metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
RETRACTED ARTICLE

This article has been retracted. To view the retraction notice, click here.

Retracted: μ-Oxido-bis­­({4,4′-di­bromo-2,2′-ethane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}iron(III))

aCollege of Chemistry and Chemical Engineering, Weifang University, Weifang, 261061, People's Republic of China
*Correspondence e-mail: qgmeng_weifang@yahoo.cn

(Received 8 November 2007; accepted 25 November 2007; online 6 December 2007)

In the title compound, [Fe2(C16H12Br2N2O2)2O], the complete mol­ecule is generated by twofold symmetry, with the bridging O atom, which links the iron centres, lying on the roatation rotation axis. The Fe(III) ion is chelated by the N,N,O,O-tetra­dentate Schiff base dianion, resulting in an FeN2O3 square-based pyramid, with the two N atoms in the basal plane.

Related literature

For related literature, see: Karacan & Somer (2004[Karacan, M. S. & Somer, G. J. (2004). Photochem. Photobiol. A Chem. 163, 307-310.]); Chen et al. (2006[Chen, P., Fan, B. B., Song, M. G., Jin, C., Ma, J. H. & Li, R. F. (2006). Catal. Commun. 7, 969-973.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C16H12Br2N2O2)2O]

  • Mr = 975.89

  • Orthorhombic, P c c a

  • a = 21.094 (2) Å

  • b = 13.8168 (18) Å

  • c = 11.9619 (12) Å

  • V = 3486.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.46 mm−1

  • T = 293 (2) K

  • 0.43 × 0.28 × 0.22 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.202, Tmax = 0.380 (expected range = 0.160–0.301)

  • 11548 measured reflections

  • 3182 independent reflections

  • 2257 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.147

  • S = 1.00

  • 3182 reflections

  • 213 parameters

  • H-atom parameters constraned

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Selected geometric parameters (Å, °)

Fe1—O3 1.8162 (18)
Fe1—O2 1.926 (4)
Fe1—O1 1.930 (4)
Fe1—N2 2.116 (4)
Fe1—N1 2.141 (4)
Fe1i—O3—Fe1 139.4 (3)
Symmetry code: (i) [-x, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2001[Bruker (2001). SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, Schiff base ligands, especially flexible symmetrical or unsymmetrical Schiff base ligands and their hydrogenated derivatives have been widely employed to assembly alkoxo- or phenoxo-bridged manganese clusters and polymers with novel topological structures and interesting magnetic, catalysis and photochemical properties. (Karacan & Somer, 2004; Chen et al., 2006). In this paper, we report the structure of the title compound, (I).

As shown in Fig. 1, the Fe(III) ion in (I) is chelated by the dianionic Schiff base ligand in a tetradentate N,N,O,O coordination in an approximately square planar arrangement. An oxo ligand (site symmetry 2) caps the FeN2O2 grouping to result in a square based pyramid. The oxo ligand also bridges to a second, crystallographically generated Fe atom. The Fe—O capping distance is much shorter than the other bonds (Table 1). The Fe···Fei (i = -x, y, 1/2 - z) distance is 3.4066 (12) %A.

Related literature top

For related literature, see: Karacan & Somer (2004); Chen et al. (2006).

Experimental top

A mixture of iron(III) chloride (1 mmol) and N,N'-bis(2-hydroxy-5-bromobenzyl)ethylenediamine (1 mmol) in 20 ml me thanol was refluxed for two hours. The above cooled solution was filterated and the filtrate was evaporated naturally at room temperature. Two days later, brown blocks of (I) were obtained with a yield of 32%. Anal. Calc. for C32H24Br4Fe2N4O5: C 39.34, H 2.46, N 5.74%; Found: C 39.32, H 2.48, N 5.69%.

Refinement top

The H atoms were included in calculated positions (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Recently, Schiff base ligands, especially flexible symmetrical or unsymmetrical Schiff base ligands and their hydrogenated derivatives have been widely employed to assembly alkoxo- or phenoxo-bridged manganese clusters and polymers with novel topological structures and interesting magnetic, catalysis and photochemical properties. (Karacan & Somer, 2004; Chen et al., 2006). In this paper, we report the structure of the title compound, (I).

As shown in Fig. 1, the Fe(III) ion in (I) is chelated by the dianionic Schiff base ligand in a tetradentate N,N,O,O coordination in an approximately square planar arrangement. An oxo ligand (site symmetry 2) caps the FeN2O2 grouping to result in a square based pyramid. The oxo ligand also bridges to a second, crystallographically generated Fe atom. The Fe—O capping distance is much shorter than the other bonds (Table 1). The Fe···Fei (i = -x, y, 1/2 - z) distance is 3.4066 (12) %A.

For related literature, see: Karacan & Somer (2004); Chen et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 50% probability displacement ellipsoids for the non-hydrogen atoms. Symmetry code: (i) -x, y, 1/2 - z.
µ-Oxido-bis({4,4'-dibromo-2,2'-ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato}iron(III)) top
Crystal data top
[Fe2(C16H12Br2N2O2)2O]F(000) = 1904
Mr = 975.89Dx = 1.859 Mg m3
Orthorhombic, PccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2acCell parameters from 3182 reflections
a = 21.094 (2) Åθ = 3.0–25.4°
b = 13.8168 (18) ŵ = 5.46 mm1
c = 11.9619 (12) ÅT = 293 K
V = 3486.3 (7) Å3Block, brown
Z = 40.43 × 0.28 × 0.22 mm
Data collection top
Bruker APEX II CCD
diffractometer
3182 independent reflections
Radiation source: fine-focus sealed tube2257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 2525
Tmin = 0.202, Tmax = 0.380k = 1616
11548 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.077P)2]
where P = (Fo2 + 2Fc2)/3
3182 reflections(Δ/σ)max = 0.018
213 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
[Fe2(C16H12Br2N2O2)2O]V = 3486.3 (7) Å3
Mr = 975.89Z = 4
Orthorhombic, PccaMo Kα radiation
a = 21.094 (2) ŵ = 5.46 mm1
b = 13.8168 (18) ÅT = 293 K
c = 11.9619 (12) Å0.43 × 0.28 × 0.22 mm
Data collection top
Bruker APEX II CCD
diffractometer
3182 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2257 reflections with I > 2σ(I)
Tmin = 0.202, Tmax = 0.380Rint = 0.049
11548 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.00Δρmax = 1.05 e Å3
3182 reflectionsΔρmin = 0.70 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.07194 (4)0.12987 (5)0.31467 (6)0.0342 (2)
Br10.10796 (4)0.66034 (5)0.24478 (7)0.0776 (3)
Br20.28253 (3)0.28115 (5)0.48690 (6)0.0663 (3)
C10.0405 (3)0.3280 (4)0.4134 (4)0.0404 (13)
H10.02300.36700.46870.048*
C20.0734 (3)0.3750 (4)0.3197 (5)0.0392 (12)
C30.1029 (3)0.3259 (4)0.2294 (5)0.0405 (13)
C40.1303 (3)0.3799 (4)0.1413 (5)0.0514 (15)
H40.14770.34770.08030.062*
C50.1316 (3)0.4776 (4)0.1447 (6)0.0574 (17)
H50.15040.51260.08720.069*
C60.1039 (3)0.5260 (4)0.2367 (5)0.0519 (16)
C70.0744 (3)0.4748 (4)0.3235 (5)0.0476 (14)
H70.05570.50770.38290.057*
C80.0009 (3)0.1958 (4)0.5204 (5)0.0432 (14)
H8A0.03820.16500.49700.052*
H8B0.00910.24620.57410.052*
C90.0461 (3)0.1213 (4)0.5721 (4)0.0423 (13)
H9A0.07650.15340.62020.051*
H9B0.02240.07510.61660.051*
C100.1146 (3)0.0002 (4)0.5091 (4)0.0385 (13)
H100.11400.01810.58400.046*
C110.1561 (3)0.0556 (4)0.4331 (4)0.0370 (12)
C120.1643 (3)0.0340 (3)0.3168 (4)0.0356 (11)
C130.2041 (3)0.0949 (4)0.2516 (5)0.0410 (13)
H130.20750.08490.17490.049*
C140.2370 (3)0.1675 (4)0.3005 (5)0.0474 (14)
H140.26400.20580.25760.057*
C150.2308 (3)0.1858 (4)0.4169 (5)0.0463 (14)
C160.1901 (3)0.1313 (4)0.4831 (5)0.0428 (14)
H160.18560.14480.55890.051*
N10.0797 (2)0.0703 (3)0.4793 (4)0.0363 (10)
N20.0348 (2)0.2370 (3)0.4227 (4)0.0360 (10)
O10.10571 (18)0.2321 (3)0.2223 (3)0.0435 (9)
O20.13721 (19)0.0409 (3)0.2686 (3)0.0414 (9)
O30.00000.0842 (4)0.25000.0388 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0433 (5)0.0267 (4)0.0327 (4)0.0006 (3)0.0003 (3)0.0002 (3)
Br10.1084 (7)0.0293 (4)0.0950 (6)0.0024 (3)0.0277 (5)0.0093 (4)
Br20.0660 (5)0.0586 (5)0.0744 (5)0.0225 (3)0.0087 (4)0.0251 (4)
C10.044 (3)0.036 (3)0.041 (3)0.001 (2)0.001 (3)0.007 (2)
C20.042 (3)0.031 (3)0.045 (3)0.000 (2)0.001 (3)0.002 (2)
C30.042 (3)0.037 (3)0.043 (3)0.003 (2)0.003 (3)0.001 (3)
C40.062 (4)0.042 (3)0.050 (3)0.001 (3)0.007 (3)0.011 (3)
C50.067 (4)0.040 (3)0.066 (4)0.007 (3)0.013 (3)0.009 (3)
C60.064 (4)0.029 (3)0.064 (4)0.004 (3)0.005 (3)0.012 (3)
C70.051 (4)0.032 (3)0.060 (4)0.001 (3)0.004 (3)0.002 (3)
C80.050 (4)0.038 (3)0.042 (3)0.001 (3)0.011 (3)0.004 (3)
C90.052 (3)0.041 (3)0.034 (3)0.001 (3)0.010 (3)0.001 (2)
C100.051 (4)0.030 (3)0.035 (3)0.006 (2)0.001 (3)0.001 (2)
C110.041 (3)0.030 (3)0.041 (3)0.001 (2)0.003 (2)0.003 (2)
C120.043 (3)0.027 (2)0.037 (3)0.001 (2)0.001 (2)0.001 (2)
C130.049 (3)0.034 (3)0.041 (3)0.003 (2)0.001 (3)0.001 (2)
C140.048 (3)0.038 (3)0.057 (4)0.005 (3)0.008 (3)0.002 (3)
C150.044 (3)0.043 (3)0.052 (3)0.003 (3)0.005 (3)0.016 (3)
C160.047 (3)0.038 (3)0.043 (3)0.001 (3)0.002 (3)0.010 (3)
N10.045 (3)0.029 (2)0.035 (2)0.0013 (19)0.002 (2)0.0019 (19)
N20.042 (3)0.025 (2)0.041 (2)0.0042 (18)0.005 (2)0.0019 (19)
O10.055 (3)0.030 (2)0.045 (2)0.0026 (17)0.0101 (19)0.0019 (17)
O20.056 (2)0.034 (2)0.0346 (18)0.0113 (17)0.0020 (18)0.0024 (16)
O30.045 (3)0.028 (3)0.043 (3)0.0000.009 (2)0.000
Geometric parameters (Å, º) top
Fe1—O31.8162 (18)C8—C91.533 (8)
Fe1—O21.926 (4)C8—H8A0.9700
Fe1—O11.930 (4)C8—H8B0.9700
Fe1—N22.116 (4)C9—N11.493 (7)
Fe1—N12.141 (4)C9—H9A0.9700
Br1—C61.861 (6)C9—H9B0.9700
Br2—C151.905 (6)C10—N11.272 (7)
C1—N21.268 (6)C10—C111.474 (7)
C1—C21.470 (7)C10—H100.9300
C1—H10.9300C11—C161.404 (7)
C2—C71.380 (7)C11—C121.434 (7)
C2—C31.419 (8)C12—O21.314 (6)
C3—O11.299 (6)C12—C131.422 (7)
C3—C41.414 (8)C13—C141.354 (8)
C4—C51.351 (8)C13—H130.9300
C4—H40.9300C14—C151.421 (8)
C5—C61.414 (9)C14—H140.9300
C5—H50.9300C15—C161.388 (8)
C6—C71.402 (8)C16—H160.9300
C7—H70.9300O3—Fe1i1.8162 (18)
C8—N21.483 (7)
O3—Fe1—O2104.71 (16)N1—C9—C8108.2 (4)
O3—Fe1—O1108.58 (16)N1—C9—H9A110.1
O2—Fe1—O192.29 (16)C8—C9—H9A110.1
O3—Fe1—N2101.14 (16)N1—C9—H9B110.1
O2—Fe1—N2152.39 (17)C8—C9—H9B110.1
O1—Fe1—N288.51 (16)H9A—C9—H9B108.4
O3—Fe1—N1108.78 (15)N1—C10—C11124.6 (5)
O2—Fe1—N187.89 (16)N1—C10—H10117.7
O1—Fe1—N1141.27 (17)C11—C10—H10117.7
N2—Fe1—N174.66 (16)C16—C11—C12120.4 (5)
N2—C1—C2123.4 (5)C16—C11—C10115.4 (5)
N2—C1—H1118.3C12—C11—C10124.2 (5)
C2—C1—H1118.3O2—C12—C13118.8 (4)
C7—C2—C3119.8 (5)O2—C12—C11122.4 (5)
C7—C2—C1115.0 (5)C13—C12—C11118.7 (5)
C3—C2—C1125.1 (5)C14—C13—C12120.3 (5)
O1—C3—C2123.1 (5)C14—C13—H13119.8
O1—C3—C4117.3 (5)C12—C13—H13119.8
C2—C3—C4119.6 (5)C13—C14—C15120.5 (5)
C5—C4—C3120.9 (6)C13—C14—H14119.8
C5—C4—H4119.6C15—C14—H14119.8
C3—C4—H4119.6C16—C15—C14121.3 (5)
C4—C5—C6119.2 (6)C16—C15—Br2118.6 (4)
C4—C5—H5120.4C14—C15—Br2120.0 (4)
C6—C5—H5120.4C15—C16—C11118.5 (5)
C7—C6—C5121.4 (5)C15—C16—H16120.7
C7—C6—Br1119.0 (5)C11—C16—H16120.7
C5—C6—Br1119.5 (4)C10—N1—C9115.4 (4)
C2—C7—C6119.1 (6)C10—N1—Fe1126.6 (4)
C2—C7—H7120.5C9—N1—Fe1117.8 (3)
C6—C7—H7120.5C1—N2—C8119.7 (5)
N2—C8—C9106.0 (4)C1—N2—Fe1127.2 (4)
N2—C8—H8A110.5C8—N2—Fe1113.0 (3)
C9—C8—H8A110.5C3—O1—Fe1132.5 (3)
N2—C8—H8B110.5C12—O2—Fe1133.4 (3)
C9—C8—H8B110.5Fe1i—O3—Fe1139.4 (3)
H8A—C8—H8B108.7
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe2(C16H12Br2N2O2)2O]
Mr975.89
Crystal system, space groupOrthorhombic, Pcca
Temperature (K)293
a, b, c (Å)21.094 (2), 13.8168 (18), 11.9619 (12)
V3)3486.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.46
Crystal size (mm)0.43 × 0.28 × 0.22
Data collection
DiffractometerBruker APEX II CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.202, 0.380
No. of measured, independent and
observed [I > 2σ(I)] reflections
11548, 3182, 2257
Rint0.049
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.147, 1.00
No. of reflections3182
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.70

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2001).

Selected geometric parameters (Å, º) top
Fe1—O31.8162 (18)Fe1—N22.116 (4)
Fe1—O21.926 (4)Fe1—N12.141 (4)
Fe1—O11.930 (4)
Fe1i—O3—Fe1139.4 (3)
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The authors thank Liaocheng University for financial support and Professor Jianmin Dou for his help.

References

First citationBruker (2001). SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, P., Fan, B. B., Song, M. G., Jin, C., Ma, J. H. & Li, R. F. (2006). Catal. Commun. 7, 969–973.  Web of Science CrossRef CAS Google Scholar
First citationKaracan, M. S. & Somer, G. J. (2004). Photochem. Photobiol. A Chem. 163, 307–310.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds