metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­aqua­bis­[μ3-1-ethyl-6-fluoro-4-oxo-7-(piperazinium-1-yl)-1H-quinoline-3-carboxyl­ato]dinickel(II)] hydroxide nitrate]

aCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, bSchool of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 14 November 2007; accepted 24 November 2007; online 6 December 2007)

In the title compound, [Ni2(C16H18FN3O3)2(H2O)4](OH)(NO3), the cationic [Ni2(C16H18FN3O3)2(H2O)4]2+ building units are linked through Ni–Ocarboxyl­ate and Ni—Namino bridges into a layer structure. The two independent nickel atoms lie on inversion centres: one adopts an NiO6 octa­hedral geometry, the other a trans-NiN2O4 octahedral arrangement. The charge-balancing hydroxide and nitrate ions are of half site occupancy each. A network of O—H⋯O and N—H⋯O hydrogen bonds helps to establish the packing.

Related literature

For related structures, see Barbas et al. (2007[Barbas, R., Prohens, R. & Puigjaner, C. (2007). J. Therm. Anal. Calor. 89, 687-692.]); Florence et al. (2000[Florence, A. J., Kennedy, A. R., Shankland, N., Wright, E. & Al-Rubayi, A. (2000). Acta Cryst. C56, 1372-1373.]). For medical background on norfloxacin, see Goldstein (1987[Goldstein, E. (1987). Am. J. Med. 82, 3-17.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C16H18FN3O3)2(H2O)4](NO3)(OH)

  • Mr = 907.17

  • Triclinic, [P \overline 1]

  • a = 8.9633 (2) Å

  • b = 9.8121 (2) Å

  • c = 13.2119 (3) Å

  • α = 101.504 (2)°

  • β = 106.301 (2)°

  • γ = 113.528 (2)°

  • V = 956.34 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 295 (2) K

  • 0.18 × 0.16 × 0.15 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.686, Tmax = 0.856

  • 11320 measured reflections

  • 4304 independent reflections

  • 2869 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.219

  • S = 1.03

  • 4304 reflections

  • 280 parameters

  • 34 restraints

  • H-atom parameters constrained

  • Δρmax = 1.65 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.022 (3)
Ni1—O1w 2.103 (4)
Ni1—N3i 2.157 (5)
Ni2—O2 1.979 (4)
Ni2—O3 2.021 (3)
Ni2—O3w 2.108 (6)
Symmetry code: (i) x, y, z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 2.0.23A) and SAINT (Version 7.23A). Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 2.0.23A) and SAINT (Version 7.23A). Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

The drug norfloxacin has been used in the synthesis of metal complexes as it is a carboxylic acid. There are many crystal structure reports of transition metal derivatives (Cambridge Structural Database Version 5.28, Nov. 2006) but all these have the compound in the mono-deprotonated form, in which the piperazinyl group is a neutral substitutent. In the title compound (I), the substituent is protonated (Fig. 1). There are two nickel ions in the asymmetric unit of (I), both with site symmety 1. One adopts an NiO6 geometry, the other a trans-NiN2O4 arrangement (Table 1). A network of O—H···O and N—H···O hydrogen bonds (Table 2) helps to establish the packing.

For related structures, see Barbas et al. (2007) and Florence et al. (2000). For medical background on norfloxacin, see Goldstein (1987).

Related literature top

For related structures, see Barbas et al. (2007); Florence et al. (2000). For medical background on norfloxacin, see Goldstein (1987).

Experimental top

Nickel nitrate (1.0 mmol), 2,2'-bipyridine (1.0 mmol), norfloxacin (1 mmol) and water (10 ml) were hydrothermally treated in a Parr bomb at K22 K for 48 h. The bomb was cooled (5 K h-1) to room temperature to furnish blue blocks of (I).

Refinement top

The divalent cation in (I) requires two negative charges for charge balance. As the hydroxide [OH]- group lies near a special position, the occupancy of the O2w atom (arbitrarily labeled with a w) should be only half. Consequently, the nitrate [NO3]- group occupancy should also be half. Attempts to refine this group with full occupancy led to high displacement factors. The group was refined with a distance restraint of N–O 1.24±0.01 Å; the four atoms were restrained to lie on a plane. The Uij values of the four atoms as well as those of the O2w atom were restrained to be nearly isotropic.

The carbon- and nitrogen-bound H atoms were placed at calculated positions (C—H = 0.93–0.97 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier). The hydroxy and water H atoms were placed in chemically reasonable positions with O—H = 0.85Å and refined as riding with Uiso(H) = 1.5Ueq(O).

The final difference Fourier map had two large peaks in the vicinity of the diordered groups.

Structure description top

The drug norfloxacin has been used in the synthesis of metal complexes as it is a carboxylic acid. There are many crystal structure reports of transition metal derivatives (Cambridge Structural Database Version 5.28, Nov. 2006) but all these have the compound in the mono-deprotonated form, in which the piperazinyl group is a neutral substitutent. In the title compound (I), the substituent is protonated (Fig. 1). There are two nickel ions in the asymmetric unit of (I), both with site symmety 1. One adopts an NiO6 geometry, the other a trans-NiN2O4 arrangement (Table 1). A network of O—H···O and N—H···O hydrogen bonds (Table 2) helps to establish the packing.

For related structures, see Barbas et al. (2007) and Florence et al. (2000). For medical background on norfloxacin, see Goldstein (1987).

For related structures, see Barbas et al. (2007); Florence et al. (2000). For medical background on norfloxacin, see Goldstein (1987).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. View of a fragment of the polymeric structure of (I). Displacement ellipsoids are drawn at the 30% probability level, and hydrogen atoms as sphere of arbitrary radius. Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) x, y, 1 + z; (iii) 1 - x, 1 - y, -z; (iv) 2 - x, 2 - y, 1 - z.
Poly[[tetraaquabis[µ3-1-ethyl-6-fluoro-4-oxo-7-(piperazinium-1-yl)- 1H-quinoline-3-carboxylato]dinickel(II)] hydroxide nitrate] top
Crystal data top
[Ni2(C16H18FN3O3)2(H2O)4](NO3)(OH)Z = 1
Mr = 907.17F(000) = 472
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9633 (2) ÅCell parameters from 2076 reflections
b = 9.8121 (2) Åθ = 2.6–28.0°
c = 13.2119 (3) ŵ = 1.07 mm1
α = 101.504 (2)°T = 295 K
β = 106.301 (2)°Block, blue
γ = 113.528 (2)°0.18 × 0.16 × 0.15 mm
V = 956.34 (4) Å3
Data collection top
Bruker APEXII
diffractometer
4304 independent reflections
Radiation source: medium-focus sealed tube2869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.686, Tmax = 0.856k = 1212
11320 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.219H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1076P)2 + 1.3612P]
where P = (Fo2 + 2Fc2)/3
4304 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 1.65 e Å3
34 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Ni2(C16H18FN3O3)2(H2O)4](NO3)(OH)γ = 113.528 (2)°
Mr = 907.17V = 956.34 (4) Å3
Triclinic, P1Z = 1
a = 8.9633 (2) ÅMo Kα radiation
b = 9.8121 (2) ŵ = 1.07 mm1
c = 13.2119 (3) ÅT = 295 K
α = 101.504 (2)°0.18 × 0.16 × 0.15 mm
β = 106.301 (2)°
Data collection top
Bruker APEXII
diffractometer
4304 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2869 reflections with I > 2σ(I)
Tmin = 0.686, Tmax = 0.856Rint = 0.051
11320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06934 restraints
wR(F2) = 0.219H-atom parameters constrained
S = 1.03Δρmax = 1.65 e Å3
4304 reflectionsΔρmin = 0.59 e Å3
280 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.50000.50000.0328 (3)
Ni21.00001.00000.50000.0362 (3)
F10.8924 (5)1.1417 (4)0.0053 (3)0.0597 (10)
O10.5117 (4)0.6049 (4)0.3832 (3)0.0403 (9)
O20.7870 (5)0.8001 (5)0.4694 (3)0.0522 (11)
O30.9054 (5)0.9832 (5)0.3374 (3)0.0450 (10)
O1w0.7762 (5)0.5892 (5)0.5746 (3)0.0516 (10)
H1w10.81190.62310.64590.077*
H1w20.82800.66500.55370.077*
O2w1.4635 (5)0.9364 (5)0.4764 (3)0.079 (3)0.50
H2w1.41730.87420.40830.118*0.50
O3w1.1392 (8)0.8776 (7)0.4696 (5)0.0892 (17)
H3w11.22090.93260.45130.134*
H3w21.06780.78870.41630.134*
N10.4068 (5)0.6750 (5)0.0911 (3)0.0353 (9)
N20.5693 (6)0.9176 (6)0.1764 (3)0.0445 (11)
H2n0.56241.00370.16160.053*
N30.5140 (6)0.7018 (5)0.3881 (4)0.0399 (10)
H3n0.48860.75350.42940.048*
C10.6428 (6)0.7216 (6)0.3853 (4)0.0355 (11)
C20.6166 (6)0.7618 (6)0.2808 (4)0.0343 (11)
C30.4548 (7)0.6655 (6)0.1942 (4)0.0372 (11)
H30.37040.58650.20750.045*
C40.7510 (6)0.8857 (6)0.2651 (4)0.0330 (10)
C50.6994 (6)0.8949 (6)0.1519 (4)0.0324 (10)
C60.8197 (7)1.0130 (6)0.1263 (4)0.0378 (11)
H60.93071.08820.18240.045*
C70.7757 (7)1.0182 (6)0.0216 (4)0.0400 (12)
C80.6112 (7)0.9076 (6)0.0698 (4)0.0367 (11)
C90.4899 (7)0.7932 (6)0.0432 (4)0.0360 (11)
H90.37900.71860.09960.043*
C100.5301 (6)0.7878 (6)0.0651 (4)0.0328 (10)
C110.2248 (7)0.5575 (7)0.0058 (5)0.0445 (13)
H11A0.18460.60560.04570.053*
H11B0.14440.52870.04340.053*
C120.2190 (9)0.4110 (8)0.0597 (6)0.0684 (19)
H12A0.09970.33780.11370.103*
H12B0.25690.36220.00910.103*
H12C0.29650.43890.09840.103*
C130.6999 (9)0.9619 (7)0.2271 (5)0.0551 (16)
H13A0.81811.02970.16790.066*
H13B0.67581.02140.27390.066*
C140.6927 (7)0.8160 (7)0.2977 (4)0.0481 (14)
H14A0.77760.84890.33190.058*
H14B0.72800.76270.24900.058*
C150.3826 (7)0.6632 (7)0.3352 (4)0.0431 (12)
H15A0.40530.60450.28730.052*
H15B0.26380.59590.39380.052*
C160.3921 (8)0.8111 (8)0.2659 (5)0.0489 (14)
H16A0.36230.86650.31470.059*
H16B0.30560.78120.23270.059*
O40.9439 (11)0.5634 (8)0.7796 (6)0.0490 (19)0.50
O51.0325 (17)0.4310 (17)0.6823 (12)0.126 (5)0.50
O60.8282 (11)0.3095 (10)0.7300 (8)0.063 (2)0.50
N40.9354 (9)0.4383 (9)0.7316 (5)0.046 (2)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0328 (5)0.0316 (5)0.0269 (5)0.0082 (4)0.0117 (4)0.0128 (4)
Ni20.0337 (5)0.0332 (5)0.0259 (5)0.0042 (4)0.0075 (4)0.0122 (4)
F10.074 (2)0.0439 (19)0.0362 (17)0.0039 (17)0.0227 (16)0.0180 (15)
O10.0361 (19)0.040 (2)0.0340 (18)0.0079 (16)0.0113 (15)0.0198 (16)
O20.044 (2)0.050 (2)0.0309 (19)0.0013 (18)0.0047 (16)0.0212 (18)
O30.0351 (19)0.045 (2)0.0303 (18)0.0017 (17)0.0050 (15)0.0163 (17)
O1w0.041 (2)0.051 (2)0.053 (2)0.0136 (19)0.0144 (18)0.024 (2)
O2w0.069 (7)0.093 (9)0.067 (7)0.037 (7)0.024 (6)0.024 (7)
O3w0.084 (4)0.093 (4)0.094 (4)0.050 (3)0.034 (3)0.028 (3)
N10.029 (2)0.041 (2)0.029 (2)0.0115 (18)0.0106 (16)0.0132 (18)
N20.064 (3)0.041 (3)0.028 (2)0.024 (2)0.018 (2)0.015 (2)
N30.046 (3)0.035 (2)0.034 (2)0.013 (2)0.0175 (19)0.0142 (19)
C10.037 (3)0.037 (3)0.028 (2)0.013 (2)0.013 (2)0.014 (2)
C20.035 (3)0.035 (3)0.027 (2)0.012 (2)0.0110 (19)0.013 (2)
C30.037 (3)0.040 (3)0.037 (3)0.015 (2)0.019 (2)0.020 (2)
C40.036 (3)0.033 (3)0.029 (2)0.015 (2)0.013 (2)0.014 (2)
C50.035 (2)0.033 (3)0.027 (2)0.013 (2)0.0120 (19)0.013 (2)
C60.035 (3)0.035 (3)0.031 (2)0.009 (2)0.012 (2)0.009 (2)
C70.048 (3)0.033 (3)0.034 (3)0.012 (2)0.018 (2)0.015 (2)
C80.048 (3)0.039 (3)0.031 (2)0.025 (2)0.017 (2)0.017 (2)
C90.037 (3)0.035 (3)0.027 (2)0.014 (2)0.0076 (19)0.010 (2)
C100.036 (3)0.034 (3)0.029 (2)0.017 (2)0.0125 (19)0.012 (2)
C110.029 (3)0.056 (3)0.037 (3)0.014 (2)0.007 (2)0.017 (3)
C120.056 (4)0.046 (4)0.069 (5)0.011 (3)0.009 (3)0.004 (3)
C130.072 (4)0.039 (3)0.031 (3)0.006 (3)0.022 (3)0.012 (2)
C140.045 (3)0.044 (3)0.033 (3)0.002 (3)0.019 (2)0.007 (2)
C150.044 (3)0.047 (3)0.033 (3)0.020 (3)0.015 (2)0.009 (2)
C160.062 (4)0.067 (4)0.032 (3)0.043 (3)0.017 (3)0.021 (3)
O40.062 (5)0.030 (4)0.038 (4)0.019 (3)0.006 (3)0.005 (3)
O50.126 (8)0.116 (8)0.138 (8)0.022 (5)0.098 (7)0.060 (7)
O60.057 (5)0.046 (5)0.080 (6)0.016 (4)0.029 (4)0.026 (4)
N40.044 (5)0.058 (5)0.048 (5)0.026 (4)0.018 (4)0.037 (4)
Geometric parameters (Å, º) top
Ni1—O12.022 (3)C1—C21.492 (6)
Ni1—O1i2.022 (3)C2—C31.359 (7)
Ni1—O1w2.103 (4)C2—C41.430 (6)
Ni1—O1wi2.103 (4)C3—H30.9300
Ni1—N3ii2.157 (5)C4—C51.468 (6)
Ni1—N3iii2.157 (5)C5—C61.408 (6)
Ni2—O21.979 (4)C5—C101.411 (7)
Ni2—O2iv1.979 (4)C6—C71.345 (7)
Ni2—O3iv2.021 (3)C6—H60.9300
Ni2—O32.021 (3)C7—C81.418 (7)
Ni2—O3wiv2.108 (6)C8—C91.401 (7)
Ni2—O3w2.108 (6)C9—C101.390 (6)
F1—C71.352 (6)C9—H90.9300
O1—C11.260 (6)C11—C121.496 (10)
O2—C11.247 (6)C11—H11A0.9700
O3—C41.256 (6)C11—H11B0.9700
O1w—H1w10.8501C12—H12A0.9600
O1w—H1w20.8500C12—H12B0.9600
O2w—O2wv1.088 (8)C12—H12C0.9600
O2w—H2w0.8500C13—C141.511 (9)
O3w—H3w10.8501C13—H13A0.9700
O3w—H3w20.8501C13—H13B0.9700
N1—C31.343 (6)C14—H14A0.9700
N1—C101.398 (6)C14—H14B0.9700
N1—C111.486 (6)C15—C161.509 (8)
N2—C81.387 (6)C15—H15A0.9700
N2—C161.463 (7)C15—H15B0.9700
N2—C131.469 (7)C16—H16A0.9700
N2—H2n0.8600C16—H16B0.9700
N3—C141.485 (7)O4—N41.225 (8)
N3—C151.493 (7)O5—N41.241 (9)
N3—Ni1vi2.157 (5)O6—N41.237 (8)
N3—H3n0.8600
O1—Ni1—O1i180.000 (1)N1—C3—H3117.3
O1—Ni1—O1w94.08 (14)C2—C3—H3117.3
O1i—Ni1—O1w85.92 (14)O3—C4—C2126.4 (4)
O1—Ni1—O1wi85.92 (14)O3—C4—C5118.6 (4)
O1i—Ni1—O1wi94.08 (14)C2—C4—C5115.0 (4)
O1w—Ni1—O1wi180.0C6—C5—C10117.4 (4)
O1—Ni1—N3iii89.36 (15)C6—C5—C4120.4 (4)
O1i—Ni1—N3iii90.64 (15)C10—C5—C4122.2 (4)
O1w—Ni1—N3iii87.36 (16)C7—C6—C5120.7 (5)
O1wi—Ni1—N3iii92.64 (16)C7—C6—H6119.7
O1—Ni1—N3ii90.64 (15)C5—C6—H6119.7
O1i—Ni1—N3ii89.36 (15)C6—C7—F1117.3 (5)
O1w—Ni1—N3ii92.64 (16)C6—C7—C8123.8 (4)
O1wi—Ni1—N3ii87.36 (16)F1—C7—C8118.8 (4)
N3iii—Ni1—N3ii180.0 (2)N2—C8—C9122.3 (5)
O2iv—Ni2—O2180.0N2—C8—C7122.3 (4)
O2iv—Ni2—O3iv91.12 (14)C9—C8—C7115.3 (4)
O2—Ni2—O3iv88.88 (14)C10—C9—C8122.0 (5)
O2iv—Ni2—O388.88 (14)C10—C9—H9119.0
O2—Ni2—O391.12 (14)C8—C9—H9119.0
O3iv—Ni2—O3180.000 (1)C9—C10—N1121.5 (4)
O2iv—Ni2—O3wiv91.8 (2)C9—C10—C5120.7 (4)
O2—Ni2—O3wiv88.2 (2)N1—C10—C5117.8 (4)
O3iv—Ni2—O3wiv92.6 (2)N1—C11—C12111.7 (5)
O3—Ni2—O3wiv87.4 (2)N1—C11—H11A109.3
O2iv—Ni2—O3w88.2 (2)C12—C11—H11A109.3
O2—Ni2—O3w91.8 (2)N1—C11—H11B109.3
O3iv—Ni2—O3w87.4 (2)C12—C11—H11B109.3
O3—Ni2—O3w92.6 (2)H11A—C11—H11B107.9
O3wiv—Ni2—O3w180.000 (3)C11—C12—H12A109.5
C1—O1—Ni1128.4 (3)C11—C12—H12B109.5
C1—O2—Ni2130.1 (3)H12A—C12—H12B109.5
C4—O3—Ni2125.3 (3)C11—C12—H12C109.5
Ni1—O1w—H1w1109.5H12A—C12—H12C109.5
Ni1—O1w—H1w2109.5H12B—C12—H12C109.5
H1w1—O1w—H1w2109.5N2—C13—C14110.9 (4)
O2wv—O2w—H2w138.4N2—C13—H13A109.5
Ni2—O3w—H3w1109.5C14—C13—H13A109.5
Ni2—O3w—H3w2109.4N2—C13—H13B109.5
H3w1—O3w—H3w2109.5C14—C13—H13B109.5
C3—N1—C10119.8 (4)H13A—C13—H13B108.0
C3—N1—C11118.1 (4)N3—C14—C13113.3 (5)
C10—N1—C11122.0 (4)N3—C14—H14A108.9
C8—N2—C16120.9 (4)C13—C14—H14A108.9
C8—N2—C13122.5 (5)N3—C14—H14B108.9
C16—N2—C13109.1 (4)C13—C14—H14B108.9
C8—N2—H2n99.1H14A—C14—H14B107.7
C16—N2—H2n99.1N3—C15—C16111.8 (5)
C13—N2—H2n99.1N3—C15—H15A109.2
C14—N3—C15108.2 (4)C16—C15—H15A109.2
C14—N3—Ni1vi115.0 (4)N3—C15—H15B109.2
C15—N3—Ni1vi115.5 (3)C16—C15—H15B109.2
C14—N3—H3n105.7H15A—C15—H15B107.9
C15—N3—H3n105.7N2—C16—C15111.5 (5)
Ni1vi—N3—H3n105.7N2—C16—H16A109.3
O2—C1—O1122.5 (4)C15—C16—H16A109.3
O2—C1—C2121.2 (4)N2—C16—H16B109.3
O1—C1—C2116.2 (4)C15—C16—H16B109.3
C3—C2—C4119.6 (4)H16A—C16—H16B108.0
C3—C2—C1115.7 (4)O4—N4—O6121.5 (9)
C4—C2—C1124.6 (4)O4—N4—O5123.2 (10)
N1—C3—C2125.4 (4)O6—N4—O5115.3 (10)
O1w—Ni1—O1—C120.5 (5)C4—C5—C6—C7177.4 (5)
O1wi—Ni1—O1—C1159.5 (5)C5—C6—C7—F1175.2 (5)
N3iii—Ni1—O1—C1107.8 (5)C5—C6—C7—C81.0 (9)
N3ii—Ni1—O1—C172.2 (5)C16—N2—C8—C92.1 (8)
O3iv—Ni2—O2—C1168.0 (5)C13—N2—C8—C9144.4 (5)
O3—Ni2—O2—C112.0 (5)C16—N2—C8—C7174.0 (5)
O3wiv—Ni2—O2—C175.3 (6)C13—N2—C8—C739.5 (8)
O3w—Ni2—O2—C1104.7 (6)C6—C7—C8—N2179.2 (5)
O2iv—Ni2—O3—C4170.1 (5)F1—C7—C8—N23.0 (8)
O2—Ni2—O3—C49.9 (5)C6—C7—C8—C92.9 (8)
O3wiv—Ni2—O3—C478.3 (5)F1—C7—C8—C9173.3 (5)
O3w—Ni2—O3—C4101.7 (5)N2—C8—C9—C10177.4 (5)
Ni2—O2—C1—O1172.1 (4)C7—C8—C9—C101.0 (8)
Ni2—O2—C1—C27.9 (8)C8—C9—C10—N1178.8 (5)
Ni1—O1—C1—O26.5 (8)C8—C9—C10—C52.6 (8)
Ni1—O1—C1—C2173.5 (3)C3—N1—C10—C9174.9 (5)
O2—C1—C2—C3178.7 (5)C11—N1—C10—C91.6 (8)
O1—C1—C2—C31.2 (7)C3—N1—C10—C53.7 (7)
O2—C1—C2—C42.5 (8)C11—N1—C10—C5179.7 (5)
O1—C1—C2—C4177.5 (5)C6—C5—C10—C94.4 (7)
C10—N1—C3—C22.2 (8)C4—C5—C10—C9175.7 (5)
C11—N1—C3—C2178.9 (5)C6—C5—C10—N1177.0 (5)
C4—C2—C3—N10.3 (9)C4—C5—C10—N13.0 (7)
C1—C2—C3—N1176.1 (5)C3—N1—C11—C1289.1 (6)
Ni2—O3—C4—C24.4 (8)C10—N1—C11—C1287.5 (6)
Ni2—O3—C4—C5176.5 (3)C8—N2—C13—C1492.7 (6)
C3—C2—C4—O3179.8 (5)C16—N2—C13—C1457.2 (6)
C1—C2—C4—O34.1 (9)C15—N3—C14—C1353.8 (5)
C3—C2—C4—C51.0 (7)Ni1vi—N3—C14—C13175.4 (3)
C1—C2—C4—C5175.1 (5)N2—C13—C14—N356.8 (6)
O3—C4—C5—C61.4 (8)C14—N3—C15—C1654.0 (6)
C2—C4—C5—C6179.3 (5)Ni1vi—N3—C15—C16175.4 (3)
O3—C4—C5—C10178.6 (5)C8—N2—C16—C1591.7 (6)
C2—C4—C5—C100.7 (7)C13—N2—C16—C1558.7 (6)
C10—C5—C6—C72.6 (8)N3—C15—C16—N258.6 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x+2, y+2, z+1; (v) x+3, y+2, z+1; (vi) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O40.852.162.820 (8)135
O1w—H1w2···O20.851.972.700 (5)143
O2w—H2w···O6vii0.852.172.90 (1)145
O3w—H3w1···O2w0.852.092.699 (7)128
O3w—H3w2···O5vii0.851.962.77 (2)161
N3—H3n···O2wviii0.862.433.277 (6)171
Symmetry codes: (vii) x+2, y+1, z+1; (viii) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Ni2(C16H18FN3O3)2(H2O)4](NO3)(OH)
Mr907.17
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.9633 (2), 9.8121 (2), 13.2119 (3)
α, β, γ (°)101.504 (2), 106.301 (2), 113.528 (2)
V3)956.34 (4)
Z1
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.18 × 0.16 × 0.15
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.686, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
11320, 4304, 2869
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.219, 1.03
No. of reflections4304
No. of parameters280
No. of restraints34
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.65, 0.59

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

Selected bond lengths (Å) top
Ni1—O12.022 (3)Ni2—O21.979 (4)
Ni1—O1w2.103 (4)Ni2—O32.021 (3)
Ni1—N3i2.157 (5)Ni2—O3w2.108 (6)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

We thank Guangdong Ocean University and the University of Malaya for supporting this study.

References

First citationBarbas, R., Prohens, R. & Puigjaner, C. (2007). J. Therm. Anal. Calor. 89, 687–692.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2 (Version 2.0.23A) and SAINT (Version 7.23A). Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationFlorence, A. J., Kennedy, A. R., Shankland, N., Wright, E. & Al-Rubayi, A. (2000). Acta Cryst. C56, 1372–1373.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGoldstein, E. (1987). Am. J. Med. 82, 3–17.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds