organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Nitro­benzene­sulfonamido)pyridinium tri­chloro­acetate

aSchool of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China, and bMedical College, Jiujiang University, Jiujiang 332000, People's Republic of China
*Correspondence e-mail: tju_zhoubin@yahoo.com.cn

(Received 7 November 2007; accepted 2 December 2007; online 12 December 2007)

In the title compound, C11H10N3O4S+·C2Cl3O2, the benzene ring forms an angle of 85.21 (13)° with the pyridinium ring. The nitro group is nearly coplanar with its attached benzene ring [dihedral angle = 3.68 (12)°]. In the crystal structure, strong N—H⋯O hydrogen bonds link the ion-pairs. The packing is further consolidated by weak C—H⋯O inter­ations.

Related literature

For the synthesis and structure of the unprotonated amine, see: Yu & Li (2007[Yu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3399.]). For reference geometrical data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H10N3O4S+·C2Cl3O2

  • Mr = 442.65

  • Monoclinic, P 21 /n

  • a = 5.9929 (11) Å

  • b = 17.790 (3) Å

  • c = 16.325 (3) Å

  • β = 98.377 (3)°

  • V = 1721.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 294 (2) K

  • 0.24 × 0.22 × 0.18 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.852, Tmax = 0.886

  • 9742 measured reflections

  • 3528 independent reflections

  • 2427 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.094

  • S = 1.01

  • 3528 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6 0.87 (3) 1.93 (3) 2.803 (3) 172 (3)
N2—H2A⋯O6i 0.79 (3) 2.00 (3) 2.785 (3) 171 (3)
C2—H2⋯O5i 0.93 2.53 3.240 (3) 133
C3—H3⋯O1ii 0.93 2.50 3.391 (4) 162
C8—H8⋯O5iii 0.93 2.47 3.149 (3) 130
C10—H10⋯O3iv 0.93 2.50 3.308 (4) 146
C5—H5⋯O2 0.93 2.33 2.978 (4) 126
C7—H7⋯O2 0.93 2.57 2.938 (3) 104
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) -x, -y+1, -z+1; (iv) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), comprises of a pyridinium cation and a trichloroacetate anion (Fig. 1). In the cation, the short C—N distance [N2—C1 = 1.390 (3) Å] occurs between typical C=N (1.34–1.38 Å) and C—N (1.47–1.50 Å) bond lengths (Allen et al., 1987), indicative of significant double-bond character, despite of a strong electron-withdrawing sulfonyl group. The benzene ring forms an angle of 85.21 (13)° with the pyridinium ring. The nitro group is nearly coplanar and make an acute angle of 3.68 (12)° with the connected benzene ring.

The cation and anion are connected by a strong N—H···O hydrogen bond and weak C—H···O interactions (Table 1) complete the structure. Two short intramolecular C—H···O contacts also arise in the cation.

Related literature top

For the synthesis and structure of the unprotonated amine, see: Yu & Li (2007. For reference geometrical data, see: Allen et al. (1987).

Experimental top

4-Nitro-(N-pyridyl)benzenesulfonamide was prepared by the method of Yu & Li (2007). Colourless blocks of (I) were grown by natural evaporation from a trichloroacetic acid solution of the amide.

Refinement top

The N-bound H atoms were located in a difference map and their positions were freely refined. The C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding atoms. The constraint Uĩso~(H) = 1.2 U~eq~(C and N) was applied.

Structure description top

The title compound, (I), comprises of a pyridinium cation and a trichloroacetate anion (Fig. 1). In the cation, the short C—N distance [N2—C1 = 1.390 (3) Å] occurs between typical C=N (1.34–1.38 Å) and C—N (1.47–1.50 Å) bond lengths (Allen et al., 1987), indicative of significant double-bond character, despite of a strong electron-withdrawing sulfonyl group. The benzene ring forms an angle of 85.21 (13)° with the pyridinium ring. The nitro group is nearly coplanar and make an acute angle of 3.68 (12)° with the connected benzene ring.

The cation and anion are connected by a strong N—H···O hydrogen bond and weak C—H···O interactions (Table 1) complete the structure. Two short intramolecular C—H···O contacts also arise in the cation.

For the synthesis and structure of the unprotonated amine, see: Yu & Li (2007. For reference geometrical data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. A view of (I) with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms). Hydrogen bonds are indicated by double-dashed lines.
4-(4-Nitrobenzenesulfonamido)pyridinium trichloroacetate top
Crystal data top
C11H10N3O4S+·C2Cl3O2F(000) = 896
Mr = 442.65Dx = 1.707 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2690 reflections
a = 5.9929 (11) Åθ = 2.5–25.7°
b = 17.790 (3) ŵ = 0.69 mm1
c = 16.325 (3) ÅT = 294 K
β = 98.377 (3)°Block, colourless
V = 1721.9 (6) Å30.24 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
3528 independent reflections
Radiation source: fine-focus sealed tube2427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.852, Tmax = 0.886k = 922
9742 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.9782P]
where P = (Fo2 + 2Fc2)/3
3528 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C11H10N3O4S+·C2Cl3O2V = 1721.9 (6) Å3
Mr = 442.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.9929 (11) ŵ = 0.69 mm1
b = 17.790 (3) ÅT = 294 K
c = 16.325 (3) Å0.24 × 0.22 × 0.18 mm
β = 98.377 (3)°
Data collection top
Bruker SMART 1K CCD
diffractometer
3528 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2427 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.886Rint = 0.038
9742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.37 e Å3
3528 reflectionsΔρmin = 0.38 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20681 (12)0.30768 (4)0.84918 (4)0.03291 (18)
O10.2730 (4)0.26231 (11)0.92092 (11)0.0449 (5)
O20.0263 (3)0.32167 (11)0.82059 (13)0.0448 (5)
O30.8738 (4)0.60031 (12)0.95523 (13)0.0495 (5)
O40.5848 (4)0.65976 (12)0.89304 (15)0.0575 (6)
N10.2323 (4)0.30604 (14)0.52313 (15)0.0413 (6)
H10.215 (5)0.3155 (17)0.470 (2)0.050*
N20.3239 (4)0.26681 (13)0.77572 (13)0.0321 (5)
H2A0.422 (5)0.2386 (17)0.7939 (18)0.039*
N30.6823 (4)0.60178 (14)0.91655 (14)0.0372 (6)
C10.2886 (4)0.28291 (14)0.69149 (15)0.0270 (6)
C20.4432 (5)0.25395 (16)0.64290 (16)0.0358 (7)
H20.56710.22630.66730.043*
C30.4103 (5)0.26665 (16)0.55900 (17)0.0416 (7)
H30.51300.24760.52670.050*
C40.0846 (5)0.33458 (17)0.56820 (18)0.0430 (7)
H40.03830.36150.54180.052*
C50.1084 (5)0.32541 (16)0.65210 (17)0.0386 (7)
H50.00590.34720.68260.046*
C60.3464 (4)0.39542 (14)0.86639 (15)0.0284 (6)
C70.2334 (4)0.46213 (15)0.84301 (16)0.0320 (6)
H70.08500.46100.81660.038*
C80.3429 (4)0.53001 (15)0.85921 (16)0.0337 (6)
H80.26980.57510.84430.040*
C90.5640 (4)0.52928 (15)0.89817 (15)0.0299 (6)
C100.6797 (5)0.46378 (16)0.92142 (17)0.0347 (7)
H100.82850.46530.94740.042*
C110.5696 (4)0.39591 (15)0.90528 (16)0.0334 (6)
H110.64380.35100.92020.040*
O50.1076 (4)0.40196 (11)0.23515 (11)0.0457 (5)
O60.1360 (3)0.33610 (11)0.35309 (11)0.0412 (5)
Cl10.23049 (13)0.47867 (4)0.44855 (4)0.0447 (2)
Cl20.60598 (13)0.41336 (5)0.37668 (6)0.0579 (3)
Cl30.34546 (14)0.53626 (4)0.29679 (5)0.0486 (2)
C120.1730 (4)0.39111 (15)0.30852 (16)0.0293 (6)
C130.3314 (4)0.45299 (15)0.35494 (16)0.0305 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0421 (4)0.0312 (4)0.0291 (4)0.0018 (3)0.0176 (3)0.0008 (3)
O10.0724 (15)0.0374 (12)0.0295 (10)0.0025 (10)0.0229 (10)0.0056 (9)
O20.0358 (11)0.0469 (13)0.0559 (13)0.0052 (10)0.0205 (10)0.0086 (10)
O30.0457 (13)0.0540 (14)0.0462 (12)0.0078 (11)0.0020 (10)0.0001 (11)
O40.0529 (14)0.0316 (12)0.0862 (18)0.0019 (11)0.0046 (13)0.0025 (12)
N10.0639 (18)0.0385 (14)0.0203 (11)0.0062 (13)0.0024 (12)0.0031 (11)
N20.0416 (14)0.0330 (14)0.0230 (11)0.0110 (11)0.0088 (10)0.0022 (10)
N30.0369 (14)0.0409 (15)0.0351 (13)0.0002 (12)0.0096 (11)0.0020 (11)
C10.0348 (15)0.0230 (13)0.0241 (13)0.0013 (11)0.0072 (11)0.0008 (11)
C20.0434 (17)0.0366 (16)0.0288 (15)0.0147 (13)0.0099 (12)0.0046 (13)
C30.060 (2)0.0372 (17)0.0307 (16)0.0131 (15)0.0165 (15)0.0015 (13)
C40.0457 (18)0.0436 (18)0.0369 (17)0.0128 (15)0.0032 (14)0.0050 (14)
C50.0423 (17)0.0390 (17)0.0360 (16)0.0128 (14)0.0108 (13)0.0019 (13)
C60.0334 (15)0.0285 (15)0.0259 (13)0.0022 (12)0.0134 (11)0.0004 (11)
C70.0288 (15)0.0344 (16)0.0329 (15)0.0020 (12)0.0045 (12)0.0002 (12)
C80.0333 (15)0.0310 (16)0.0374 (16)0.0080 (12)0.0069 (12)0.0031 (12)
C90.0342 (15)0.0316 (15)0.0254 (13)0.0006 (12)0.0089 (12)0.0008 (11)
C100.0301 (15)0.0429 (18)0.0312 (15)0.0028 (13)0.0046 (12)0.0045 (13)
C110.0339 (15)0.0328 (16)0.0344 (15)0.0089 (13)0.0085 (12)0.0084 (12)
O50.0601 (14)0.0476 (13)0.0255 (10)0.0095 (10)0.0068 (9)0.0008 (9)
O60.0569 (13)0.0356 (11)0.0289 (10)0.0117 (10)0.0014 (9)0.0025 (9)
Cl10.0561 (5)0.0464 (4)0.0335 (4)0.0041 (4)0.0126 (3)0.0148 (3)
Cl20.0328 (4)0.0677 (6)0.0683 (6)0.0159 (4)0.0085 (4)0.0226 (5)
Cl30.0610 (5)0.0360 (4)0.0514 (5)0.0091 (4)0.0168 (4)0.0002 (3)
C120.0289 (14)0.0295 (15)0.0279 (14)0.0011 (12)0.0009 (11)0.0054 (12)
C130.0279 (14)0.0339 (15)0.0291 (14)0.0019 (12)0.0020 (11)0.0071 (11)
Geometric parameters (Å, º) top
S1—O21.429 (2)C4—H40.9300
S1—O11.430 (2)C5—H50.9300
S1—N21.645 (2)C6—C71.392 (3)
S1—C61.774 (3)C6—C111.395 (4)
O3—N31.227 (3)C7—C81.381 (4)
O4—N31.220 (3)C7—H70.9300
N1—C41.331 (4)C8—C91.384 (4)
N1—C31.338 (4)C8—H80.9300
N1—H10.87 (3)C9—C101.381 (4)
N2—C11.390 (3)C10—C111.383 (4)
N2—H2A0.79 (3)C10—H100.9300
N3—C91.481 (3)C11—H110.9300
C1—C51.396 (4)O5—C121.220 (3)
C1—C21.402 (3)O6—C121.258 (3)
C2—C31.374 (4)Cl1—C131.783 (3)
C2—H20.9300Cl2—C131.778 (3)
C3—H30.9300Cl3—C131.768 (3)
C4—C51.366 (4)C12—C131.574 (4)
O2—S1—O1120.47 (13)C1—C5—H5120.4
O2—S1—N2109.85 (12)C7—C6—C11121.0 (2)
O1—S1—N2104.53 (12)C7—C6—S1120.5 (2)
O2—S1—C6108.34 (12)C11—C6—S1118.5 (2)
O1—S1—C6107.38 (12)C8—C7—C6119.6 (3)
N2—S1—C6105.25 (12)C8—C7—H7120.2
C4—N1—C3120.6 (2)C6—C7—H7120.2
C4—N1—H1119 (2)C7—C8—C9118.4 (2)
C3—N1—H1120 (2)C7—C8—H8120.8
C1—N2—S1127.63 (19)C9—C8—H8120.8
C1—N2—H2A120 (2)C10—C9—C8122.9 (3)
S1—N2—H2A112 (2)C10—C9—N3118.2 (2)
O4—N3—O3123.3 (3)C8—C9—N3118.9 (2)
O4—N3—C9118.6 (2)C9—C10—C11118.5 (3)
O3—N3—C9118.0 (2)C9—C10—H10120.7
N2—C1—C5124.3 (2)C11—C10—H10120.7
N2—C1—C2117.8 (2)C10—C11—C6119.5 (2)
C5—C1—C2118.0 (2)C10—C11—H11120.3
C3—C2—C1119.5 (3)C6—C11—H11120.3
C3—C2—H2120.2O5—C12—O6129.2 (2)
C1—C2—H2120.2O5—C12—C13116.5 (2)
N1—C3—C2120.8 (3)O6—C12—C13114.2 (2)
N1—C3—H3119.6C12—C13—Cl3113.58 (18)
C2—C3—H3119.6C12—C13—Cl2107.13 (17)
N1—C4—C5121.8 (3)Cl3—C13—Cl2108.93 (14)
N1—C4—H4119.1C12—C13—Cl1109.61 (18)
C5—C4—H4119.1Cl3—C13—Cl1107.11 (14)
C4—C5—C1119.2 (3)Cl2—C13—Cl1110.50 (14)
C4—C5—H5120.4
O2—S1—N2—C140.4 (3)S1—C6—C7—C8178.0 (2)
O1—S1—N2—C1171.0 (2)C6—C7—C8—C90.3 (4)
C6—S1—N2—C176.0 (3)C7—C8—C9—C100.1 (4)
S1—N2—C1—C515.4 (4)C7—C8—C9—N3179.4 (2)
S1—N2—C1—C2165.2 (2)O4—N3—C9—C10176.8 (2)
N2—C1—C2—C3178.0 (3)O3—N3—C9—C103.5 (3)
C5—C1—C2—C31.5 (4)O4—N3—C9—C83.6 (4)
C4—N1—C3—C20.8 (5)O3—N3—C9—C8176.0 (2)
C1—C2—C3—N10.2 (4)C8—C9—C10—C110.2 (4)
C3—N1—C4—C50.4 (5)N3—C9—C10—C11179.3 (2)
N1—C4—C5—C12.1 (5)C9—C10—C11—C60.1 (4)
N2—C1—C5—C4176.8 (3)C7—C6—C11—C100.5 (4)
C2—C1—C5—C42.6 (4)S1—C6—C11—C10178.2 (2)
O2—S1—C6—C77.4 (2)O5—C12—C13—Cl311.0 (3)
O1—S1—C6—C7138.9 (2)O6—C12—C13—Cl3170.43 (19)
N2—S1—C6—C7110.1 (2)O5—C12—C13—Cl2109.3 (2)
O2—S1—C6—C11171.35 (19)O6—C12—C13—Cl269.2 (3)
O1—S1—C6—C1139.8 (2)O5—C12—C13—Cl1130.8 (2)
N2—S1—C6—C1171.2 (2)O6—C12—C13—Cl150.7 (3)
C11—C6—C7—C80.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.87 (3)1.93 (3)2.803 (3)172 (3)
N2—H2A···O6i0.79 (3)2.00 (3)2.785 (3)171 (3)
C2—H2···O5i0.932.533.240 (3)133
C3—H3···O1ii0.932.503.391 (4)162
C8—H8···O5iii0.932.473.149 (3)130
C10—H10···O3iv0.932.503.308 (4)146
C5—H5···O20.932.332.978 (4)126
C7—H7···O20.932.572.938 (3)104
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x, y+1, z+1; (iv) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC11H10N3O4S+·C2Cl3O2
Mr442.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)5.9929 (11), 17.790 (3), 16.325 (3)
β (°) 98.377 (3)
V3)1721.9 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.852, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
9742, 3528, 2427
Rint0.038
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.01
No. of reflections3528
No. of parameters241
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.38

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.87 (3)1.93 (3)2.803 (3)172 (3)
N2—H2A···O6i0.79 (3)2.00 (3)2.785 (3)171 (3)
C2—H2···O5i0.932.533.240 (3)133
C3—H3···O1ii0.932.503.391 (4)162
C8—H8···O5iii0.932.473.149 (3)130
C10—H10···O3iv0.932.503.308 (4)146
C5—H5···O20.932.332.978 (4)126
C7—H7···O20.932.572.938 (3)104
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x, y+1, z+1; (iv) x+2, y+1, z+2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationYu, H.-J. & Li, J.-S. (2007). Acta Cryst. E63, o3399.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds