organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1,3-Dioxoisoindolin-2-yl)propane­nitrile

aXinyu College, Xinyu 338000, People's Republic of China, and bDepartment of Pharmaceutical Science, Taishan Medical College, Taian, 271000, People's Republic of China
*Correspondence e-mail: xiachc@163.com

(Received 27 November 2007; accepted 28 November 2007; online 6 December 2007)

In the title compound, C11H8N2O2, the packing is consolidated by C—H⋯N and C—H⋯O inter­actions.

Related literature

For related literature, see: Wingrove & Caret (1981[Wingrove, A. S. & Caret, R. L. (1981). Org. Chem. pp. 11-26.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8N2O2

  • Mr = 200.19

  • Monoclinic, P 21 /c

  • a = 9.1368 (17) Å

  • b = 8.2543 (16) Å

  • c = 12.646 (2) Å

  • β = 96.909 (3)°

  • V = 946.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 273 (2) K

  • 0.17 × 0.15 × 0.12 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: none

  • 4828 measured reflections

  • 1674 independent reflections

  • 1494 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.124

  • S = 1.00

  • 1674 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯N1i 0.93 2.62 3.517 (2) 162
C8—H8⋯O2ii 0.93 2.55 3.3922 (17) 151
C2—H2A⋯O1iii 0.97 2.58 3.3682 (17) 138
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Isoindoline-1,3-dione derivatives exhibit a high level of biological activity (Wingrove & Caret, 1981). As a part of our studies in this area, we have isolated the title compound, (I), (Fig. 1).

As expected, the six-membered and five-membered rings are almost co-planar [dihedral angle = 0.67 (6)°]. In the crystal of (I), C—H···O and C—H···N interactions (Table 1) help to establish the packing (Fig. 2).

Related literature top

For related literature, see: Wingrove & Caret (1981).

Experimental top

Tht title compound was synthesized from a mixture of isoindoline-1,3-dione (5 mmol, 0.736 g) and 3-chloropropanenitrile (5 mmol, 0.448 g) and triethylamine (8 mmol, 0.505 g) and 30 ml N,N-dimethylformamide. The components were dissolved in 20 ml e thanol and 2 ml water, then heated to boiling and stirred for ten minutes. The system was cooled to the room temperature and colourless blocks of (I) were collected after six days.

Structure description top

Isoindoline-1,3-dione derivatives exhibit a high level of biological activity (Wingrove & Caret, 1981). As a part of our studies in this area, we have isolated the title compound, (I), (Fig. 1).

As expected, the six-membered and five-membered rings are almost co-planar [dihedral angle = 0.67 (6)°]. In the crystal of (I), C—H···O and C—H···N interactions (Table 1) help to establish the packing (Fig. 2).

For related literature, see: Wingrove & Caret (1981).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. Part of the crystal structure of (I), with hydrogen bonds shown as thin lines.
3-(1,3-Dioxoisoindolin-2-yl)propanenitrile top
Crystal data top
C11H8N2O2F(000) = 416
Mr = 200.19Dx = 1.404 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2936 reflections
a = 9.1368 (17) Åθ = 2.5–28.2°
b = 8.2543 (16) ŵ = 0.10 mm1
c = 12.646 (2) ÅT = 273 K
β = 96.909 (3)°Block, colorless
V = 946.8 (3) Å30.17 × 0.15 × 0.12 mm
Z = 4
Data collection top
Siemens SMART CCD
diffractometer
1494 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.018
Graphite monochromatorθmax = 25.0°, θmin = 3.0°
ω scansh = 107
4828 measured reflectionsk = 99
1674 independent reflectionsl = 1514
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.1P)2 + 0.04P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
1674 reflectionsΔρmax = 0.13 e Å3
137 parametersΔρmin = 0.13 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.104 (13)
Crystal data top
C11H8N2O2V = 946.8 (3) Å3
Mr = 200.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1368 (17) ŵ = 0.10 mm1
b = 8.2543 (16) ÅT = 273 K
c = 12.646 (2) Å0.17 × 0.15 × 0.12 mm
β = 96.909 (3)°
Data collection top
Siemens SMART CCD
diffractometer
1494 reflections with I > 2σ(I)
4828 measured reflectionsRint = 0.018
1674 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.00Δρmax = 0.13 e Å3
1674 reflectionsΔρmin = 0.13 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.31079 (12)0.24260 (12)0.97960 (8)0.0663 (4)
O20.56771 (10)0.04615 (12)0.75807 (8)0.0611 (3)
N10.05883 (14)0.35783 (16)0.75444 (12)0.0732 (4)
N20.40733 (11)0.08414 (11)0.85568 (8)0.0448 (3)
C10.12620 (14)0.24940 (15)0.73348 (11)0.0510 (4)
C20.20664 (13)0.10716 (16)0.70665 (10)0.0499 (4)
H2A0.28480.14020.66580.060*
H2B0.14050.03680.66190.060*
C30.27357 (14)0.01227 (15)0.80366 (10)0.0496 (4)
H3A0.20200.00530.85420.060*
H3B0.29470.09710.78190.060*
C40.41465 (14)0.19575 (15)0.93856 (9)0.0469 (4)
C50.54539 (14)0.04830 (14)0.82728 (9)0.0450 (3)
C60.65174 (14)0.14708 (13)0.89805 (9)0.0456 (3)
C70.57276 (14)0.23633 (14)0.96403 (9)0.0464 (4)
C80.64206 (17)0.34173 (15)1.03802 (10)0.0586 (4)
H80.58900.40261.08220.070*
C90.79450 (19)0.35366 (16)1.04404 (11)0.0659 (4)
H90.84430.42421.09320.079*
C100.87332 (18)0.26370 (17)0.97915 (12)0.0649 (4)
H100.97540.27350.98550.078*
C110.80229 (15)0.15797 (16)0.90385 (11)0.0573 (4)
H110.85490.09720.85930.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0719 (7)0.0692 (7)0.0603 (7)0.0093 (5)0.0179 (5)0.0101 (5)
O20.0645 (6)0.0646 (6)0.0544 (6)0.0029 (4)0.0073 (5)0.0196 (5)
N10.0610 (8)0.0670 (8)0.0897 (10)0.0111 (6)0.0017 (7)0.0017 (7)
N20.0512 (6)0.0400 (5)0.0433 (6)0.0014 (4)0.0058 (4)0.0009 (4)
C10.0417 (7)0.0532 (8)0.0566 (8)0.0056 (5)0.0001 (6)0.0029 (5)
C20.0500 (7)0.0527 (7)0.0472 (7)0.0050 (5)0.0060 (5)0.0037 (5)
C30.0528 (7)0.0415 (6)0.0547 (7)0.0060 (5)0.0067 (6)0.0008 (5)
C40.0619 (8)0.0396 (6)0.0401 (6)0.0054 (5)0.0097 (5)0.0029 (5)
C50.0543 (7)0.0414 (6)0.0392 (6)0.0015 (5)0.0049 (5)0.0013 (5)
C60.0576 (7)0.0392 (6)0.0391 (6)0.0003 (5)0.0017 (5)0.0047 (5)
C70.0635 (8)0.0375 (6)0.0366 (6)0.0025 (5)0.0004 (5)0.0046 (4)
C80.0843 (10)0.0435 (7)0.0449 (7)0.0032 (6)0.0047 (6)0.0015 (5)
C90.0839 (10)0.0508 (8)0.0565 (8)0.0097 (7)0.0190 (7)0.0016 (6)
C100.0660 (9)0.0639 (9)0.0610 (9)0.0114 (6)0.0083 (7)0.0074 (7)
C110.0577 (8)0.0581 (8)0.0551 (8)0.0033 (6)0.0030 (6)0.0029 (6)
Geometric parameters (Å, º) top
O1—C41.1992 (15)C4—C71.4801 (18)
O2—C51.2076 (14)C5—C61.4835 (17)
N1—C11.1356 (17)C6—C111.3717 (18)
N2—C51.3845 (16)C6—C71.3801 (17)
N2—C41.3910 (16)C7—C81.3751 (17)
N2—C31.4440 (15)C8—C91.389 (2)
C1—C21.4469 (18)C8—H80.9300
C2—C31.5206 (18)C9—C101.373 (2)
C2—H2A0.9700C9—H90.9300
C2—H2B0.9700C10—C111.3932 (19)
C3—H3A0.9700C10—H100.9300
C3—H3B0.9700C11—H110.9300
C5—N2—C4111.98 (10)O2—C5—C6129.54 (11)
C5—N2—C3122.80 (10)N2—C5—C6106.09 (10)
C4—N2—C3125.22 (10)C11—C6—C7121.78 (12)
N1—C1—C2177.64 (14)C11—C6—C5130.40 (11)
C1—C2—C3113.27 (11)C7—C6—C5107.82 (11)
C1—C2—H2A108.9C8—C7—C6121.18 (13)
C3—C2—H2A108.9C8—C7—C4130.45 (12)
C1—C2—H2B108.9C6—C7—C4108.37 (11)
C3—C2—H2B108.9C7—C8—C9117.30 (13)
H2A—C2—H2B107.7C7—C8—H8121.3
N2—C3—C2113.09 (9)C9—C8—H8121.3
N2—C3—H3A109.0C10—C9—C8121.56 (13)
C2—C3—H3A109.0C10—C9—H9119.2
N2—C3—H3B109.0C8—C9—H9119.2
C2—C3—H3B109.0C9—C10—C11120.83 (15)
H3A—C3—H3B107.8C9—C10—H10119.6
O1—C4—N2124.81 (12)C11—C10—H10119.6
O1—C4—C7129.44 (12)C6—C11—C10117.34 (13)
N2—C4—C7105.73 (10)C6—C11—H11121.3
O2—C5—N2124.37 (11)C10—C11—H11121.3
C5—N2—C3—C288.43 (14)C11—C6—C7—C80.69 (17)
C4—N2—C3—C291.44 (14)C5—C6—C7—C8179.16 (10)
C1—C2—C3—N278.45 (14)C11—C6—C7—C4179.38 (10)
C5—N2—C4—O1177.63 (11)C5—C6—C7—C40.77 (12)
C3—N2—C4—O12.48 (19)O1—C4—C7—C82.7 (2)
C5—N2—C4—C70.90 (13)N2—C4—C7—C8178.90 (11)
C3—N2—C4—C7178.99 (10)O1—C4—C7—C6177.41 (12)
C4—N2—C5—O2179.38 (11)N2—C4—C7—C61.02 (13)
C3—N2—C5—O20.73 (18)C6—C7—C8—C90.46 (17)
C4—N2—C5—C60.44 (13)C4—C7—C8—C9179.63 (12)
C3—N2—C5—C6179.44 (10)C7—C8—C9—C100.21 (19)
O2—C5—C6—C110.1 (2)C8—C9—C10—C110.7 (2)
N2—C5—C6—C11179.93 (12)C7—C6—C11—C100.23 (18)
O2—C5—C6—C7179.96 (12)C5—C6—C11—C10179.59 (12)
N2—C5—C6—C70.23 (12)C9—C10—C11—C60.43 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N1i0.932.623.517 (2)162
C8—H8···O2ii0.932.553.3922 (17)151
C2—H2A···O1iii0.972.583.3682 (17)138
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H8N2O2
Mr200.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)9.1368 (17), 8.2543 (16), 12.646 (2)
β (°) 96.909 (3)
V3)946.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.17 × 0.15 × 0.12
Data collection
DiffractometerSiemens SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4828, 1674, 1494
Rint0.018
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.124, 1.00
No. of reflections1674
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···N1i0.932.623.517 (2)162
C8—H8···O2ii0.932.553.3922 (17)151
C2—H2A···O1iii0.972.583.3682 (17)138
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
 

References

First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationWingrove, A. S. & Caret, R. L. (1981). Org. Chem. pp. 11–26.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds