organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(6E)-N-[(4Z)-2,5-Di­methyl-4-(p-tolyl­imino)cyclo­hexa-2,5-dienyl­­idene]-4-methyl­aniline

aNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net

(Received 25 October 2007; accepted 20 November 2007; online 6 December 2007)

The title compound, C22H22N2, was prepared by the reaction of 4-amino­toluene with sodium carbonate, sodium hydroxide and potassium permanganate. The mol­ecule is disposed about a crystallographic inversion centre with one half-mol­ecule comprising the asymmetric unit. The dihedral angle between the terminal and central benzene rings is 88.05 (1)°. The crystal packing is stabilized by van der Waals forces.

Related literature

For related literature, see: Boyer et al. (2000[Boyer, I., Quillard, S., Corraze, B., Deniard, P. & Evain, M. (2000). Acta Cryst. C56, e159.]); Hadek (1968[Hadek, V. (1968). Solid State Commun. 6, 337-340.]); Hadek et al. (1969[Hadek, V., Zach, P., Ulbert, K. & Honzl, J. (1969). Collect. Czech. Chem. Commun. 34, 3139-3144.])

[Scheme 1]

Experimental

Crystal data
  • C22H22N2

  • Mr = 314.42

  • Trigonal, [R \overline 3]

  • a = 21.173 (8) Å

  • c = 10.476 (2) Å

  • V = 4067 (2) Å3

  • Z = 9

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 (2) K

  • 0.21 × 0.18 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 6148 measured reflections

  • 1956 independent reflections

  • 793 reflections with I > 2σ(I)

  • Rint = 0.075

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.233

  • S = 1.02

  • 1956 reflections

  • 110 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL/PC (Sheldrick, 1990[Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

It is now well established that conformational characteristics of the polyaniline polymer play a crucial role for its physical properties, including transport characteristics (Boyer et al., 2000). Detailed analysis of the crystal structures of polyaniline oligomers containing alternating benzoid and quinoid rings with amine and/or imine groups can help in the understanding of the spectroscopic behaviour of the compounds and possibles mechanism for their electrical conductivity (Hadek,1968; Hadek et al., 1969). Here we report the crystal structure of the title compound, (I).

The structure of (I) consists of discrete molecules disposed about a crystallographic inversion centre with half the molecule comprising the asymmetric unit (Fig. 1). The atoms (N1, C1 - C7) are planar with the greatest deviation from planarity for N1 of 0.042 (1) Å). The bond lengths and angles are usual for this type of compound (Boyer et al., 2000). The mean planes p1(C2 - C7) and p2(C8 - C10,C8a - C10a) make a dihedral angle of 88.06 (1)°. The dihedral angle formed by ring (N1,C1 - C7)and ring (N1,C5 - C11,N1a,C5a) is 1.52 (1)°. The crystal packing (Fig.2) is stabilized by van der Waals forces.

Related literature top

For related literature, see: Boyer et al. (2000); Hadek (1968); Hadek et al. (1969).

Experimental top

P-aminotoluene (2.14 g, 0.02 mol) was dissolved in water (100 ml), then sodium carbonate (0.53 g, 0.005 mol), sodium hydroxide (0.80 g, 0.02 mol) and potassium permanganate (1.58 g, 0.01 mol) was added with stirring. The mixture was allowed to react at room temperature for 12 h to give a precipitate which wasfiltered and recrystallized from acetone to afford the title compound (0.956 g, yield 89.5%). Single crystals suitable for X-ray measurements were obtained by recrystallization from acetone at room temperature.

Refinement top

H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93–0.96 Å and with Uiso=1.2–1.5 Ueq of the parent atoms.

Structure description top

It is now well established that conformational characteristics of the polyaniline polymer play a crucial role for its physical properties, including transport characteristics (Boyer et al., 2000). Detailed analysis of the crystal structures of polyaniline oligomers containing alternating benzoid and quinoid rings with amine and/or imine groups can help in the understanding of the spectroscopic behaviour of the compounds and possibles mechanism for their electrical conductivity (Hadek,1968; Hadek et al., 1969). Here we report the crystal structure of the title compound, (I).

The structure of (I) consists of discrete molecules disposed about a crystallographic inversion centre with half the molecule comprising the asymmetric unit (Fig. 1). The atoms (N1, C1 - C7) are planar with the greatest deviation from planarity for N1 of 0.042 (1) Å). The bond lengths and angles are usual for this type of compound (Boyer et al., 2000). The mean planes p1(C2 - C7) and p2(C8 - C10,C8a - C10a) make a dihedral angle of 88.06 (1)°. The dihedral angle formed by ring (N1,C1 - C7)and ring (N1,C5 - C11,N1a,C5a) is 1.52 (1)°. The crystal packing (Fig.2) is stabilized by van der Waals forces.

For related literature, see: Boyer et al. (2000); Hadek (1968); Hadek et al. (1969).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labeling scheme for (I), with displacement ellipsoids drawn at the 30% probability level. 'A' atoms were generated by symmetry (-x + 1/3, -y + 2/3, -z - 1/3).
[Figure 2] Fig. 2. The crystal packing of (I),viewed down the c axis.
(6E)-N-[(4Z)-2,5-Dimethyl-4-(p-tolylimino)cyclohexa-2,5-dienylidene]-4- methylaniline top
Crystal data top
C22H22N2Dx = 1.155 Mg m3
Mr = 314.42Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 25 reflections
Hall symbol: -R 3θ = 4–14°
a = 21.173 (8) ŵ = 0.07 mm1
c = 10.476 (2) ÅT = 293 K
V = 4067 (2) Å3Block, red
Z = 90.21 × 0.18 × 0.15 mm
F(000) = 1512
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.075
Radiation source: fine-focus sealed tubeθmax = 27.0°, θmin = 1.9°
Graphite monochromatorh = 2626
ω scansk = 2626
6148 measured reflectionsl = 120
1956 independent reflections3 standard reflections every 100 reflections
793 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.072H-atom parameters constrained
wR(F2) = 0.233 w = 1/[σ2(Fo2) + (0.1023P)2 + 1.7438P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1956 reflectionsΔρmax = 0.19 e Å3
110 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (9)
Crystal data top
C22H22N2Z = 9
Mr = 314.42Mo Kα radiation
Trigonal, R3µ = 0.07 mm1
a = 21.173 (8) ÅT = 293 K
c = 10.476 (2) Å0.21 × 0.18 × 0.15 mm
V = 4067 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.075
6148 measured reflections3 standard reflections every 100 reflections
1956 independent reflections intensity decay: none
793 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.233H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
1956 reflectionsΔρmin = 0.14 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.17771 (14)0.28153 (14)0.0673 (3)0.0845 (9)
C10.0660 (2)0.1028 (3)0.3942 (4)0.1275 (17)
H1B0.07690.13300.44740.191*
H1C0.05290.07400.44680.191*
H1D0.10810.07120.34410.191*
C20.00306 (19)0.1504 (2)0.3064 (3)0.0882 (11)
C30.0232 (2)0.1207 (2)0.2204 (5)0.1262 (16)
H3A0.00100.07020.21490.151*
C40.0822 (2)0.1636 (2)0.1401 (5)0.1197 (15)
H4A0.09880.14130.08360.144*
C50.11505 (18)0.23690 (19)0.1441 (3)0.0743 (9)
C60.0891 (2)0.2665 (2)0.2299 (4)0.1182 (15)
H6A0.11110.31700.23580.142*
C70.0306 (3)0.2232 (3)0.3089 (4)0.1189 (15)
H7A0.01410.24560.36560.143*
C80.10079 (16)0.28723 (16)0.1018 (3)0.0740 (9)
H8A0.05790.25640.05830.089*
C90.16973 (16)0.30428 (16)0.0440 (3)0.0707 (9)
C100.23710 (16)0.35227 (17)0.1164 (3)0.0730 (9)
C110.30536 (15)0.36974 (17)0.0619 (3)0.0810 (10)
H11A0.34390.40070.11920.122*
H11B0.30680.32570.04740.122*
H11C0.31150.39460.01780.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0729 (18)0.093 (2)0.092 (2)0.0442 (16)0.0040 (15)0.0096 (17)
C10.103 (3)0.172 (4)0.109 (3)0.070 (3)0.021 (3)0.052 (3)
C20.082 (2)0.112 (3)0.081 (2)0.055 (2)0.003 (2)0.018 (2)
C30.105 (3)0.081 (3)0.179 (4)0.036 (2)0.031 (3)0.017 (3)
C40.111 (3)0.089 (3)0.150 (4)0.043 (3)0.028 (3)0.012 (3)
C50.071 (2)0.078 (2)0.081 (2)0.0428 (19)0.0086 (18)0.0033 (19)
C60.139 (4)0.081 (3)0.140 (4)0.059 (3)0.036 (3)0.006 (3)
C70.142 (4)0.104 (3)0.115 (3)0.064 (3)0.043 (3)0.011 (3)
C80.0603 (19)0.075 (2)0.090 (2)0.0369 (16)0.0000 (17)0.0017 (18)
C90.070 (2)0.068 (2)0.082 (2)0.0400 (17)0.0039 (18)0.0034 (17)
C100.065 (2)0.074 (2)0.086 (2)0.0388 (17)0.0052 (17)0.0016 (17)
C110.0528 (18)0.093 (2)0.097 (2)0.0360 (17)0.0036 (17)0.0140 (19)
Geometric parameters (Å, º) top
N1—C91.305 (4)C6—C71.388 (5)
N1—C51.430 (4)C6—H6A0.9300
C1—C21.516 (5)C7—H7A0.9300
C1—H1B0.9600C8—C10i1.360 (4)
C1—H1C0.9600C8—C91.449 (4)
C1—H1D0.9600C8—H8A0.9300
C2—C71.336 (5)C9—C101.481 (4)
C2—C31.365 (5)C10—C8i1.360 (4)
C3—C41.399 (6)C10—C111.420 (4)
C3—H3A0.9300C11—H11A0.9600
C4—C51.347 (5)C11—H11B0.9600
C4—H4A0.9300C11—H11C0.9600
C5—C61.359 (5)
C9—N1—C5119.9 (3)C5—C6—H6A119.2
C2—C1—H1B109.5C7—C6—H6A119.2
C2—C1—H1C109.5C2—C7—C6122.4 (4)
H1B—C1—H1C109.5C2—C7—H7A118.8
C2—C1—H1D109.5C6—C7—H7A118.8
H1B—C1—H1D109.5C10i—C8—C9122.7 (3)
H1C—C1—H1D109.5C10i—C8—H8A118.6
C7—C2—C3116.0 (4)C9—C8—H8A118.6
C7—C2—C1122.6 (4)N1—C9—C8125.6 (3)
C3—C2—C1121.3 (4)N1—C9—C10116.9 (3)
C2—C3—C4122.3 (4)C8—C9—C10117.5 (3)
C2—C3—H3A118.8C8i—C10—C11121.6 (3)
C4—C3—H3A118.8C8i—C10—C9119.8 (3)
C5—C4—C3120.6 (4)C11—C10—C9118.6 (3)
C5—C4—H4A119.7C10—C11—H11A109.5
C3—C4—H4A119.7C10—C11—H11B109.5
C4—C5—C6117.2 (4)H11A—C11—H11B109.5
C4—C5—N1121.2 (3)C10—C11—H11C109.5
C6—C5—N1121.5 (3)H11A—C11—H11C109.5
C5—C6—C7121.5 (4)H11B—C11—H11C109.5
Symmetry code: (i) x+1/3, y+2/3, z1/3.

Experimental details

Crystal data
Chemical formulaC22H22N2
Mr314.42
Crystal system, space groupTrigonal, R3
Temperature (K)293
a, c (Å)21.173 (8), 10.476 (2)
V3)4067 (2)
Z9
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.21 × 0.18 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6148, 1956, 793
Rint0.075
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.233, 1.02
No. of reflections1956
No. of parameters110
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.14

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1990), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
N1—C91.305 (4)N1—C51.430 (4)
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2006B08).

References

First citationBoyer, I., Quillard, S., Corraze, B., Deniard, P. & Evain, M. (2000). Acta Cryst. C56, e159.  CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHadek, V. (1968). Solid State Commun. 6, 337–340.  CrossRef CAS Web of Science Google Scholar
First citationHadek, V., Zach, P., Ulbert, K. & Honzl, J. (1969). Collect. Czech. Chem. Commun. 34, 3139–3144.  CAS Google Scholar
First citationSheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds