organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[1-(2-Pyrid­yl)ethyl­­idene]nicotino­hydrazide

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 5 November 2007; accepted 5 November 2007; online 6 December 2007)

In the the title compound, C13H12N4O, the dihedral angle between the aromatic ring planes is 21.7 (3)°. In the crystal structure, interm­olecular N—H⋯O hydrogen bonds lead to C(4) chains.

Related literature

For related literature, see: Tai et al. (2003[Tai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681-o682.]).

[Scheme 1]

Experimental

Crystal data
  • C13H12N4O

  • Mr = 240.27

  • Orthorhombic, P b c n

  • a = 18.264 (3) Å

  • b = 7.9300 (9) Å

  • c = 16.471 (2) Å

  • V = 2385.5 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.46 × 0.43 × 0.40 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.965

  • 9146 measured reflections

  • 2107 independent reflections

  • 1568 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.106

  • S = 1.06

  • 2107 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.27 3.125 (2) 171
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of the coordination chemistry of aroylhydrazones ligands (Tai et al., 2003), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

In the molecule of (I), both C8—N2 [1.284 (2) Å] and C1—O1 [1.220 (2) Å] are close to double-bond separations, indicating that the Lewis structure shown in the scheme is only an approximation to the electron distribution in the molecule. Otherwise, the geometrical parameters for (I) are normal. The dihedral angle between the pyridine ring mean planes is 21.7 (3)°, indicating that the molecule is significantly twisted, perhaps for steric reasons.

In the crystal, an N—H···O hydrogen bond (Table 1) leads to C(4) chains.

Related literature top

For related literature, see: Tai et al. (2003).

Experimental top

10 mmol of 2-acetylpyridine (10 mmol) was added to a solution of nicotinic acid hydrazine (10 mmol) in 10 ml of ethanol. The mixture was continuously stirred for 3 h at refluxing temperature, evaporating some ethanol, then, upon cooling, the solid product was collected by filtration and dried in vacuo (yield 68%). Colourless blocks of (I) were obtained by evaporation from a methanol solution after two weeks.

Refinement top

The H atoms were placed geometrically (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Structure description top

As part of our ongoing studies of the coordination chemistry of aroylhydrazones ligands (Tai et al., 2003), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

In the molecule of (I), both C8—N2 [1.284 (2) Å] and C1—O1 [1.220 (2) Å] are close to double-bond separations, indicating that the Lewis structure shown in the scheme is only an approximation to the electron distribution in the molecule. Otherwise, the geometrical parameters for (I) are normal. The dihedral angle between the pyridine ring mean planes is 21.7 (3)°, indicating that the molecule is significantly twisted, perhaps for steric reasons.

In the crystal, an N—H···O hydrogen bond (Table 1) leads to C(4) chains.

For related literature, see: Tai et al. (2003).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids (arbitrary spheres for the H atoms).
N'-[1-(2-Pyridyl)ethylidene]nicotinohydrazide top
Crystal data top
C13H12N4ODx = 1.338 Mg m3
Mr = 240.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 2977 reflections
a = 18.264 (3) Åθ = 2.2–27.1°
b = 7.9300 (9) ŵ = 0.09 mm1
c = 16.471 (2) ÅT = 298 K
V = 2385.5 (5) Å3Block, colourless
Z = 80.46 × 0.43 × 0.40 mm
F(000) = 1008
Data collection top
Bruker SMART CCD
diffractometer
2107 independent reflections
Radiation source: fine-focus sealed tube1568 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1721
Tmin = 0.960, Tmax = 0.965k = 98
9146 measured reflectionsl = 1916
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0375P)2 + 1.131P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2107 reflectionsΔρmax = 0.21 e Å3
164 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0194 (13)
Crystal data top
C13H12N4OV = 2385.5 (5) Å3
Mr = 240.27Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 18.264 (3) ŵ = 0.09 mm1
b = 7.9300 (9) ÅT = 298 K
c = 16.471 (2) Å0.46 × 0.43 × 0.40 mm
Data collection top
Bruker SMART CCD
diffractometer
2107 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1568 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.965Rint = 0.041
9146 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.06Δρmax = 0.21 e Å3
2107 reflectionsΔρmin = 0.17 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.74333 (8)0.92565 (18)0.94870 (8)0.0347 (4)
H10.72080.83090.94420.042*
N20.71633 (8)1.05276 (17)0.99711 (9)0.0342 (4)
N30.81694 (9)0.5927 (2)0.76098 (10)0.0499 (5)
N40.55759 (8)1.1916 (2)1.09086 (10)0.0472 (5)
O10.83904 (7)1.08958 (17)0.91028 (9)0.0518 (4)
C10.80666 (10)0.9551 (2)0.90842 (11)0.0346 (4)
C20.83536 (9)0.8086 (2)0.86108 (10)0.0329 (4)
C30.79344 (10)0.7247 (2)0.80384 (11)0.0399 (5)
H30.74600.76270.79470.048*
C40.88433 (12)0.5398 (3)0.77688 (13)0.0540 (6)
H40.90130.44530.74930.065*
C50.93084 (11)0.6157 (3)0.83154 (13)0.0553 (6)
H50.97780.57400.84000.066*
C60.90614 (10)0.7548 (3)0.87343 (12)0.0451 (5)
H60.93670.81130.90940.054*
C70.60952 (12)0.8730 (3)1.03313 (15)0.0600 (6)
H7A0.57090.88750.99420.090*
H7B0.58880.85391.08590.090*
H7C0.63910.77791.01800.090*
C80.65592 (10)1.0280 (2)1.03520 (10)0.0352 (4)
C90.63030 (9)1.1754 (2)1.08347 (10)0.0339 (4)
C100.67883 (10)1.2881 (2)1.11839 (11)0.0390 (5)
H100.72911.27191.11330.047*
C110.65202 (12)1.4242 (3)1.16058 (13)0.0503 (5)
H110.68371.50111.18470.060*
C120.57744 (12)1.4446 (3)1.16657 (14)0.0561 (6)
H120.55761.53661.19380.067*
C130.53299 (12)1.3260 (3)1.13141 (14)0.0560 (6)
H130.48261.33991.13610.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0408 (9)0.0252 (8)0.0381 (8)0.0008 (7)0.0054 (7)0.0048 (7)
N20.0403 (9)0.0279 (8)0.0344 (8)0.0058 (7)0.0007 (6)0.0029 (7)
N30.0511 (11)0.0497 (10)0.0490 (10)0.0043 (9)0.0005 (8)0.0147 (9)
N40.0367 (9)0.0506 (11)0.0542 (10)0.0046 (8)0.0029 (7)0.0111 (9)
O10.0480 (8)0.0377 (8)0.0698 (10)0.0094 (7)0.0109 (7)0.0114 (7)
C10.0365 (10)0.0304 (10)0.0370 (10)0.0005 (8)0.0021 (8)0.0010 (8)
C20.0357 (10)0.0316 (10)0.0313 (9)0.0005 (8)0.0058 (7)0.0018 (8)
C30.0381 (10)0.0393 (11)0.0422 (11)0.0032 (9)0.0008 (8)0.0026 (9)
C40.0550 (13)0.0546 (14)0.0523 (13)0.0154 (11)0.0061 (10)0.0168 (11)
C50.0416 (12)0.0690 (15)0.0552 (13)0.0182 (11)0.0003 (10)0.0128 (12)
C60.0389 (11)0.0552 (13)0.0413 (11)0.0016 (9)0.0003 (8)0.0074 (10)
C70.0580 (14)0.0460 (13)0.0760 (16)0.0101 (11)0.0213 (12)0.0188 (12)
C80.0368 (10)0.0335 (10)0.0352 (10)0.0011 (8)0.0012 (8)0.0009 (8)
C90.0376 (10)0.0338 (10)0.0304 (9)0.0013 (8)0.0019 (7)0.0003 (8)
C100.0389 (10)0.0403 (11)0.0378 (10)0.0005 (9)0.0025 (8)0.0033 (9)
C110.0559 (13)0.0454 (12)0.0495 (12)0.0060 (10)0.0033 (10)0.0136 (10)
C120.0605 (14)0.0483 (13)0.0594 (13)0.0099 (11)0.0116 (11)0.0154 (11)
C130.0425 (12)0.0581 (14)0.0672 (15)0.0111 (11)0.0059 (11)0.0127 (12)
Geometric parameters (Å, º) top
N1—C11.354 (2)C5—H50.9300
N1—N21.3765 (19)C6—H60.9300
N1—H10.8600C7—C81.494 (3)
N2—C81.284 (2)C7—H7A0.9600
N3—C41.326 (3)C7—H7B0.9600
N3—C31.333 (2)C7—H7C0.9600
N4—C131.336 (3)C8—C91.489 (2)
N4—C91.340 (2)C9—C101.384 (3)
O1—C11.220 (2)C10—C111.374 (3)
C1—C21.494 (2)C10—H100.9300
C2—C61.377 (3)C11—C121.375 (3)
C2—C31.385 (2)C11—H110.9300
C3—H30.9300C12—C131.371 (3)
C4—C51.376 (3)C12—H120.9300
C4—H40.9300C13—H130.9300
C5—C61.377 (3)
C1—N1—N2117.63 (14)C8—C7—H7A109.5
C1—N1—H1121.2C8—C7—H7B109.5
N2—N1—H1121.2H7A—C7—H7B109.5
C8—N2—N1118.61 (15)C8—C7—H7C109.5
C4—N3—C3116.25 (17)H7A—C7—H7C109.5
C13—N4—C9117.09 (17)H7B—C7—H7C109.5
O1—C1—N1123.55 (17)N2—C8—C9114.28 (16)
O1—C1—C2121.51 (16)N2—C8—C7127.01 (17)
N1—C1—C2114.94 (15)C9—C8—C7118.68 (16)
C6—C2—C3118.06 (17)N4—C9—C10122.35 (17)
C6—C2—C1119.59 (16)N4—C9—C8115.81 (16)
C3—C2—C1122.34 (16)C10—C9—C8121.85 (16)
N3—C3—C2124.04 (17)C11—C10—C9119.30 (18)
N3—C3—H3118.0C11—C10—H10120.3
C2—C3—H3118.0C9—C10—H10120.3
N3—C4—C5124.33 (19)C10—C11—C12118.80 (19)
N3—C4—H4117.8C10—C11—H11120.6
C5—C4—H4117.8C12—C11—H11120.6
C4—C5—C6118.39 (19)C13—C12—C11118.39 (19)
C4—C5—H5120.8C13—C12—H12120.8
C6—C5—H5120.8C11—C12—H12120.8
C2—C6—C5118.84 (19)N4—C13—C12124.0 (2)
C2—C6—H6120.6N4—C13—H13118.0
C5—C6—H6120.6C12—C13—H13118.0
C1—N1—N2—C8179.30 (16)N1—N2—C8—C9177.98 (14)
N2—N1—C1—O13.1 (3)N1—N2—C8—C70.3 (3)
N2—N1—C1—C2176.40 (14)C13—N4—C9—C102.3 (3)
O1—C1—C2—C653.1 (3)C13—N4—C9—C8177.68 (17)
N1—C1—C2—C6126.43 (18)N2—C8—C9—N4148.85 (17)
O1—C1—C2—C3126.2 (2)C7—C8—C9—N429.1 (3)
N1—C1—C2—C354.3 (2)N2—C8—C9—C1031.1 (2)
C4—N3—C3—C21.4 (3)C7—C8—C9—C10150.92 (19)
C6—C2—C3—N31.3 (3)N4—C9—C10—C111.6 (3)
C1—C2—C3—N3179.39 (17)C8—C9—C10—C11178.37 (18)
C3—N3—C4—C52.5 (3)C9—C10—C11—C120.2 (3)
N3—C4—C5—C60.7 (4)C10—C11—C12—C131.3 (3)
C3—C2—C6—C53.1 (3)C9—N4—C13—C121.2 (3)
C1—C2—C6—C5177.58 (18)C11—C12—C13—N40.6 (4)
C4—C5—C6—C22.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.273.125 (2)171
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC13H12N4O
Mr240.27
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)18.264 (3), 7.9300 (9), 16.471 (2)
V3)2385.5 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.43 × 0.40
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.960, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
9146, 2107, 1568
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.06
No. of reflections2107
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.17

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.273.125 (2)171
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20671073), NingXia Natural Gas Transfer Key Laboratory (2004007), the Science and Technology Found­ation of Weifang and Weifang University for a research grant.

References

First citationBruker (2000). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681–o682.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds