4—Fe1—C40—C3660.0 (2)
C5—P1—C12—C1311.0 (2)C2—Fe1—C40—C36175.99 (15)
C18—P1—C12—C13121.1 (2)C39—Fe1—C40—C36118.8 (2)
Pt1—P1—C12—C13117.5 (2)C38—Fe1—C40—C3682.07 (16)
C5—P1—C12—C17165.9 (2)C3—Fe1—C40—C36177.3 (10)
C18—P1—C12—C1755.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.841.822.656 (3)177
N1—H1···Cl10.882.693.477 (2)150
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formula[FePtCl2(C17H14P)(C23H23NO3P)]·1.25CH2Cl2
Mr1069.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)13.0154 (8), 15.7866 (10), 19.3403 (12)
β (°) 100.916 (1)
V3)3901.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)4.39
Crystal size (mm)0.35 × 0.33 × 0.30
Data collection
DiffractometerBruker SMART1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.309, 0.353
No. of measured, independent and
observed [I > 2σ(I)] reflections
56419, 10833, 9395
Rint0.036
(sin θ/λ)max1)0.695
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.08
No. of reflections10833
No. of parameters453
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.45, 0.49

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Bruker, 2003), SHELXTL (Bruker, 2003), PLATON (Spek, 2003) publCIF (Westrip, 2007) and modiCIFer (Guzei, 2007).

Selected bond lengths (Å) top
Pt1—P22.2575 (6)Pt1—Cl12.3588 (6)
Pt1—P12.2592 (6)Pt1—Cl22.3592 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.841.822.656 (3)177
N1—H1···Cl10.882.693.477 (2)150
Symmetry code: (i) x+2, y, z.
 

Acknowledgements

Financial support from SIDA/NRF Swedish Research Links (to SKCE and JD: Platinum group metals: synthesis, catalytic and medicinal properties) is gratefully acknowledged. The authors thank Dr Ilia Guzei for his help and guidance in solving the structure and preparing the manuscript.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBeagley, P., Blackie, M. A. L., Chibale, K., Clarkson, C., Meijboom, R., Moss, J. R., Smith, P. J. & Su, H. (2003). Dalton Trans. pp. 3046–3051.  Web of Science CSD CrossRef Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBjelosevic, H., Spégel, C., Sykfont Snygg, Å., Gorton, L., Elmroth, S. K. C. & Persson, T. (2006). Tetrahedron, 62, 4519–4527.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2003). SADABS (Version 2.05), SAINT (Version 6.22), SHELXTL (Version 6.10), and SMART (Version 5.622). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClemente, D. A., Pilloni, G., Corain, B., Longato, B. & Tiripicchio-Camellini, M. (1986). Inorg. Chim. Acta, 115, L9–L11.  CSD CrossRef CAS Web of Science Google Scholar
First citationFouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613–625.  Web of Science CrossRef CAS Google Scholar
First citationGuzei, I. A. (2007). modiCIFer. University of Wisconsin-Madison, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpencer, L. C. & Bjelosevic, H. (2007). Acta Cryst. E63, m1536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTop, S., Vessières, A., Leclercq, G., Quivy, J., Tang, J., Vaissermann, J., Huché, M. & Jaouen, G. (2003). Chem. Eur. J. 9, 5223–5236.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationVan Staveren, D. R. & Metzler-Nolte, N. (2004). Chem. Rev. 104, 5931–5985.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2007). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds