metal-organic compounds
Bis[2-(2-hydroxy-3-methoxyphenyl)benzimidazolium] tetrachloridocuprate(II) methanol disolvate
aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: niumeiju@163.com
In the title compound, (C14H13N2O2)2[CuCl4]·2CH4O, the geometry of the CuC142− ions (Cu 2) is intermediate between tetrahedral and square-planar. The dihedral angle between the benzimidazole and benzene ring systems is 8.74(14)°. A network of N—H⋯O, N—H⋯Cl and O—H⋯Cl hydrogen bonds helps to consoldiate the structure. Aromatic π–π stacking interactions involving the benzimidazole ring system, with a centroid–centroid distance of 3.785 (3) Å, also occur.
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807066214/hb2652sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807066214/hb2652Isup2.hkl
To a solution of o-phenylenediamine (0.216 g, 2 mmol) in methanol (5 ml), o-vanillin (0.615 g, 4 mmol) was added. The mixture was refluxed for 1 h, then a solution of cupric chloride dihydrate (0.3408 g, 2 mmol) was added dropwise and the mixture stirred for another 3 h. Red blocks of (I) were grown by slow evaporation of the solvent after about two weeks.
All H atoms were placed in geometrically idealized positions (N—H = 0.86 Å, O—H = 0.82 Å, C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.5Ueq(Cmethyl, O) or 1.2Ueq(C).
2-(2-Hydroxyphenyl)benzimidazole complexes have potential applications in the fabrication of organic electroluminescent devices (e.g. Zhao et al., 2006). In the title compound, (I), the organic species is protonated and does not bind to the metal ion (Fig. 1). The copper(II) ion (site symmetry 2) adopts a geometry intermediate between square planar and tetrahedral (Table 1).
In the crystal, a network of hydrogen bonds (Table 2) link the component species into chains (Fig. 2) The adjacent chains are cross-linked by π–π stacking interactions involving the two benzimidazole rings, with a centroid···centroid distance of 3.785 (3) Å.
For background, see: Zhao et al. (2006).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).(C14H13N2O2)2[CuCl4]·2CH4O | F(000) = 1548 |
Mr = 751.95 | Dx = 1.487 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.992 (2) Å | Cell parameters from 3347 reflections |
b = 9.9694 (16) Å | θ = 2.4–26.5° |
c = 19.849 (3) Å | µ = 1.02 mm−1 |
β = 109.406 (2)° | T = 298 K |
V = 3358.1 (8) Å3 | Block, red |
Z = 4 | 0.55 × 0.32 × 0.29 mm |
Bruker SMART CCD diffractometer | 2968 independent reflections |
Radiation source: fine-focus sealed tube | 2273 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
ω scans | θmax = 25.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −17→21 |
Tmin = 0.605, Tmax = 0.757 | k = −10→11 |
8468 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0475P)2 + 3.5756P] where P = (Fo2 + 2Fc2)/3 |
2968 reflections | (Δ/σ)max < 0.001 |
204 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
(C14H13N2O2)2[CuCl4]·2CH4O | V = 3358.1 (8) Å3 |
Mr = 751.95 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 17.992 (2) Å | µ = 1.02 mm−1 |
b = 9.9694 (16) Å | T = 298 K |
c = 19.849 (3) Å | 0.55 × 0.32 × 0.29 mm |
β = 109.406 (2)° |
Bruker SMART CCD diffractometer | 2968 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2273 reflections with I > 2σ(I) |
Tmin = 0.605, Tmax = 0.757 | Rint = 0.036 |
8468 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.099 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.46 e Å−3 |
2968 reflections | Δρmin = −0.20 e Å−3 |
204 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.43726 (4) | 1.01765 (8) | 0.16383 (4) | 0.0528 (2) | |
Cu1 | 0.5000 | 0.87387 (5) | 0.2500 | 0.03965 (16) | |
Cl2 | 0.40516 (4) | 0.72185 (8) | 0.24813 (5) | 0.0618 (2) | |
N1 | 0.77757 (12) | 0.5015 (2) | 0.52156 (11) | 0.0393 (5) | |
H1 | 0.8090 | 0.5266 | 0.5626 | 0.047* | |
N2 | 0.67538 (14) | 0.4895 (3) | 0.42615 (12) | 0.0476 (6) | |
H2 | 0.6298 | 0.5056 | 0.3953 | 0.057* | |
O1 | 0.76890 (12) | 0.6556 (2) | 0.62645 (10) | 0.0606 (6) | |
H1A | 0.7874 | 0.7034 | 0.6617 | 0.091* | |
O2 | 0.70083 (13) | 0.8504 (2) | 0.67617 (11) | 0.0651 (6) | |
O3 | 0.52158 (14) | 0.4866 (3) | 0.33663 (14) | 0.0859 (9) | |
H3 | 0.4981 | 0.5543 | 0.3174 | 0.129* | |
C1 | 0.66881 (15) | 0.6608 (3) | 0.51403 (14) | 0.0414 (7) | |
C2 | 0.70078 (15) | 0.7102 (3) | 0.58301 (15) | 0.0425 (7) | |
C3 | 0.66309 (17) | 0.8123 (3) | 0.60765 (16) | 0.0463 (7) | |
C4 | 0.59298 (18) | 0.8638 (3) | 0.56282 (18) | 0.0533 (8) | |
H4 | 0.5665 | 0.9296 | 0.5792 | 0.064* | |
C5 | 0.56225 (17) | 0.8174 (4) | 0.49376 (18) | 0.0585 (9) | |
H5 | 0.5159 | 0.8549 | 0.4633 | 0.070* | |
C6 | 0.59831 (17) | 0.7175 (3) | 0.46896 (16) | 0.0524 (8) | |
H6 | 0.5762 | 0.6870 | 0.4223 | 0.063* | |
C7 | 0.6671 (2) | 0.9575 (4) | 0.7043 (2) | 0.0764 (11) | |
H7A | 0.6583 | 1.0334 | 0.6729 | 0.115* | |
H7B | 0.7024 | 0.9823 | 0.7506 | 0.115* | |
H7C | 0.6178 | 0.9287 | 0.7084 | 0.115* | |
C8 | 0.70637 (15) | 0.5539 (3) | 0.48807 (14) | 0.0401 (6) | |
C9 | 0.72747 (17) | 0.3928 (3) | 0.41891 (15) | 0.0459 (7) | |
C10 | 0.79306 (16) | 0.4004 (3) | 0.48014 (14) | 0.0410 (7) | |
C11 | 0.85731 (17) | 0.3171 (3) | 0.49069 (16) | 0.0489 (7) | |
H11 | 0.9014 | 0.3226 | 0.5317 | 0.059* | |
C12 | 0.85291 (19) | 0.2254 (3) | 0.43757 (18) | 0.0586 (8) | |
H12 | 0.8948 | 0.1671 | 0.4428 | 0.070* | |
C13 | 0.7865 (2) | 0.2184 (4) | 0.37584 (19) | 0.0683 (10) | |
H13 | 0.7858 | 0.1563 | 0.3407 | 0.082* | |
C14 | 0.7228 (2) | 0.2999 (4) | 0.36564 (17) | 0.0635 (9) | |
H14 | 0.6785 | 0.2935 | 0.3250 | 0.076* | |
C15 | 0.4684 (3) | 0.3940 (5) | 0.3439 (3) | 0.121 (2) | |
H15A | 0.4913 | 0.3447 | 0.3875 | 0.182* | |
H15B | 0.4547 | 0.3333 | 0.3041 | 0.182* | |
H15C | 0.4218 | 0.4393 | 0.3453 | 0.182* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0484 (4) | 0.0576 (5) | 0.0422 (4) | −0.0070 (4) | 0.0012 (3) | 0.0115 (3) |
Cu1 | 0.0358 (3) | 0.0405 (3) | 0.0399 (3) | 0.000 | 0.00888 (19) | 0.000 |
Cl2 | 0.0404 (4) | 0.0512 (5) | 0.0950 (6) | 0.0002 (4) | 0.0239 (4) | 0.0185 (4) |
N1 | 0.0310 (12) | 0.0451 (14) | 0.0391 (12) | −0.0005 (10) | 0.0081 (9) | −0.0017 (10) |
N2 | 0.0367 (13) | 0.0549 (16) | 0.0441 (13) | −0.0022 (12) | 0.0038 (10) | 0.0026 (12) |
O1 | 0.0499 (12) | 0.0718 (16) | 0.0491 (11) | 0.0258 (11) | 0.0017 (9) | −0.0101 (11) |
O2 | 0.0655 (14) | 0.0698 (16) | 0.0587 (13) | 0.0287 (12) | 0.0189 (11) | −0.0032 (12) |
O3 | 0.0605 (15) | 0.0776 (19) | 0.0928 (18) | −0.0156 (14) | −0.0105 (13) | 0.0301 (15) |
C1 | 0.0307 (14) | 0.0445 (17) | 0.0493 (16) | 0.0024 (13) | 0.0137 (12) | 0.0110 (13) |
C2 | 0.0321 (14) | 0.0440 (17) | 0.0526 (16) | 0.0068 (13) | 0.0158 (12) | 0.0106 (14) |
C3 | 0.0418 (16) | 0.0472 (18) | 0.0556 (17) | 0.0088 (14) | 0.0239 (14) | 0.0096 (14) |
C4 | 0.0452 (17) | 0.050 (2) | 0.072 (2) | 0.0142 (15) | 0.0293 (16) | 0.0159 (16) |
C5 | 0.0334 (15) | 0.064 (2) | 0.074 (2) | 0.0134 (16) | 0.0128 (15) | 0.0193 (18) |
C6 | 0.0396 (16) | 0.059 (2) | 0.0531 (17) | 0.0054 (15) | 0.0085 (13) | 0.0098 (15) |
C7 | 0.092 (3) | 0.072 (3) | 0.074 (2) | 0.027 (2) | 0.038 (2) | −0.003 (2) |
C8 | 0.0306 (14) | 0.0449 (17) | 0.0442 (15) | −0.0038 (13) | 0.0114 (12) | 0.0079 (13) |
C9 | 0.0422 (16) | 0.0481 (18) | 0.0471 (16) | −0.0071 (14) | 0.0142 (13) | 0.0013 (14) |
C10 | 0.0385 (15) | 0.0423 (17) | 0.0436 (15) | −0.0071 (13) | 0.0154 (12) | −0.0010 (13) |
C11 | 0.0428 (16) | 0.0501 (19) | 0.0564 (17) | −0.0013 (15) | 0.0200 (13) | −0.0040 (15) |
C12 | 0.057 (2) | 0.052 (2) | 0.073 (2) | −0.0023 (16) | 0.0303 (17) | −0.0101 (17) |
C13 | 0.074 (2) | 0.066 (2) | 0.070 (2) | −0.013 (2) | 0.0302 (19) | −0.0246 (19) |
C14 | 0.060 (2) | 0.074 (3) | 0.0518 (18) | −0.0150 (19) | 0.0126 (16) | −0.0142 (18) |
C15 | 0.082 (3) | 0.110 (4) | 0.149 (4) | −0.029 (3) | 0.009 (3) | 0.055 (3) |
Cl1—Cu1 | 2.2297 (8) | C4—C5 | 1.377 (5) |
Cu1—Cl1i | 2.2297 (8) | C4—H4 | 0.9300 |
Cu1—Cl2 | 2.2732 (8) | C5—C6 | 1.366 (4) |
Cu1—Cl2i | 2.2732 (8) | C5—H5 | 0.9300 |
N1—C8 | 1.338 (3) | C6—H6 | 0.9300 |
N1—C10 | 1.386 (3) | C7—H7A | 0.9600 |
N1—H1 | 0.8600 | C7—H7B | 0.9600 |
N2—C8 | 1.334 (4) | C7—H7C | 0.9600 |
N2—C9 | 1.385 (4) | C9—C10 | 1.386 (4) |
N2—H2 | 0.8600 | C9—C14 | 1.388 (4) |
O1—C2 | 1.356 (3) | C10—C11 | 1.382 (4) |
O1—H1A | 0.8200 | C11—C12 | 1.377 (4) |
O2—C3 | 1.357 (4) | C11—H11 | 0.9300 |
O2—C7 | 1.431 (4) | C12—C13 | 1.400 (5) |
O3—C15 | 1.372 (5) | C12—H12 | 0.9300 |
O3—H3 | 0.8200 | C13—C14 | 1.364 (5) |
C1—C2 | 1.387 (4) | C13—H13 | 0.9300 |
C1—C6 | 1.405 (4) | C14—H14 | 0.9300 |
C1—C8 | 1.445 (4) | C15—H15A | 0.9600 |
C2—C3 | 1.398 (4) | C15—H15B | 0.9600 |
C3—C4 | 1.378 (4) | C15—H15C | 0.9600 |
Cl1i—Cu1—Cl1 | 99.99 (5) | O2—C7—H7A | 109.5 |
Cl1i—Cu1—Cl2 | 128.83 (3) | O2—C7—H7B | 109.5 |
Cl1—Cu1—Cl2 | 103.30 (3) | H7A—C7—H7B | 109.5 |
Cl1i—Cu1—Cl2i | 103.30 (3) | O2—C7—H7C | 109.5 |
Cl1—Cu1—Cl2i | 128.83 (3) | H7A—C7—H7C | 109.5 |
Cl2—Cu1—Cl2i | 96.38 (5) | H7B—C7—H7C | 109.5 |
C8—N1—C10 | 109.7 (2) | N2—C8—N1 | 107.9 (2) |
C8—N1—H1 | 125.1 | N2—C8—C1 | 125.6 (2) |
C10—N1—H1 | 125.1 | N1—C8—C1 | 126.5 (2) |
C8—N2—C9 | 109.9 (2) | N2—C9—C10 | 106.2 (3) |
C8—N2—H2 | 125.0 | N2—C9—C14 | 132.3 (3) |
C9—N2—H2 | 125.0 | C10—C9—C14 | 121.5 (3) |
C2—O1—H1A | 109.5 | C11—C10—N1 | 132.1 (3) |
C3—O2—C7 | 117.7 (2) | C11—C10—C9 | 121.7 (3) |
C15—O3—H3 | 109.5 | N1—C10—C9 | 106.2 (2) |
C2—C1—C6 | 118.4 (3) | C12—C11—C10 | 116.8 (3) |
C2—C1—C8 | 121.6 (2) | C12—C11—H11 | 121.6 |
C6—C1—C8 | 120.0 (3) | C10—C11—H11 | 121.6 |
O1—C2—C1 | 118.4 (2) | C11—C12—C13 | 121.2 (3) |
O1—C2—C3 | 120.7 (3) | C11—C12—H12 | 119.4 |
C1—C2—C3 | 120.9 (2) | C13—C12—H12 | 119.4 |
O2—C3—C4 | 126.1 (3) | C14—C13—C12 | 122.1 (3) |
O2—C3—C2 | 114.5 (2) | C14—C13—H13 | 119.0 |
C4—C3—C2 | 119.4 (3) | C12—C13—H13 | 119.0 |
C5—C4—C3 | 119.8 (3) | C13—C14—C9 | 116.7 (3) |
C5—C4—H4 | 120.1 | C13—C14—H14 | 121.6 |
C3—C4—H4 | 120.1 | C9—C14—H14 | 121.6 |
C6—C5—C4 | 121.5 (3) | O3—C15—H15A | 109.5 |
C6—C5—H5 | 119.3 | O3—C15—H15B | 109.5 |
C4—C5—H5 | 119.3 | H15A—C15—H15B | 109.5 |
C5—C6—C1 | 120.0 (3) | O3—C15—H15C | 109.5 |
C5—C6—H6 | 120.0 | H15A—C15—H15C | 109.5 |
C1—C6—H6 | 120.0 | H15B—C15—H15C | 109.5 |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 2.09 | 2.634 (3) | 120 |
N2—H2···O3 | 0.86 | 1.92 | 2.747 (3) | 162 |
O3—H3···Cl2 | 0.82 | 2.44 | 3.245 (3) | 168 |
N1—H1···Cl1ii | 0.86 | 2.55 | 3.298 (2) | 147 |
O1—H1A···Cl2ii | 0.82 | 2.36 | 3.066 (2) | 145 |
Symmetry code: (ii) x+1/2, −y+3/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C14H13N2O2)2[CuCl4]·2CH4O |
Mr | 751.95 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 298 |
a, b, c (Å) | 17.992 (2), 9.9694 (16), 19.849 (3) |
β (°) | 109.406 (2) |
V (Å3) | 3358.1 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.02 |
Crystal size (mm) | 0.55 × 0.32 × 0.29 |
Data collection | |
Diffractometer | Bruker SMART CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.605, 0.757 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8468, 2968, 2273 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.099, 1.00 |
No. of reflections | 2968 |
No. of parameters | 204 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.20 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).
Cl1—Cu1 | 2.2297 (8) | Cu1—Cl2 | 2.2732 (8) |
Cl1i—Cu1—Cl1 | 99.99 (5) | Cl1—Cu1—Cl2 | 103.30 (3) |
Cl1i—Cu1—Cl2 | 128.83 (3) | Cl2—Cu1—Cl2i | 96.38 (5) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.86 | 2.09 | 2.634 (3) | 120 |
N2—H2···O3 | 0.86 | 1.92 | 2.747 (3) | 162 |
O3—H3···Cl2 | 0.82 | 2.44 | 3.245 (3) | 168 |
N1—H1···Cl1ii | 0.86 | 2.55 | 3.298 (2) | 147 |
O1—H1A···Cl2ii | 0.82 | 2.36 | 3.066 (2) | 145 |
Symmetry code: (ii) x+1/2, −y+3/2, z+1/2. |
Acknowledgements
The authors acknowledge the financial support of the Shandong Province Science Foundation and the State Key Laboratory of Crystalline Materials, Shandong University, People's Republic of China.
References
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Zhao, Y.-H., Su, Z.-M., Wang, Y., Hao, X.-R. & Shao, K.-Z. (2006). Acta Cryst. E62, m2361–m2362. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
2-(2-Hydroxyphenyl)benzimidazole complexes have potential applications in the fabrication of organic electroluminescent devices (e.g. Zhao et al., 2006). In the title compound, (I), the organic species is protonated and does not bind to the metal ion (Fig. 1). The copper(II) ion (site symmetry 2) adopts a geometry intermediate between square planar and tetrahedral (Table 1).
In the crystal, a network of hydrogen bonds (Table 2) link the component species into chains (Fig. 2) The adjacent chains are cross-linked by π–π stacking interactions involving the two benzimidazole rings, with a centroid···centroid distance of 3.785 (3) Å.