organic compounds
(1R,4R,7S)-1,7-Dimethyl-7-(phenylsulfonylmethyl)spiro[bicyclo[2.2.1]heptane-2,2′-1,3-dioxolane]
aDepartment of Chemistry, State Key Laboratory of Applied Organic Chemstry, College of Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: pengyu@lzu.edu.cn
In the title compound, C18H24O4S, the chiral bicyclo[2.2.1]heptane group is not symmetrical due to the influence of the substituents. The angle between the three-atom bridge plane and the four-atom planes of the boat-shaped six-membered ring are 55.07 (19) and 56.24 (19)°. The bridgehead angle is 92.75 (17)°.
Related literature
For related literature, see: Antczak et al. (1987); García Martínez et al. (2004); Gorichko et al. (2002); Kuo & Money (1988); Money (1985); Tanyeli et al. (2004); Trost et al. (1979); Vaillancourt & Albizati (1993). For related structures, see: Bear & Trotter (1975); Cullen et al. (1988); Komarov et al. (1997); Takasu et al. (2000).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807058084/hg2344sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807058084/hg2344Isup2.hkl
The title compound was prepared by the reaction of sodium benzenesulfinate with (+)-8-bromocamphor (Bear & Trotter, 1975) ketal through the literature method (Trost et al., 1979). Single crystals suitable for X-ray determination were obtained by slow evaporation of a EtOAc solution over a period of several days. IR (film): 3063, 2961, 2883, 1586, 1478, 1448, 1306, 1145, 1084, 1053, 1023, 972, 742, 691 cm-1; 1H NMR (400 MHz, CDCl3): 7.93 (d, J=7.2 Hz, 2H), 7.65 (t, J=8.5 Hz, 1H), 7.56 (t, J=8.0 Hz, 2H), 4.12 (d, J=14.7 Hz, 1H), 3.91–3.86 (m, 1H), 3.84–3.81(m, 1H), 3.76–3.70 (m, 2H), 2.90 (d, J=14.7 Hz, 1H), 2.11 (dt, J=3.4, 13.7 Hz, 1H), 1.94–1.89 (m, 1H), 1.77–1.75 (m, 1H), 1.52 (d, J=13.9 Hz, 1H), 1.37–1.26 (m, 3H), 1.23 (s, 3H), 0.89 (s, 3H) p.p.m.; EIMS m/z (%): 336 (M+, 0.6), 321 (3.3), 272 (1), 235 (1), 181 (38), 125 (3), 109 (14), 95 (100); HRMS (ESI): calcd. for C18H25SO4+ [M+H]+: 337.1468, found: 337.1460.
All H atoms were placed geometrically (C—H values were set to 0.98, 0.97, 0.96 and 0.93 A° for atoms CH, CH2, CH3, and CH (phenyl), respectively) and refined with a riding model, with Uiso(H) = 1.2 or 1.5 times Ueq(C), or1.5 Ueq(O).
The uniqueness of the bicyclic structure of camphor is illustrated by a wide variety of intriguing structure transformations that frequently involve fascinating rearrangement processes (Money, 1985; García Martínez et al., 2004). Studies towards these transformations have produced much chemical knowledge on theoretical and mechanistic aspects of organic chemistry in the past century and offered synthetically useful chiral building blocks (Kuo & Money, 1988; Vaillancourt & Albizati, 1993) and chiral ligands (Tanyeli et al., 2004; Gorichko et al., 2002; Komarov et al., 1997) from readily available natural camphor. Some related X-ray structures (Beta & Trotter, 1975; Cullen et al., 1988; Takasu et al., 2000; Antczak et al., 1987) have been obtained.
The chiral bicyclo[2.2.1]heptane group is not symmetrical due to the influence of the substituents. The angles between the three-atom bridge plane, C10, C13, C14 and the four-atom planes (C9, C10, C14, C18 and C10, C11, C12, C14) of the boat-shaped six-membered ring are 55.07 (19) and 56.24 (19)° while the bridgehead angle is 92.75 (17)°.
For related literature, see: Antczak et al. (1987); García Martínez et al. (2004); Gorichko et al. (2002); Kuo & Money (1988); Money (1985); Tanyeli et al. (2004); Trost et al. (1979); Vaillancourt & Albizati (1993). For related structures, see: Bear & Trotter (1975); Cullen et al. (1988); Komarov et al. (1997); Takasu et al. (2000).
Data collection: SMART (Bruker, 2000); cell
SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXL97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).Fig. 1. The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. |
C18H24O4S | F(000) = 720 |
Mr = 336.43 | Dx = 1.351 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2482 reflections |
a = 10.5420 (2) Å | θ = 2.3–22.9° |
b = 11.7946 (2) Å | µ = 0.21 mm−1 |
c = 13.2997 (3) Å | T = 294 K |
V = 1653.67 (6) Å3 | Block, colorless |
Z = 4 | 0.22 × 0.20 × 0.12 mm |
Bruker APEX CCD area-detector diffractometer | 2595 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.033 |
Graphite monochromator | θmax = 25.5°, θmin = 2.3° |
phi and ω scans | h = −12→10 |
8969 measured reflections | k = −14→14 |
3080 independent reflections | l = −14→16 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0351P)2 + 0.3259P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.083 | (Δ/σ)max = 0.001 |
S = 1.01 | Δρmax = 0.18 e Å−3 |
3080 reflections | Δρmin = −0.20 e Å−3 |
211 parameters | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0024 (6) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 1307 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.09 (9) |
C18H24O4S | V = 1653.67 (6) Å3 |
Mr = 336.43 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 10.5420 (2) Å | µ = 0.21 mm−1 |
b = 11.7946 (2) Å | T = 294 K |
c = 13.2997 (3) Å | 0.22 × 0.20 × 0.12 mm |
Bruker APEX CCD area-detector diffractometer | 2595 reflections with I > 2σ(I) |
8969 measured reflections | Rint = 0.033 |
3080 independent reflections |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.083 | Δρmax = 0.18 e Å−3 |
S = 1.01 | Δρmin = −0.20 e Å−3 |
3080 reflections | Absolute structure: Flack (1983), 1307 Friedel pairs |
211 parameters | Absolute structure parameter: 0.09 (9) |
0 restraints |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8521 (3) | 0.4745 (2) | 0.8698 (2) | 0.0553 (7) | |
H1 | 0.9141 | 0.4185 | 0.8671 | 0.066* | |
C2 | 0.7480 (3) | 0.4684 (2) | 0.8078 (2) | 0.0573 (8) | |
H2 | 0.7396 | 0.4083 | 0.7630 | 0.069* | |
C3 | 0.6567 (3) | 0.5508 (2) | 0.81181 (19) | 0.0559 (7) | |
H3 | 0.5869 | 0.5464 | 0.7693 | 0.067* | |
C4 | 0.6670 (2) | 0.6412 (2) | 0.87884 (18) | 0.0460 (6) | |
H4 | 0.6050 | 0.6972 | 0.8814 | 0.055* | |
C5 | 0.7711 (2) | 0.64549 (17) | 0.94106 (17) | 0.0366 (5) | |
C6 | 0.8644 (3) | 0.5640 (2) | 0.93635 (18) | 0.0458 (6) | |
H6 | 0.9353 | 0.5690 | 0.9777 | 0.055* | |
C7 | 0.9448 (3) | 1.1891 (2) | 1.1304 (2) | 0.0520 (7) | |
H7A | 1.0316 | 1.2009 | 1.1088 | 0.062* | |
H7B | 0.9416 | 1.1890 | 1.2033 | 0.062* | |
C8 | 0.8581 (3) | 1.2769 (2) | 1.08728 (18) | 0.0543 (7) | |
H8A | 0.7817 | 1.2846 | 1.1273 | 0.065* | |
H8B | 0.8999 | 1.3500 | 1.0829 | 0.065* | |
C9 | 0.8317 (2) | 1.11268 (18) | 0.99706 (16) | 0.0393 (6) | |
C10 | 0.8975 (2) | 1.06072 (19) | 0.90376 (17) | 0.0386 (6) | |
C11 | 0.8356 (3) | 1.1177 (2) | 0.81204 (18) | 0.0526 (7) | |
H11A | 0.8811 | 1.0990 | 0.7509 | 0.063* | |
H11B | 0.8342 | 1.1995 | 0.8199 | 0.063* | |
C12 | 0.7000 (3) | 1.0694 (2) | 0.80945 (18) | 0.0545 (7) | |
H12A | 0.6838 | 1.0296 | 0.7469 | 0.065* | |
H12B | 0.6373 | 1.1289 | 0.8177 | 0.065* | |
C13 | 0.8356 (2) | 0.93875 (18) | 0.89830 (16) | 0.0352 (5) | |
C14 | 0.6987 (2) | 0.9872 (2) | 0.89958 (17) | 0.0420 (6) | |
H14 | 0.6319 | 0.9295 | 0.8967 | 0.050* | |
C15 | 1.0411 (2) | 1.0690 (2) | 0.9064 (2) | 0.0567 (7) | |
H15C | 1.0757 | 1.0343 | 0.8472 | 0.085* | |
H15A | 1.0726 | 1.0307 | 0.9650 | 0.085* | |
H15B | 1.0657 | 1.1474 | 0.9087 | 0.085* | |
C16 | 0.8700 (3) | 0.8742 (2) | 0.80203 (17) | 0.0474 (6) | |
H16B | 0.9595 | 0.8591 | 0.8013 | 0.071* | |
H16C | 0.8478 | 0.9192 | 0.7445 | 0.071* | |
H16A | 0.8242 | 0.8039 | 0.8000 | 0.071* | |
C17 | 0.8764 (2) | 0.86578 (17) | 0.98851 (17) | 0.0353 (5) | |
H17B | 0.8897 | 0.9172 | 1.0444 | 0.042* | |
H17A | 0.9587 | 0.8340 | 0.9719 | 0.042* | |
C18 | 0.6982 (2) | 1.0590 (2) | 0.99592 (17) | 0.0440 (6) | |
H18B | 0.6847 | 1.0121 | 1.0549 | 0.053* | |
H18A | 0.6329 | 1.1168 | 0.9933 | 0.053* | |
O1 | 0.65482 (17) | 0.79178 (14) | 1.05340 (14) | 0.0596 (5) | |
O2 | 0.8532 (2) | 0.70566 (14) | 1.11702 (12) | 0.0606 (5) | |
O3 | 0.83048 (18) | 1.23328 (13) | 0.99050 (12) | 0.0545 (5) | |
O4 | 0.89416 (16) | 1.08703 (13) | 1.08999 (11) | 0.0438 (4) | |
S1 | 0.78162 (6) | 0.75224 (5) | 1.03435 (4) | 0.04187 (16) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0658 (19) | 0.0410 (14) | 0.0590 (17) | 0.0034 (14) | 0.0122 (16) | −0.0026 (13) |
C2 | 0.077 (2) | 0.0501 (16) | 0.0452 (15) | −0.0175 (16) | 0.0103 (15) | −0.0074 (12) |
C3 | 0.0596 (18) | 0.0666 (18) | 0.0417 (14) | −0.0257 (17) | −0.0051 (13) | 0.0071 (13) |
C4 | 0.0445 (15) | 0.0467 (14) | 0.0468 (15) | −0.0053 (12) | 0.0025 (12) | 0.0061 (11) |
C5 | 0.0384 (13) | 0.0340 (12) | 0.0375 (12) | −0.0076 (11) | 0.0056 (11) | 0.0016 (9) |
C6 | 0.0477 (16) | 0.0437 (13) | 0.0461 (15) | −0.0036 (13) | −0.0010 (12) | −0.0001 (11) |
C7 | 0.0631 (18) | 0.0451 (14) | 0.0476 (15) | −0.0054 (14) | −0.0085 (13) | −0.0096 (13) |
C8 | 0.0682 (18) | 0.0419 (15) | 0.0529 (15) | 0.0028 (13) | −0.0070 (14) | −0.0101 (11) |
C9 | 0.0514 (15) | 0.0297 (11) | 0.0368 (12) | 0.0014 (11) | −0.0056 (11) | 0.0007 (9) |
C10 | 0.0434 (14) | 0.0358 (12) | 0.0366 (13) | −0.0043 (11) | 0.0009 (11) | 0.0030 (10) |
C11 | 0.080 (2) | 0.0418 (14) | 0.0361 (13) | −0.0009 (15) | −0.0051 (13) | 0.0042 (11) |
C12 | 0.067 (2) | 0.0502 (15) | 0.0459 (15) | 0.0102 (14) | −0.0169 (14) | −0.0006 (12) |
C13 | 0.0398 (13) | 0.0350 (11) | 0.0307 (11) | −0.0037 (10) | 0.0021 (10) | 0.0001 (10) |
C14 | 0.0392 (14) | 0.0460 (13) | 0.0407 (13) | 0.0013 (11) | −0.0061 (11) | −0.0040 (11) |
C15 | 0.0490 (16) | 0.0571 (17) | 0.0639 (18) | −0.0137 (13) | 0.0117 (14) | −0.0007 (15) |
C16 | 0.0586 (17) | 0.0426 (14) | 0.0411 (14) | −0.0023 (13) | 0.0081 (12) | −0.0013 (11) |
C17 | 0.0338 (12) | 0.0321 (11) | 0.0400 (13) | −0.0032 (10) | 0.0017 (10) | −0.0028 (9) |
C18 | 0.0429 (15) | 0.0452 (13) | 0.0439 (13) | 0.0074 (12) | 0.0008 (11) | −0.0031 (11) |
O1 | 0.0523 (11) | 0.0550 (10) | 0.0717 (12) | −0.0074 (9) | 0.0261 (10) | −0.0081 (9) |
O2 | 0.0968 (15) | 0.0496 (10) | 0.0354 (9) | −0.0141 (10) | −0.0086 (10) | 0.0099 (8) |
O3 | 0.0854 (13) | 0.0322 (9) | 0.0459 (9) | 0.0029 (9) | −0.0093 (9) | −0.0005 (7) |
O4 | 0.0614 (11) | 0.0349 (9) | 0.0351 (9) | −0.0056 (8) | −0.0094 (8) | −0.0003 (7) |
S1 | 0.0523 (4) | 0.0367 (3) | 0.0367 (3) | −0.0066 (3) | 0.0075 (3) | 0.0005 (3) |
C1—C2 | 1.375 (4) | C10—C13 | 1.581 (3) |
C1—C6 | 1.383 (3) | C11—C12 | 1.540 (4) |
C1—H1 | 0.9300 | C11—H11A | 0.9700 |
C2—C3 | 1.368 (4) | C11—H11B | 0.9700 |
C2—H2 | 0.9300 | C12—C14 | 1.542 (3) |
C3—C4 | 1.394 (4) | C12—H12A | 0.9700 |
C3—H3 | 0.9300 | C12—H12B | 0.9700 |
C4—C5 | 1.375 (3) | C13—C16 | 1.533 (3) |
C4—H4 | 0.9300 | C13—C17 | 1.538 (3) |
C5—C6 | 1.377 (3) | C13—C14 | 1.553 (3) |
C5—S1 | 1.771 (2) | C14—C18 | 1.536 (3) |
C6—H6 | 0.9300 | C14—H14 | 0.9800 |
C7—O4 | 1.422 (3) | C15—H15C | 0.9600 |
C7—C8 | 1.496 (3) | C15—H15A | 0.9600 |
C7—H7A | 0.9700 | C15—H15B | 0.9600 |
C7—H7B | 0.9700 | C16—H16B | 0.9600 |
C8—O3 | 1.417 (3) | C16—H16C | 0.9600 |
C8—H8A | 0.9700 | C16—H16A | 0.9600 |
C8—H8B | 0.9700 | C17—S1 | 1.779 (2) |
C9—O3 | 1.425 (3) | C17—H17B | 0.9700 |
C9—O4 | 1.433 (3) | C17—H17A | 0.9700 |
C9—C18 | 1.543 (3) | C18—H18B | 0.9700 |
C9—C10 | 1.548 (3) | C18—H18A | 0.9700 |
C10—C15 | 1.517 (3) | O1—S1 | 1.4383 (18) |
C10—C11 | 1.538 (3) | O2—S1 | 1.4422 (18) |
C2—C1—C6 | 119.9 (3) | C11—C12—H12A | 111.2 |
C2—C1—H1 | 120.1 | C14—C12—H12A | 111.2 |
C6—C1—H1 | 120.1 | C11—C12—H12B | 111.2 |
C3—C2—C1 | 120.0 (2) | C14—C12—H12B | 111.2 |
C3—C2—H2 | 120.0 | H12A—C12—H12B | 109.1 |
C1—C2—H2 | 120.0 | C16—C13—C17 | 107.93 (18) |
C2—C3—C4 | 120.9 (3) | C16—C13—C14 | 114.30 (19) |
C2—C3—H3 | 119.5 | C17—C13—C14 | 117.21 (19) |
C4—C3—H3 | 119.5 | C16—C13—C10 | 113.13 (18) |
C5—C4—C3 | 118.3 (2) | C17—C13—C10 | 110.99 (18) |
C5—C4—H4 | 120.8 | C14—C13—C10 | 92.75 (17) |
C3—C4—H4 | 120.8 | C18—C14—C12 | 107.56 (18) |
C4—C5—C6 | 121.1 (2) | C18—C14—C13 | 102.43 (18) |
C4—C5—S1 | 119.86 (18) | C12—C14—C13 | 102.4 (2) |
C6—C5—S1 | 118.91 (18) | C18—C14—H14 | 114.4 |
C5—C6—C1 | 119.7 (3) | C12—C14—H14 | 114.4 |
C5—C6—H6 | 120.2 | C13—C14—H14 | 114.4 |
C1—C6—H6 | 120.2 | C10—C15—H15C | 109.5 |
O4—C7—C8 | 102.25 (19) | C10—C15—H15A | 109.5 |
O4—C7—H7A | 111.3 | H15C—C15—H15A | 109.5 |
C8—C7—H7A | 111.3 | C10—C15—H15B | 109.5 |
O4—C7—H7B | 111.3 | H15C—C15—H15B | 109.5 |
C8—C7—H7B | 111.3 | H15A—C15—H15B | 109.5 |
H7A—C7—H7B | 109.2 | C13—C16—H16B | 109.5 |
O3—C8—C7 | 102.85 (19) | C13—C16—H16C | 109.5 |
O3—C8—H8A | 111.2 | H16B—C16—H16C | 109.5 |
C7—C8—H8A | 111.2 | C13—C16—H16A | 109.5 |
O3—C8—H8B | 111.2 | H16B—C16—H16A | 109.5 |
C7—C8—H8B | 111.2 | H16C—C16—H16A | 109.5 |
H8A—C8—H8B | 109.1 | C13—C17—S1 | 122.12 (16) |
O3—C9—O4 | 105.53 (17) | C13—C17—H17B | 106.8 |
O3—C9—C18 | 113.6 (2) | S1—C17—H17B | 106.8 |
O4—C9—C18 | 109.93 (18) | C13—C17—H17A | 106.8 |
O3—C9—C10 | 110.50 (18) | S1—C17—H17A | 106.8 |
O4—C9—C10 | 113.71 (18) | H17B—C17—H17A | 106.6 |
C18—C9—C10 | 103.77 (18) | C14—C18—C9 | 103.38 (19) |
C15—C10—C11 | 114.4 (2) | C14—C18—H18B | 111.1 |
C15—C10—C9 | 113.7 (2) | C9—C18—H18B | 111.1 |
C11—C10—C9 | 105.84 (19) | C14—C18—H18A | 111.1 |
C15—C10—C13 | 118.1 (2) | C9—C18—H18A | 111.1 |
C11—C10—C13 | 100.76 (18) | H18B—C18—H18A | 109.1 |
C9—C10—C13 | 102.27 (17) | C8—O3—C9 | 107.78 (17) |
C10—C11—C12 | 104.44 (19) | C7—O4—C9 | 108.65 (17) |
C10—C11—H11A | 110.9 | O1—S1—O2 | 118.38 (12) |
C12—C11—H11A | 110.9 | O1—S1—C5 | 107.19 (11) |
C10—C11—H11B | 110.9 | O2—S1—C5 | 107.22 (10) |
C12—C11—H11B | 110.9 | O1—S1—C17 | 109.78 (11) |
H11A—C11—H11B | 108.9 | O2—S1—C17 | 104.73 (11) |
C11—C12—C14 | 102.9 (2) | C5—S1—C17 | 109.29 (10) |
C6—C1—C2—C3 | 0.0 (4) | C11—C12—C14—C13 | −35.5 (2) |
C1—C2—C3—C4 | −0.4 (4) | C16—C13—C14—C18 | −172.69 (19) |
C2—C3—C4—C5 | −0.1 (4) | C17—C13—C14—C18 | 59.6 (2) |
C3—C4—C5—C6 | 1.2 (3) | C10—C13—C14—C18 | −55.74 (19) |
C3—C4—C5—S1 | −174.85 (17) | C16—C13—C14—C12 | −61.3 (2) |
C4—C5—C6—C1 | −1.7 (4) | C17—C13—C14—C12 | 170.99 (18) |
S1—C5—C6—C1 | 174.40 (19) | C10—C13—C14—C12 | 55.66 (19) |
C2—C1—C6—C5 | 1.1 (4) | C16—C13—C17—S1 | −81.5 (2) |
O4—C7—C8—O3 | −35.5 (3) | C14—C13—C17—S1 | 49.2 (3) |
O3—C9—C10—C15 | 76.8 (2) | C10—C13—C17—S1 | 153.97 (16) |
O4—C9—C10—C15 | −41.6 (3) | C12—C14—C18—C9 | −69.3 (2) |
C18—C9—C10—C15 | −161.0 (2) | C13—C14—C18—C9 | 38.2 (2) |
O3—C9—C10—C11 | −49.6 (2) | O3—C9—C18—C14 | 117.2 (2) |
O4—C9—C10—C11 | −168.02 (19) | O4—C9—C18—C14 | −124.85 (18) |
C18—C9—C10—C11 | 72.6 (2) | C10—C9—C18—C14 | −2.9 (2) |
O3—C9—C10—C13 | −154.66 (19) | C7—C8—O3—C9 | 31.9 (3) |
O4—C9—C10—C13 | 86.9 (2) | O4—C9—O3—C8 | −15.7 (3) |
C18—C9—C10—C13 | −32.5 (2) | C18—C9—O3—C8 | 104.8 (2) |
C15—C10—C11—C12 | 164.0 (2) | C10—C9—O3—C8 | −139.0 (2) |
C9—C10—C11—C12 | −69.9 (2) | C8—C7—O4—C9 | 26.9 (3) |
C13—C10—C11—C12 | 36.2 (2) | O3—C9—O4—C7 | −8.1 (2) |
C10—C11—C12—C14 | −1.0 (3) | C18—C9—O4—C7 | −131.0 (2) |
C15—C10—C13—C16 | −62.9 (3) | C10—C9—O4—C7 | 113.2 (2) |
C11—C10—C13—C16 | 62.4 (2) | C4—C5—S1—O1 | 21.5 (2) |
C9—C10—C13—C16 | 171.40 (19) | C6—C5—S1—O1 | −154.61 (18) |
C15—C10—C13—C17 | 58.6 (3) | C4—C5—S1—O2 | 149.62 (19) |
C11—C10—C13—C17 | −176.12 (19) | C6—C5—S1—O2 | −26.5 (2) |
C9—C10—C13—C17 | −67.1 (2) | C4—C5—S1—C17 | −97.4 (2) |
C15—C10—C13—C14 | 179.1 (2) | C6—C5—S1—C17 | 86.5 (2) |
C11—C10—C13—C14 | −55.55 (19) | C13—C17—S1—O1 | −52.6 (2) |
C9—C10—C13—C14 | 53.46 (19) | C13—C17—S1—O2 | 179.28 (18) |
C11—C12—C14—C18 | 72.0 (2) | C13—C17—S1—C5 | 64.7 (2) |
Experimental details
Crystal data | |
Chemical formula | C18H24O4S |
Mr | 336.43 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 294 |
a, b, c (Å) | 10.5420 (2), 11.7946 (2), 13.2997 (3) |
V (Å3) | 1653.67 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.21 |
Crystal size (mm) | 0.22 × 0.20 × 0.12 |
Data collection | |
Diffractometer | Bruker APEX CCD area-detector |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8969, 3080, 2595 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.606 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.083, 1.01 |
No. of reflections | 3080 |
No. of parameters | 211 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.20 |
Absolute structure | Flack (1983), 1307 Friedel pairs |
Absolute structure parameter | 0.09 (9) |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXL97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).
Acknowledgements
We acknowledge financial support from the Research Fund for the New Faculty at the State Key Laboratory of Applied Organic Chemstry.
References
Antczak, K., Kingston, J. F. & Fallis, A. G. (1987). Can. J. Chem. 65, 114–123. CrossRef CAS Web of Science Google Scholar
Bear, C. A. & Trotter, J. (1975). Acta Cryst. B31, 903–904. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bruker (2000). SAINT (Version 6.12), SMART (Version 5.050), and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cullen, W. R., Rettig, S. J., Trotter, J. & Wickenheisher, E. B. (1988). Can. J. Chem. 66, 2007–2013. CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
García Martínez, A., Teso Vilar, E., García Fraile, A., de la Moya Cerero, S., Diaz Morillo, C. & Pérez Morillo, R. (2004). J. Org. Chem. 69, 7348–7351. Web of Science PubMed Google Scholar
Gorichko, M. V., Grygorenko, O. O. & Komarov, I. V. (2002). Tetrahedron Lett. 43, 9411–9412. Web of Science CrossRef CAS Google Scholar
Komarov, I. V., Gorichko, M. V. & Komilov, M. Y. (1997). Tetrahedron Asymmetry, 8, 435–445. CSD CrossRef CAS Web of Science Google Scholar
Kuo, D. L. & Money, T. (1988). Can. J. Chem. 66, 1794–1804. CrossRef CAS Web of Science Google Scholar
Money, T. (1985). Nat. Prod. Rep. 2, 253–289. CrossRef CAS PubMed Web of Science Google Scholar
Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Takasu, K., Mizutani, S., Noguchi, M., Makita, K. & Ihara, M. (2000). J. Org. Chem. 65, 4112–4119. Web of Science CSD CrossRef PubMed CAS Google Scholar
Tanyeli, C., Akhmedov, I. M. & Işık, M. (2004). Tetrahedron Lett. 45, 5799–5801. Web of Science CrossRef CAS Google Scholar
Trost, B. M., Bernstein, P. R. & Funfschilling, P. C. (1979). J. Am. Chem. Soc. 101, 4378–4980. CrossRef CAS Web of Science Google Scholar
Vaillancourt, V. & Albizati, K. F. (1993). J. Am. Chem. Soc. 115, 3499–1502. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The uniqueness of the bicyclic structure of camphor is illustrated by a wide variety of intriguing structure transformations that frequently involve fascinating rearrangement processes (Money, 1985; García Martínez et al., 2004). Studies towards these transformations have produced much chemical knowledge on theoretical and mechanistic aspects of organic chemistry in the past century and offered synthetically useful chiral building blocks (Kuo & Money, 1988; Vaillancourt & Albizati, 1993) and chiral ligands (Tanyeli et al., 2004; Gorichko et al., 2002; Komarov et al., 1997) from readily available natural camphor. Some related X-ray structures (Beta & Trotter, 1975; Cullen et al., 1988; Takasu et al., 2000; Antczak et al., 1987) have been obtained.
The chiral bicyclo[2.2.1]heptane group is not symmetrical due to the influence of the substituents. The angles between the three-atom bridge plane, C10, C13, C14 and the four-atom planes (C9, C10, C14, C18 and C10, C11, C12, C14) of the boat-shaped six-membered ring are 55.07 (19) and 56.24 (19)° while the bridgehead angle is 92.75 (17)°.