metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(5-bromo­pyridine-3-carbox­yl­ato)dimetyltin(IV)]-μ-5-bromo­pyridine-3-carboxyl­ato]

aDepartment of Chemistry, Jining University, Shandong 273155, People's Republic of China
*Correspondence e-mail: gaozhongjun72@163.com

(Received 11 December 2007; accepted 16 December 2007; online 21 December 2007)

The title compound, [Sn(CH3)2(C6H3BrNO2)2], possesses an infinite chain structure owing to the presence of Sn—N bridges between adjacent mol­ecules. The SnO4NC2 centre has a distorted penta­gonal–bipyramidal geometry with the C atoms in the axial positions.

Related literature

For related literature, see: Tiekink (1991[Tiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1-23.]); Yin et al. (2006[Yin, H. D., Li, G., Gao, Z. J. & Xu, H. L. (2006). J. Organomet. Chem. 69, 1235-1241.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(CH3)2(C6H3BrNO2)2]

  • Mr = 550.77

  • Triclinic, [P \overline 1]

  • a = 7.579 (4) Å

  • b = 8.212 (5) Å

  • c = 14.894 (8) Å

  • α = 74.962 (7)°

  • β = 77.733 (8)°

  • γ = 88.642 (8)°

  • V = 874.4 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.05 mm−1

  • T = 298 (2) K

  • 0.27 × 0.12 × 0.02 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.292, Tmax = 0.889

  • 4540 measured reflections

  • 3165 independent reflections

  • 2652 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.162

  • S = 1.04

  • 3165 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 3.01 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C13 2.089 (8)
Sn1—C14 2.086 (8)
Sn1—O1 2.189 (5)
Sn1—O2 2.546 (6)
Sn1—O3 2.482 (6)
Sn1—O4 2.175 (5)
Sn1—N1i 2.710 (6)
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), possesses an infinite one-dimensional chain structure arising from Sn—N bridges (Fig. 1 and Table 1). As shown in Fig. 2, both carboxylate ligands chelate the Sn atom via the O atoms. One of the ligands also bridges a translationally related Sn atom via the N1 atom to form [010] chains.

The overall configuration at tin atom is best decribed as distorted pentagonal geometry with the C13 and C14 in the apical positions [C13—Sn1—C14 = 161.4 (4)°]. The sum of the equatorial angles about tin is 360°, indicating approximate co-planarity for these atoms. While the SnO4NC2 coordination geometry in (I) is similar to that seen recently in the structure of dioctyltin(IV) bis(2-pyrazinecarboxylate) (Yin et al., 2006), this type of coordination is, in general, rare in this class of compound (Tiekink, 1991).

Related literature top

For related literature, see: Tiekink (1991); Yin et al. (2006).

Experimental top

A mixture of dimetyltin oxide (0.329 g, 2.0 mmol) and 5-bromo-nicotinic acid (0.808 g, 4.0 mmol), in methanol (50 ml) was heated under reflux for 5 h. The clear solution was evaporated under vacuum. The product was crystallized from a mixture of dichloromethane/ethanol (1:1) to yield colourless plates of (I). Yield 0.860 g, 78%, m.p. 422 K. Analysis, calculated for C14H12Br2N2O4Sn: C 30.53, H 2.20, N 5.09%; found: C 30.56, H 2.15, N 5.13%.

Refinement top

The H atoms were included in the riding model approximation with C—H 0.93–0.96 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

The title compound, (I), possesses an infinite one-dimensional chain structure arising from Sn—N bridges (Fig. 1 and Table 1). As shown in Fig. 2, both carboxylate ligands chelate the Sn atom via the O atoms. One of the ligands also bridges a translationally related Sn atom via the N1 atom to form [010] chains.

The overall configuration at tin atom is best decribed as distorted pentagonal geometry with the C13 and C14 in the apical positions [C13—Sn1—C14 = 161.4 (4)°]. The sum of the equatorial angles about tin is 360°, indicating approximate co-planarity for these atoms. While the SnO4NC2 coordination geometry in (I) is similar to that seen recently in the structure of dioctyltin(IV) bis(2-pyrazinecarboxylate) (Yin et al., 2006), this type of coordination is, in general, rare in this class of compound (Tiekink, 1991).

For related literature, see: Tiekink (1991); Yin et al. (2006).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). N1a is at the symmetry position (x, y + 1, z).
[Figure 2] Fig. 2. Polymeric chain formation in (I). H atoms omitted for clarity.
catena-Poly[[(5-bromopyridine-3-carboxylato)dimetyltin(IV)]-µ-5- bromopyridine-3-carboxylato] top
Crystal data top
[Sn(CH3)2(C6H3BrNO2)2]Z = 2
Mr = 550.77F(000) = 524
Triclinic, P1Dx = 2.092 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.579 (4) ÅCell parameters from 1572 reflections
b = 8.212 (5) Åθ = 2.6–25.2°
c = 14.894 (8) ŵ = 6.05 mm1
α = 74.962 (7)°T = 298 K
β = 77.733 (8)°Plate, colourless
γ = 88.642 (8)°0.27 × 0.12 × 0.02 mm
V = 874.4 (8) Å3
Data collection top
Siemens SMART CCD
diffractometer
3165 independent reflections
Radiation source: fine-focus sealed tube2652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.292, Tmax = 0.889k = 99
4540 measured reflectionsl = 1518
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.1072P)2]
where P = (Fo2 + 2Fc2)/3
3165 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 3.01 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Sn(CH3)2(C6H3BrNO2)2]γ = 88.642 (8)°
Mr = 550.77V = 874.4 (8) Å3
Triclinic, P1Z = 2
a = 7.579 (4) ÅMo Kα radiation
b = 8.212 (5) ŵ = 6.05 mm1
c = 14.894 (8) ÅT = 298 K
α = 74.962 (7)°0.27 × 0.12 × 0.02 mm
β = 77.733 (8)°
Data collection top
Siemens SMART CCD
diffractometer
3165 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2652 reflections with I > 2σ(I)
Tmin = 0.292, Tmax = 0.889Rint = 0.029
4540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.04Δρmax = 3.01 e Å3
3165 reflectionsΔρmin = 1.02 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.27918 (6)0.22587 (5)0.41226 (3)0.0314 (2)
N10.3215 (9)0.4573 (7)0.2957 (5)0.0385 (14)
N20.1125 (16)0.0212 (13)0.8575 (6)0.085 (3)
O10.2868 (8)0.0342 (6)0.4001 (4)0.0437 (13)
O20.3393 (9)0.1381 (6)0.2569 (4)0.0515 (15)
O30.2327 (8)0.3727 (6)0.5412 (4)0.0471 (14)
O40.2194 (7)0.0988 (6)0.5634 (4)0.0414 (12)
C10.3192 (11)0.0074 (9)0.3115 (6)0.0389 (17)
C20.3315 (10)0.1571 (9)0.2713 (5)0.0358 (16)
C30.3136 (10)0.3225 (9)0.3298 (6)0.0371 (16)
H30.29550.33840.39530.045*
C40.3463 (12)0.4365 (10)0.2031 (6)0.048 (2)
H40.35190.53140.17950.057*
C50.3641 (12)0.2788 (10)0.1398 (6)0.047 (2)
C60.3554 (13)0.1378 (10)0.1752 (6)0.048 (2)
H60.36570.03030.13390.058*
C70.2118 (11)0.2291 (10)0.5950 (6)0.0393 (17)
C80.1759 (11)0.2050 (10)0.7006 (5)0.0388 (17)
C90.1421 (14)0.0468 (12)0.7643 (7)0.060 (2)
H90.14020.04640.73990.072*
C100.1141 (17)0.1545 (19)0.8910 (7)0.085 (4)
H100.09200.13890.95660.102*
C110.1475 (13)0.3180 (14)0.8323 (7)0.061 (3)
C120.1766 (12)0.3431 (11)0.7366 (6)0.047 (2)
H120.19660.45140.69630.056*
C130.0130 (11)0.2696 (11)0.3972 (6)0.0472 (19)
H13A0.03140.36200.42300.071*
H13B0.06110.17020.43070.071*
H13C0.00910.29660.33100.071*
C140.5570 (10)0.2598 (11)0.3969 (7)0.051 (2)
H14A0.61370.29010.33050.076*
H14B0.60550.15680.42820.076*
H14C0.57940.34800.42490.076*
Br10.3949 (2)0.25908 (15)0.00921 (7)0.0939 (5)
Br20.1448 (2)0.5021 (2)0.88551 (10)0.1127 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0359 (3)0.0229 (3)0.0347 (3)0.00097 (18)0.0081 (2)0.0057 (2)
N10.051 (4)0.022 (3)0.042 (4)0.001 (3)0.013 (3)0.005 (3)
N20.132 (9)0.071 (6)0.042 (5)0.018 (6)0.022 (5)0.008 (5)
O10.065 (4)0.026 (3)0.038 (3)0.000 (2)0.008 (3)0.008 (2)
O20.083 (5)0.021 (3)0.047 (3)0.000 (3)0.011 (3)0.004 (2)
O30.069 (4)0.026 (3)0.045 (3)0.000 (2)0.013 (3)0.006 (2)
O40.053 (3)0.030 (3)0.041 (3)0.003 (2)0.012 (2)0.008 (2)
C10.049 (5)0.025 (4)0.042 (5)0.001 (3)0.006 (3)0.009 (3)
C20.047 (4)0.027 (4)0.036 (4)0.004 (3)0.013 (3)0.009 (3)
C30.047 (4)0.028 (4)0.037 (4)0.005 (3)0.011 (3)0.009 (3)
C40.065 (6)0.031 (4)0.050 (5)0.003 (4)0.016 (4)0.013 (4)
C50.068 (6)0.038 (4)0.036 (4)0.008 (4)0.011 (4)0.011 (4)
C60.074 (6)0.028 (4)0.043 (5)0.001 (4)0.016 (4)0.006 (3)
C70.048 (5)0.029 (4)0.042 (4)0.000 (3)0.008 (3)0.012 (3)
C80.041 (4)0.043 (4)0.031 (4)0.002 (3)0.006 (3)0.009 (3)
C90.080 (7)0.052 (5)0.044 (5)0.003 (5)0.015 (5)0.003 (4)
C100.091 (9)0.129 (12)0.025 (5)0.014 (7)0.015 (5)0.000 (6)
C110.058 (6)0.075 (7)0.049 (6)0.018 (5)0.003 (4)0.022 (5)
C120.058 (5)0.048 (5)0.034 (4)0.003 (4)0.004 (4)0.013 (4)
C130.042 (5)0.046 (5)0.054 (5)0.001 (3)0.010 (4)0.013 (4)
C140.029 (4)0.049 (5)0.076 (6)0.005 (3)0.010 (4)0.019 (4)
Br10.1824 (15)0.0638 (7)0.0358 (6)0.0216 (8)0.0196 (7)0.0141 (5)
Br20.1363 (13)0.1431 (14)0.0718 (9)0.0287 (10)0.0096 (8)0.0741 (10)
Geometric parameters (Å, º) top
Sn1—C132.089 (8)C4—C51.380 (11)
Sn1—C142.086 (8)C4—H40.9300
Sn1—O12.189 (5)C5—C61.387 (11)
Sn1—O22.546 (6)C5—Br11.873 (8)
Sn1—O32.482 (6)C6—H60.9300
Sn1—O42.175 (5)C7—C81.499 (11)
Sn1—N1i2.710 (6)C8—C121.376 (11)
N1—C41.319 (11)C8—C91.388 (12)
N1—C31.327 (9)C9—H90.9300
N1—Sn1ii2.710 (6)C10—C111.394 (16)
N2—C101.317 (16)C10—H100.9300
N2—C91.319 (13)C11—C121.356 (12)
O1—C11.251 (9)C11—Br21.878 (10)
O2—C11.250 (9)C12—H120.9300
O3—C71.233 (9)C13—H13A0.9600
O4—C71.272 (9)C13—H13B0.9600
C1—C21.493 (10)C13—H13C0.9600
C2—C61.370 (11)C14—H14A0.9600
C2—C31.403 (10)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C13—Sn1—O197.0 (3)C5—C4—H4118.9
C13—Sn1—O288.1 (3)C4—C5—C6118.7 (8)
C13—Sn1—O390.5 (3)C4—C5—Br1119.8 (6)
C13—Sn1—O497.5 (3)C6—C5—Br1121.5 (6)
C14—Sn1—O196.4 (3)C2—C6—C5119.9 (8)
C14—Sn1—O289.2 (3)C2—C6—H6120.1
C14—Sn1—O388.3 (3)C5—C6—H6120.1
C13—Sn1—C14161.4 (4)O3—C7—O4121.8 (7)
C14—Sn1—O497.1 (3)O3—C7—C8119.9 (7)
O1—Sn1—O254.55 (18)O4—C7—C8118.3 (7)
O1—Sn1—O481.98 (19)O3—C7—Sn167.9 (4)
O4—Sn1—O355.59 (18)O4—C7—Sn153.9 (4)
O1—Sn1—O3137.54 (19)C8—C7—Sn1172.1 (5)
O4—Sn1—O2136.52 (18)C12—C8—C9118.2 (8)
O3—Sn1—O2167.88 (17)C12—C8—C7119.6 (7)
C13—Sn1—N1i80.1 (3)C9—C8—C7122.2 (8)
C14—Sn1—N1i81.3 (3)N2—C9—C8123.7 (9)
O1—Sn1—N1i138.4 (2)N2—C9—H9118.2
O2—Sn1—N1i83.81 (18)C8—C9—H9118.2
O3—Sn1—N1i84.09 (19)N2—C10—C11122.7 (9)
O4—Sn1—N1i139.66 (19)N2—C10—H10118.6
C4—N1—C3119.2 (6)C11—C10—H10118.6
C4—N1—Sn1ii119.2 (5)C12—C11—C10119.4 (10)
C3—N1—Sn1ii121.6 (5)C12—C11—Br2120.3 (8)
C10—N2—C9117.5 (9)C10—C11—Br2120.3 (8)
C1—O1—Sn199.8 (4)C11—C12—C8118.5 (8)
C1—O2—Sn183.2 (5)C11—C12—H12120.7
C7—O3—Sn184.7 (5)C8—C12—H12120.7
C7—O4—Sn197.9 (5)Sn1—C13—H13A109.5
O2—C1—O1122.5 (7)Sn1—C13—H13B109.5
O2—C1—C2119.9 (7)H13A—C13—H13B109.5
O1—C1—C2117.6 (7)Sn1—C13—H13C109.5
C6—C2—C3117.2 (7)H13A—C13—H13C109.5
C6—C2—C1121.0 (7)H13B—C13—H13C109.5
C3—C2—C1121.8 (7)Sn1—C14—H14A109.5
N1—C3—C2122.8 (7)Sn1—C14—H14B109.5
N1—C3—H3118.6H14A—C14—H14B109.5
C2—C3—H3118.6Sn1—C14—H14C109.5
N1—C4—C5122.2 (7)H14A—C14—H14C109.5
N1—C4—H4118.9H14B—C14—H14C109.5
C14—Sn1—O1—C184.8 (5)C4—C5—C6—C20.7 (14)
C13—Sn1—O1—C182.3 (5)Br1—C5—C6—C2179.5 (6)
O4—Sn1—O1—C1178.9 (5)Sn1—O3—C7—O41.2 (8)
O3—Sn1—O1—C1179.2 (4)Sn1—O3—C7—C8178.9 (7)
O2—Sn1—O1—C10.4 (5)Sn1—O4—C7—O31.4 (9)
C7—Sn1—O1—C1180.0 (5)Sn1—O4—C7—C8178.7 (6)
C14—Sn1—O2—C198.8 (5)C14—Sn1—C7—O381.1 (5)
C13—Sn1—O2—C199.6 (5)C13—Sn1—C7—O381.8 (5)
O4—Sn1—O2—C10.7 (6)O4—Sn1—C7—O3178.7 (8)
O1—Sn1—O2—C10.4 (5)O1—Sn1—C7—O3178.9 (5)
O3—Sn1—O2—C1176.7 (8)O2—Sn1—C7—O3177.7 (7)
C7—Sn1—O2—C11.7 (11)C14—Sn1—C7—O4100.1 (5)
C14—Sn1—O3—C799.1 (5)C13—Sn1—C7—O496.9 (5)
C13—Sn1—O3—C799.5 (5)O1—Sn1—C7—O42.4 (5)
O4—Sn1—O3—C70.7 (5)O3—Sn1—C7—O4178.7 (8)
O1—Sn1—O3—C71.5 (6)O2—Sn1—C7—O43.6 (11)
O2—Sn1—O3—C7177.1 (8)C14—Sn1—C7—C892 (4)
C14—Sn1—O4—C782.3 (5)C13—Sn1—C7—C8105 (4)
C13—Sn1—O4—C786.2 (5)O4—Sn1—C7—C88 (4)
O1—Sn1—O4—C7177.8 (5)O1—Sn1—C7—C86 (4)
O3—Sn1—O4—C70.7 (4)O3—Sn1—C7—C8173 (4)
O2—Sn1—O4—C7178.6 (4)O2—Sn1—C7—C85 (4)
Sn1—O2—C1—O10.6 (8)O3—C7—C8—C123.6 (12)
Sn1—O2—C1—C2178.6 (7)O4—C7—C8—C12176.5 (7)
Sn1—O1—C1—O20.7 (9)Sn1—C7—C8—C12169 (4)
Sn1—O1—C1—C2178.6 (6)O3—C7—C8—C9176.6 (8)
O2—C1—C2—C63.4 (12)O4—C7—C8—C93.3 (12)
O1—C1—C2—C6175.9 (8)Sn1—C7—C8—C911 (4)
O2—C1—C2—C3178.6 (7)C10—N2—C9—C80.6 (18)
O1—C1—C2—C32.1 (12)C12—C8—C9—N20.8 (15)
C4—N1—C3—C20.3 (12)C7—C8—C9—N2179.1 (10)
C6—C2—C3—N10.9 (12)C9—N2—C10—C110.8 (19)
C1—C2—C3—N1179.0 (7)N2—C10—C11—C121.2 (18)
C3—N1—C4—C50.1 (13)N2—C10—C11—Br2179.3 (10)
N1—C4—C5—C60.1 (14)C10—C11—C12—C81.4 (15)
N1—C4—C5—Br1178.9 (6)Br2—C11—C12—C8179.4 (7)
C3—C2—C6—C51.1 (13)C9—C8—C12—C111.2 (13)
C1—C2—C6—C5179.2 (8)C7—C8—C12—C11178.7 (8)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Sn(CH3)2(C6H3BrNO2)2]
Mr550.77
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.579 (4), 8.212 (5), 14.894 (8)
α, β, γ (°)74.962 (7), 77.733 (8), 88.642 (8)
V3)874.4 (8)
Z2
Radiation typeMo Kα
µ (mm1)6.05
Crystal size (mm)0.27 × 0.12 × 0.02
Data collection
DiffractometerSiemens SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.292, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
4540, 3165, 2652
Rint0.029
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.162, 1.04
No. of reflections3165
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.01, 1.02

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected bond lengths (Å) top
Sn1—C132.089 (8)Sn1—O32.482 (6)
Sn1—C142.086 (8)Sn1—O42.175 (5)
Sn1—O12.189 (5)Sn1—N1i2.710 (6)
Sn1—O22.546 (6)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The author ackowledges financial support from Shandong Province Science Foundation.

References

First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTiekink, E. R. T. (1991). Appl. Organomet. Chem. 5, 1–23.  CrossRef CAS Web of Science Google Scholar
First citationYin, H. D., Li, G., Gao, Z. J. & Xu, H. L. (2006). J. Organomet. Chem. 69, 1235–1241.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds