metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chlorido(3,5-di­methyl-1H-pyrazole)[(3,5-di­methyl-1H-pyrazol-1-yl)(o-tol­yl)methanone]palladium(II)

aDepartment of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: gjkruger@uj.ac.za

(Received 29 November 2007; accepted 12 December 2007; online 18 December 2007)

In the title compound, [PdCl2(C5H8N2)(C12H12N2O)], the Pd atom adopts a slightly distorted trans-PdCl2N2 square-planar arrangement. The different Pd—N bond lengths can be related to the the electron-withdrawing effect of the o-toluoyl group on the substituted pyrazole ligand. The complex crystallizes as centrosymmetric hydrogen-bonded dimers through N—H⋯Cl linkages.

Related literature

For related literature, see: Mukherjee (2000[Mukherjee, R. (2000). Coord. Chem. Rev. 203, 151-218.]); Komeda et al. (2000[Komeda, S., Luts, M., Spek, A. L., Chikuma, M. & Reedjik, J. (2000). Inorg. Chem. 39, 4230-4236.]); Li et al. (2002[Li, K., Darkwa, J., Guzei, I. A. & Mapolie, S. F. (2002). J. Organomet. Chem. 660, 108-115.]); Guzei et al. (2003[Guzei, I. A., Li, K., Bikhazanova, G. A., Darkwa, J. & Mapolie, S. F. (2003). Dalton Trans. pp. 715-722.]); Guzei et al. (2005[Guzei, I. A., Ojwach, S. O. & Darkwa, J. (2005). Acta Cryst. E61, m1492-m1494.]); Ojwach et al. (2005[Ojwach, S. O., Tshivhase, M. G., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2005). Can. J. Chem. 83, 843-853.]); Spencer et al. (2006[Spencer, L. C., Guzei, I. A., Ojwach, S. O. & Darkwa, J. (2006). Acta Cryst. C62, m421-m423.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [PdCl2(C5H8N2)(C12H12N2O)]

  • Mr = 487.70

  • Orthorhombic, P b c a

  • a = 15.908 (3) Å

  • b = 15.479 (3) Å

  • c = 16.602 (3) Å

  • V = 4088.0 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 293 (2) K

  • 0.32 × 0.28 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. Version 2004/1. University of Göttingen, Germany.]) Tmin = 0.703, Tmax = 0.843

  • 43509 measured reflections

  • 4023 independent reflections

  • 2686 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.08

  • 4023 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—N11 1.989 (4)
Pd1—N21 2.042 (4)
Pd1—Cl1 2.2981 (15)
Pd1—Cl2 2.3001 (15)
N11—Pd1—N21 174.88 (15)
N11—Pd1—Cl1 88.39 (13)
N21—Pd1—Cl1 90.02 (12)
N11—Pd1—Cl2 89.98 (13)
N21—Pd1—Cl2 91.84 (12)
Cl1—Pd1—Cl2 176.71 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N12—H12A⋯Cl2i 0.86 2.35 3.194 (4) 169
Symmetry code: (i) -x, -y, -z+1.

Data collection: SMART-NT (Bruker, 1998[Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]), PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

Pyrazole and pyrazolyl ligands have been used to form N-donor metal complexes with interesting catalytic applications (Mukherjee, 2000) and as mimics for imidazole coordination in metalloenzymes (Komeda et al., 2000). Catalytic behaviour of such N-donor metal complexes, in particular, depends on the nature of substituents on the pyrazolyl ligands. The introduction of dicarbonylbenzene linkers (Guzei et al., 2003) to bis(pyrazole)palladium complexes (Li et al., 2002), for instance, improves the activity of these complexes as ethylene polymerization catalysts. The presence of carbonyl functional groups in palladium complexes, however, reduces their stability as catalysts. We initially attributed the reduced stability to the effect of two carbonyl groups on the N-donor ability of the pyrazolyl ligands. In an attempt to improve the stability of the palladium catalysts, monocarbonylbenzene units were attached to pyrazolyl units to prepare the bis(pyrazolylcarbonylbenzene)palladium dichloride. Surprisingly, with (3,5-dimethyl-pyrazol-1-yl)-o-toluoyl-methanone as a ligand during complexation with PdCl2, we isolated the title compound, (I), a mixed ligand palladium complex, containing (3,5-dimethyl-pyrazol-1-yl)-o-toluoyl-methanone and 3,5-dimethylpyrazole as ligands. The formation of compound I appears to occur via partial hydrolysis of one of the (3,5-dimethyl-pyrazol-1-yl)-o-toluoyl-methanone ligands, presumably by traces of water in the reaction mixture.

Compound (I) displays square planar geometry around the palladium atom, with the two different pyrazolyl ligands ((3,5-dimethyl-pyrazol-1-yl)-o-toluoyl-methanone and 3,5-dimethylpyrazole) bonding trans to the metal centre via N atoms (Fig. 1). The slight distortion of the square planar configuration around the palladium atom can be seen in the differences in bond angles involving palladium (Table 1) and the deviations from the least-squares plane through the central five atoms [Pd1 = -0.0116 (12) Å, Cl1 = -0.0684 (12) Å, Cl2 = -0.0665 (12) Å, N11 = 0.0754 (17) Å, N21 = 0.0711 (16) Å], with the biggest deviations being observed for the nitrogen atoms. The pyrazolyl rings of the coordinating ligands are roughly perpendicular to this central plane, with interplanar angles of 86.66 (12)° and 68.13 (14)° respectively. The Pd—Cl bond distances in (I) are similar to Pd—Cl distances in related complexes (e.g. Spencer et al., 2006) and consistent with the average of 2.33 (4)Å calculated for 2151 Pd—Cl distances in 1306 complexes reported to the Cambridge Structural Database (CSD, Version 5.26, updated May 2005; Allen 2002). One interesting feature of (I) is the significant difference of 0.053 Å in the Pd—N bond distances for the two ligands, illustrating the electron-withdrawing effect of the o-toluoyl-methanone substituent on the pyrazolyl ligand.

Intermolecular hydrogen bonding is responsible for the formation of centrosymmetric dimers through N—H···Cl linkages [Figure 2, Table 2]. In contrast to previous observations (Li et al., 2002), the hydrogen bonding in (I) has no effect on the bond order: we observed two virtually identical Pd—Cl bond lengths, although only Cl1 was involved in a N—H···Cl hydrogen bond.

Related literature top

For related literature, see: Mukherjee (2000); Komeda et al. (2000); Li et al. (2002); Guzei et al. (2003); Guzei et al. (2005); Ojwach et al. (2005); Spencer et al. (2006); Allen (2002).

Experimental top

To a solution of [PdCl2(NCMe)2] (0.10 g, 0.47 mmol) in dichloromethane (30 ml), was added (3,5-dimethyl-pyrazol-1-yl)-o-toluoyl-methanone (0.06 g, 0.23 mmol). The formation of an orange-yellow solution was observed and the reaction mixture was stirred at room temperature for 24 h. The solution was then concentrated to 15 ml and an equal amount of hexane was added and kept at -4 °C for 3 days to yield yellow crystals suitable for X-ray analysis. Yield = 0.08 g, 59%. IR (Nujol): ν (C=O) = 1699. 1H NMR (CDCl3): δ 9.50 (s, 1H, N—H), 7.54 (m, 4H, o-toluoyl), 6.13 (s, 1H, 4-pz, o-toluoyl), 5.74 (s, 1H, 4-pz), 2.94 (s, 3H, o-toluoyl), 2.56 (s, 3H, 5-CH3, o-toluoyl), 2.35 (s, 3H, 3-CH3, o-toluoyl), 2.31 (s, 3H, 5-CH3,), 2.21 (s, 3H, 3-CH3). 13C{1H} NMR: δ 169.4, 157.4, 137.6, 133.3, 131.5, 128.4, 118.6, 106.5, 33.1, 32.4, 30.1.

Refinement top

The H atoms were geometrically positioned and refined in the riding-model approximation, with C—H = 0.93–0.96 Å, N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). The highest peak in the final difference map is 0.87 Å from Cl1 and the deepest hole is 0.88 Å from N11.

Structure description top

Pyrazole and pyrazolyl ligands have been used to form N-donor metal complexes with interesting catalytic applications (Mukherjee, 2000) and as mimics for imidazole coordination in metalloenzymes (Komeda et al., 2000). Catalytic behaviour of such N-donor metal complexes, in particular, depends on the nature of substituents on the pyrazolyl ligands. The introduction of dicarbonylbenzene linkers (Guzei et al., 2003) to bis(pyrazole)palladium complexes (Li et al., 2002), for instance, improves the activity of these complexes as ethylene polymerization catalysts. The presence of carbonyl functional groups in palladium complexes, however, reduces their stability as catalysts. We initially attributed the reduced stability to the effect of two carbonyl groups on the N-donor ability of the pyrazolyl ligands. In an attempt to improve the stability of the palladium catalysts, monocarbonylbenzene units were attached to pyrazolyl units to prepare the bis(pyrazolylcarbonylbenzene)palladium dichloride. Surprisingly, with (3,5-dimethyl-pyrazol-1-yl)-o-toluoyl-methanone as a ligand during complexation with PdCl2, we isolated the title compound, (I), a mixed ligand palladium complex, containing (3,5-dimethyl-pyrazol-1-yl)-o-toluoyl-methanone and 3,5-dimethylpyrazole as ligands. The formation of compound I appears to occur via partial hydrolysis of one of the (3,5-dimethyl-pyrazol-1-yl)-o-toluoyl-methanone ligands, presumably by traces of water in the reaction mixture.

Compound (I) displays square planar geometry around the palladium atom, with the two different pyrazolyl ligands ((3,5-dimethyl-pyrazol-1-yl)-o-toluoyl-methanone and 3,5-dimethylpyrazole) bonding trans to the metal centre via N atoms (Fig. 1). The slight distortion of the square planar configuration around the palladium atom can be seen in the differences in bond angles involving palladium (Table 1) and the deviations from the least-squares plane through the central five atoms [Pd1 = -0.0116 (12) Å, Cl1 = -0.0684 (12) Å, Cl2 = -0.0665 (12) Å, N11 = 0.0754 (17) Å, N21 = 0.0711 (16) Å], with the biggest deviations being observed for the nitrogen atoms. The pyrazolyl rings of the coordinating ligands are roughly perpendicular to this central plane, with interplanar angles of 86.66 (12)° and 68.13 (14)° respectively. The Pd—Cl bond distances in (I) are similar to Pd—Cl distances in related complexes (e.g. Spencer et al., 2006) and consistent with the average of 2.33 (4)Å calculated for 2151 Pd—Cl distances in 1306 complexes reported to the Cambridge Structural Database (CSD, Version 5.26, updated May 2005; Allen 2002). One interesting feature of (I) is the significant difference of 0.053 Å in the Pd—N bond distances for the two ligands, illustrating the electron-withdrawing effect of the o-toluoyl-methanone substituent on the pyrazolyl ligand.

Intermolecular hydrogen bonding is responsible for the formation of centrosymmetric dimers through N—H···Cl linkages [Figure 2, Table 2]. In contrast to previous observations (Li et al., 2002), the hydrogen bonding in (I) has no effect on the bond order: we observed two virtually identical Pd—Cl bond lengths, although only Cl1 was involved in a N—H···Cl hydrogen bond.

For related literature, see: Mukherjee (2000); Komeda et al. (2000); Li et al. (2002); Guzei et al. (2003); Guzei et al. (2005); Ojwach et al. (2005); Spencer et al. (2006); Allen (2002).

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999), PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. : A hydrogen-bonded dimer in (I) with the H bonds indicated by thin blue lines.
Dichlorido(3,5-dimethyl-1H-pyrazole)[(3,5-dimethyl-1H-pyrazol-1-yl)(o- tolyl)methanone]palladium(II) top
Crystal data top
[PdCl2(C5H8N2)(C12H12N2O)]F(000) = 1968
Mr = 487.70Dx = 1.585 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2686 reflections
a = 15.908 (3) Åθ = 2.2–26.0°
b = 15.479 (3) ŵ = 1.18 mm1
c = 16.602 (3) ÅT = 293 K
V = 4088.0 (12) Å3Block, yellow
Z = 80.32 × 0.28 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
4023 independent reflections
Radiation source: fine-focus sealed tube2686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
φ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1919
Tmin = 0.703, Tmax = 0.843k = 1819
43509 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0425P)2 + 9.9045P]
where P = (Fo2 + 2Fc2)/3
4023 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 1.09 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[PdCl2(C5H8N2)(C12H12N2O)]V = 4088.0 (12) Å3
Mr = 487.70Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.908 (3) ŵ = 1.18 mm1
b = 15.479 (3) ÅT = 293 K
c = 16.602 (3) Å0.32 × 0.28 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
4023 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
2686 reflections with I > 2σ(I)
Tmin = 0.703, Tmax = 0.843Rint = 0.056
43509 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.08Δρmax = 1.09 e Å3
4023 reflectionsΔρmin = 0.49 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Atoms 'Deviations (Å)' Pd1 - 0.0116 (12) Cl1 - 0.0684 (12) Cl2 - 0.0665 (12) N11 0.0754 (17) N21 0.0711 (16)

Atoms 'Deviations (Å)' N11 - 0.0012 (32) N12 0.0016 (33) C11 - 0.0010 (51) C12 - 0.0021 (49) C13 - 0.0038 (56) C14 0.0023 (42) C15 0.0042 (45)

Atoms 'Deviations (Å)' N21 0.0327 (35) N22 - 0.0225 (38) C21 - 0.0159 (65) C22 0.0319 (54) C23 0.0057 (55) C24 - 0.0040 (49) C25 - 0.0279 (46)

Atoms 'Deviations (Å)' C32 0.0353 (49) C31 0.0478 (44) C33 - 0.0055 (54) C34 - 0.0356 (52) C35 - 0.0064 (49) C36 0.0160 (51) C37 0.0075 (42) C26 - 0.0592 (38)

'Plane 1' 'Plane 2' 'Interplanar Angle (°)' Square 'Ring 1' 86.66 (12) Square 'Ring 2' 68.13 (14) 'Ring 2' 'Ring 3' 55.98 (25)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.1260 (3)0.2107 (3)0.4805 (3)0.0544 (13)
C120.1495 (4)0.2290 (3)0.4037 (4)0.0588 (14)
H120.16460.28290.38360.071*
C130.1468 (4)0.1521 (3)0.3608 (3)0.0551 (13)
C140.1168 (4)0.2659 (4)0.5543 (4)0.087 (2)
H14A0.16770.29770.56310.130*
H14B0.07090.30540.54700.130*
H14C0.10570.22970.60010.130*
C150.1668 (5)0.1341 (4)0.2743 (4)0.095 (2)
H15A0.11950.10670.24910.142*
H15B0.17910.18740.24720.142*
H15C0.21480.09660.27120.142*
C210.1020 (4)0.3084 (3)0.3533 (4)0.0726 (18)
C220.1203 (4)0.3102 (4)0.4313 (4)0.0668 (16)
H220.12990.35930.46230.080*
C230.1226 (4)0.2247 (3)0.4582 (3)0.0580 (14)
C240.0921 (6)0.3799 (4)0.2929 (5)0.115 (3)
H24A0.03380.39520.28860.173*
H24B0.11220.36080.24140.173*
H24C0.12380.42930.31000.173*
C250.1364 (5)0.1919 (4)0.5424 (4)0.095 (2)
H25A0.08500.16760.56260.142*
H25B0.15360.23880.57640.142*
H25C0.17930.14830.54190.142*
C260.0658 (4)0.1895 (4)0.2552 (3)0.0679 (16)
C320.2068 (4)0.1314 (4)0.2339 (4)0.0711 (17)
H320.22480.16550.27670.085*
C310.1223 (3)0.1290 (3)0.2129 (3)0.0495 (12)
C330.2646 (4)0.0820 (5)0.1902 (4)0.086 (2)
H330.32130.08290.20380.103*
C340.2379 (5)0.0334 (5)0.1288 (4)0.085 (2)
H340.27630.00120.09920.102*
C350.1495 (5)0.0305 (4)0.1079 (3)0.0738 (18)
H350.13120.00470.06590.089*
C360.0945 (4)0.0783 (4)0.1488 (3)0.0687 (17)
C370.0019 (5)0.0762 (5)0.1242 (4)0.093 (2)
H37B0.01050.12540.09100.140*
H37C0.03280.07760.17150.140*
H37A0.00920.02420.09450.140*
N110.1224 (3)0.0881 (3)0.4099 (2)0.0491 (10)
N120.1103 (3)0.1256 (3)0.4824 (2)0.0521 (10)
H12A0.09430.09820.52480.062*
N210.1115 (2)0.1715 (2)0.3970 (2)0.0425 (9)
N220.0961 (3)0.2227 (3)0.3322 (3)0.0650 (13)
O10.0029 (4)0.2206 (3)0.2275 (3)0.1102 (19)
Cl10.25848 (9)0.04521 (9)0.42155 (10)0.0660 (4)
Cl20.02466 (9)0.02924 (9)0.36848 (9)0.0614 (4)
Pd10.11619 (2)0.03965 (2)0.39821 (2)0.04292 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.058 (3)0.038 (3)0.068 (3)0.002 (2)0.001 (3)0.012 (2)
C120.064 (3)0.033 (3)0.080 (4)0.004 (2)0.005 (3)0.006 (3)
C130.070 (4)0.041 (3)0.054 (3)0.002 (3)0.014 (3)0.009 (2)
C140.110 (6)0.063 (4)0.088 (5)0.006 (4)0.000 (4)0.026 (4)
C150.156 (7)0.071 (4)0.058 (4)0.007 (5)0.025 (4)0.009 (3)
C210.106 (5)0.037 (3)0.074 (4)0.011 (3)0.004 (4)0.001 (3)
C220.082 (4)0.046 (3)0.072 (4)0.003 (3)0.001 (3)0.022 (3)
C230.077 (4)0.043 (3)0.053 (3)0.008 (3)0.002 (3)0.011 (2)
C240.182 (9)0.053 (4)0.111 (6)0.023 (5)0.007 (6)0.022 (4)
C250.162 (8)0.072 (4)0.051 (4)0.014 (5)0.011 (4)0.012 (3)
C260.090 (5)0.057 (4)0.056 (3)0.022 (3)0.004 (3)0.006 (3)
C320.078 (4)0.082 (4)0.054 (3)0.003 (4)0.002 (3)0.011 (3)
C310.066 (3)0.043 (3)0.040 (2)0.006 (3)0.004 (2)0.008 (2)
C330.070 (5)0.109 (6)0.078 (5)0.017 (4)0.018 (4)0.005 (4)
C340.099 (6)0.089 (5)0.069 (4)0.030 (4)0.028 (4)0.008 (4)
C350.117 (6)0.056 (4)0.049 (3)0.016 (4)0.013 (3)0.001 (3)
C360.108 (5)0.053 (3)0.045 (3)0.000 (3)0.010 (3)0.008 (3)
C370.093 (5)0.096 (5)0.090 (5)0.014 (4)0.029 (4)0.000 (4)
N110.065 (3)0.041 (2)0.041 (2)0.002 (2)0.004 (2)0.0020 (17)
N120.065 (3)0.044 (2)0.047 (2)0.006 (2)0.003 (2)0.0008 (19)
N210.055 (2)0.034 (2)0.039 (2)0.0076 (17)0.0045 (19)0.0001 (17)
N220.107 (4)0.039 (2)0.049 (3)0.010 (2)0.006 (2)0.003 (2)
O10.126 (4)0.119 (4)0.085 (3)0.064 (4)0.030 (3)0.013 (3)
Cl10.0588 (8)0.0530 (8)0.0862 (10)0.0017 (7)0.0193 (7)0.0089 (7)
Cl20.0509 (7)0.0671 (9)0.0661 (8)0.0038 (7)0.0010 (6)0.0147 (7)
Pd10.0545 (2)0.0340 (2)0.0403 (2)0.00246 (17)0.00455 (17)0.00125 (16)
Geometric parameters (Å, º) top
C11—N121.342 (6)C25—H25C0.9600
C11—C121.358 (8)C26—O11.202 (7)
C11—C141.501 (8)C26—N221.459 (7)
C12—C131.388 (7)C26—C311.475 (7)
C12—H120.9300C32—C311.389 (8)
C13—N111.340 (6)C32—C331.398 (8)
C13—C151.498 (8)C32—H320.9300
C14—H14A0.9600C31—C361.394 (8)
C14—H14B0.9600C33—C341.336 (10)
C14—H14C0.9600C33—H330.9300
C15—H15A0.9600C34—C351.449 (10)
C15—H15B0.9600C34—H340.9300
C15—H15C0.9600C35—C361.333 (8)
C21—C221.328 (9)C35—H350.9300
C21—N221.377 (7)C36—C371.529 (9)
C21—C241.501 (8)C37—H37B0.9600
C22—C231.398 (8)C37—H37C0.9600
C22—H220.9300C37—H37A0.9600
C23—N211.319 (6)N11—N121.350 (5)
C23—C251.503 (8)Pd1—N111.989 (4)
C24—H24A0.9600Pd1—N212.042 (4)
C24—H24B0.9600Pd1—Cl12.2981 (15)
C24—H24C0.9600Pd1—Cl22.3001 (15)
C25—H25A0.9600N12—H12A0.8600
C25—H25B0.9600N21—N221.359 (5)
N12—C11—C12106.2 (5)N22—C26—C31116.0 (5)
N12—C11—C14121.3 (5)C31—C32—C33119.4 (6)
C12—C11—C14132.5 (5)C31—C32—H32120.3
C11—C12—C13107.1 (5)C33—C32—H32120.3
C11—C12—H12126.5C32—C31—C36120.9 (5)
C13—C12—H12126.5C32—C31—C26117.0 (5)
N11—C13—C12109.3 (5)C36—C31—C26121.7 (5)
N11—C13—C15120.5 (5)C34—C33—C32119.6 (7)
C12—C13—C15130.1 (5)C34—C33—H33120.2
C11—C14—H14A109.5C32—C33—H33120.2
C11—C14—H14B109.5C33—C34—C35120.6 (6)
H14A—C14—H14B109.5C33—C34—H34119.7
C11—C14—H14C109.5C35—C34—H34119.7
H14A—C14—H14C109.5C36—C35—C34119.8 (6)
H14B—C14—H14C109.5C36—C35—H35120.1
C13—C15—H15A109.5C34—C35—H35120.1
C13—C15—H15B109.5C35—C36—C31119.6 (7)
H15A—C15—H15B109.5C35—C36—C37118.9 (6)
C13—C15—H15C109.5C31—C36—C37121.5 (6)
H15A—C15—H15C109.5C36—C37—H37B109.5
H15B—C15—H15C109.5C36—C37—H37C109.5
C22—C21—N22106.5 (5)H37B—C37—H37C109.5
C22—C21—C24131.2 (6)C36—C37—H37A109.5
N22—C21—C24122.2 (6)H37B—C37—H37A109.5
C21—C22—C23107.3 (5)H37C—C37—H37A109.5
C21—C22—H22126.3C13—N11—N12105.4 (4)
C23—C22—H22126.3C13—N11—Pd1133.6 (3)
N21—C23—C22110.0 (5)N12—N11—Pd1120.5 (3)
N21—C23—C25121.6 (5)C11—N12—N11112.0 (4)
C22—C23—C25128.4 (5)C11—N12—H12A124.0
C21—C24—H24A109.5N11—N12—H12A124.0
C21—C24—H24B109.5C23—N21—N22105.7 (4)
H24A—C24—H24B109.5C23—N21—Pd1127.7 (3)
C21—C24—H24C109.5N22—N21—Pd1126.6 (3)
H24A—C24—H24C109.5N21—N22—C21110.4 (4)
H24B—C24—H24C109.5N21—N22—C26123.3 (4)
C23—C25—H25A109.5C21—N22—C26125.8 (5)
C23—C25—H25B109.5N11—Pd1—N21174.88 (15)
H25A—C25—H25B109.5N11—Pd1—Cl188.39 (13)
C23—C25—H25C109.5N21—Pd1—Cl190.02 (12)
H25A—C25—H25C109.5N11—Pd1—Cl289.98 (13)
H25B—C25—H25C109.5N21—Pd1—Cl291.84 (12)
O1—C26—N22117.9 (5)Cl1—Pd1—Cl2176.71 (5)
O1—C26—C31125.4 (6)
N12—C11—C12—C130.2 (6)C14—C11—N12—N11180.0 (5)
C14—C11—C12—C13179.9 (6)C13—N11—N12—C110.1 (6)
C11—C12—C13—N110.1 (7)Pd1—N11—N12—C11173.1 (3)
C11—C12—C13—C15179.5 (7)C22—C23—N21—N224.3 (6)
N22—C21—C22—C232.1 (7)C25—C23—N21—N22176.5 (6)
C24—C21—C22—C23179.4 (7)C22—C23—N21—Pd1175.7 (4)
C21—C22—C23—N214.1 (7)C25—C23—N21—Pd13.5 (8)
C21—C22—C23—C25176.7 (7)C23—N21—N22—C213.0 (6)
C33—C32—C31—C360.2 (8)Pd1—N21—N22—C21177.0 (4)
C33—C32—C31—C26173.4 (6)C23—N21—N22—C26168.9 (5)
O1—C26—C31—C32149.9 (7)Pd1—N21—N22—C2611.1 (7)
N22—C26—C31—C3221.1 (7)C22—C21—N22—N210.5 (7)
O1—C26—C31—C3623.3 (10)C24—C21—N22—N21177.0 (6)
N22—C26—C31—C36165.7 (5)C22—C21—N22—C26171.1 (6)
C31—C32—C33—C340.2 (10)C24—C21—N22—C2611.3 (11)
C32—C33—C34—C350.9 (11)O1—C26—N22—N21125.6 (7)
C33—C34—C35—C361.7 (10)C31—C26—N22—N2162.7 (7)
C34—C35—C36—C311.7 (9)O1—C26—N22—C2145.1 (10)
C34—C35—C36—C37178.3 (6)C31—C26—N22—C21126.6 (6)
C32—C31—C36—C351.0 (8)C13—N11—Pd1—Cl179.2 (5)
C26—C31—C36—C35173.9 (5)N12—N11—Pd1—Cl191.4 (3)
C32—C31—C36—C37179.0 (5)C13—N11—Pd1—Cl297.9 (5)
C26—C31—C36—C376.1 (8)N12—N11—Pd1—Cl291.5 (3)
C12—C13—N11—N120.0 (6)C23—N21—Pd1—Cl168.9 (4)
C15—C13—N11—N12179.5 (6)N22—N21—Pd1—Cl1111.1 (4)
C12—C13—N11—Pd1171.6 (4)C23—N21—Pd1—Cl2113.8 (4)
C15—C13—N11—Pd17.9 (9)N22—N21—Pd1—Cl266.2 (4)
C12—C11—N12—N110.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···Cl2i0.862.353.194 (4)169
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[PdCl2(C5H8N2)(C12H12N2O)]
Mr487.70
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)15.908 (3), 15.479 (3), 16.602 (3)
V3)4088.0 (12)
Z8
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.32 × 0.28 × 0.15
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.703, 0.843
No. of measured, independent and
observed [I > 2σ(I)] reflections
43509, 4023, 2686
Rint0.056
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.114, 1.08
No. of reflections4023
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.09, 0.49

Computer programs: SMART-NT (Bruker, 1998), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999), PLATON (Spek, 2003) and publCIF (Westrip, 2008).

Selected geometric parameters (Å, º) top
Pd1—N111.989 (4)Pd1—Cl12.2981 (15)
Pd1—N212.042 (4)Pd1—Cl22.3001 (15)
N11—Pd1—N21174.88 (15)N11—Pd1—Cl289.98 (13)
N11—Pd1—Cl188.39 (13)N21—Pd1—Cl291.84 (12)
N21—Pd1—Cl190.02 (12)Cl1—Pd1—Cl2176.71 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N12—H12A···Cl2i0.862.353.194 (4)169
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors thank the National Research Foundation (NRF South Africa) and the National Research Foundation – Department of Science and Technology, (South Africa) Centre of Excellence in Catalysis (c*change) for financial support, and the University of the Witwatersrand for the use of the diffractometers in the Jan Boeyens Structural Chemistry Laboratory.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT-Plus. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGuzei, I. A., Li, K., Bikhazanova, G. A., Darkwa, J. & Mapolie, S. F. (2003). Dalton Trans. pp. 715–722.  Web of Science CSD CrossRef Google Scholar
First citationGuzei, I. A., Ojwach, S. O. & Darkwa, J. (2005). Acta Cryst. E61, m1492–m1494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKomeda, S., Luts, M., Spek, A. L., Chikuma, M. & Reedjik, J. (2000). Inorg. Chem. 39, 4230–4236.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, K., Darkwa, J., Guzei, I. A. & Mapolie, S. F. (2002). J. Organomet. Chem. 660, 108–115.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, R. (2000). Coord. Chem. Rev. 203, 151–218.  Web of Science CrossRef CAS Google Scholar
First citationOjwach, S. O., Tshivhase, M. G., Guzei, I. A., Darkwa, J. & Mapolie, S. F. (2005). Can. J. Chem. 83, 843–853.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. Version 2004/1. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpencer, L. C., Guzei, I. A., Ojwach, S. O. & Darkwa, J. (2006). Acta Cryst. C62, m421–m423.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds