organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(1,3-dioxoisoindolin-2-yl)acrylate

aState Key Laboratory of Applied Organic Chemstry, College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: pengyu@lzu.edu.cn

(Received 10 November 2007; accepted 19 November 2007; online 18 December 2007)

In the title compound, C12H9NO4, an important dehydro­amino acid, the acrylate C=C double bond is not parallel to the adjacent carbonyl group and an s-trans configuration is also observed.

Related literature

For related literature, see: Cativiela et al. (2000[Cativiela, C. & Diaz-de-Villegas, M. D. (2000). Tetrahedron Asymmetry, 11, 645-732.]); Clausen et al. (2002[Clausen, V., Frydenvang, K., Koopmann, R., Jorgensen, L. B., Abbiw, D. K., Ekpe, P. & Jaroszewski, J. W. (2002). J. Nat. Prod. 65, 542-547.]); Schmidt et al. (1988[Schmidt, U., Lieberknecht, A. & Wild, J. (1988). Synthesis, pp. 159-172.]); Trost & Dake, (1997[Trost, B. M. & Dake, G. R. (1997). J. Am. Chem. Soc. 119, 7595-7596.]); Wirth (1997[Wirth, T. (1997). Angew. Chem. Int. Ed. 36, 225-227.]); Osborn et al. (1966[Osborn, J. A., Jardine, F. H., Young, J. F. & Wilkinson, G. (1966). J. Chem. Soc. A, pp. 1711-1732.]). For related structures, see: Ajò et al. (1984[Ajò, D., Busetti, V., Ottenheijm, H. C. J. & Plate, R. (1984). Acta Cryst. C40, 324-327.]; 1979[Ajò, D., Granozzi, G., Tondello, E., Del Pra, A. & Zanotti, G. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 927-929.]); Busetti et al. (1984[Busetti, V., Ajò, D. & Casarin, M. (1984). Acta Cryst. C40, 1245-1248.]; 1986[Busetti, V., Ajò, D. & Vittadini, A. (1986). Acta Cryst. C42, 1178-1181.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9NO4

  • Mr = 231.20

  • Triclinic, [P \overline 1]

  • a = 6.5179 (3) Å

  • b = 7.4817 (4) Å

  • c = 11.7322 (6) Å

  • α = 80.954 (2)°

  • β = 78.866 (2)°

  • γ = 76.723 (2)°

  • V = 542.52 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 294 (2) K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.984

  • 2932 measured reflections

  • 1984 independent reflections

  • 1497 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.04

  • 1984 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.050), SAINT (Version 6.12) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART (Version 5.050), SAINT (Version 6.12) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SMART (Version 5.050), SAINT (Version 6.12) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Optical active nonproteinogenic amino acids (Clausen et al., 2002) are valuable compounds of high interest not only due to their remarkable pharmacological and biological activities but also for their role as a topographic probe for investigation of bioactive conformations of peptides and the mechanisms of enzyme reactions. Consequently, efficient and convenient methods for the preparation of optically pure enantiomers of amino acids are be general interest (Cativiela & Diaz-de-Villegas, 2000; Wirth, 1997). It is noteworthy that extraordinary progress has been made in the asymmetric hydrogenation of dehydroamino acids (Osborn et al., 1966; Schmidt et al., 1988), which serve as important precursors of saturated ones.

The title compound belong to one of dehydroamino acids mentioned above. Its molecular structure is shown in Fig.1 and can be prepared conveniently through nucleophilic addition of phthalimide to propiolate according to the precedent procedure (Trost & Dake, 1997). The exceptionally large difference (Δ δ= 0.68 p.p.m.) between the chemical shifts of the two protons (Ha and Hb) on the double bond suggest that the chemical environments (e.g., deshielding effect of the phthalimidyl group) of them are considerably different. As shown in Fig. 1, An s-trans conformation is observed, which was discussed in detail other groups previously (Ajò et al., 1984; Ajò et al., 1979; Busetti, et al., 1984; Busetti, et al., 1986). The double bond (C9–C12) is not parallel with the carbonyl (C10–O1) group with the C12-C9_C10-O1 torsion angle -142.3 (2)° while the double bond (C9–C12) lies out of the plane of the phthalimidyl group with the torsion angle C7—N1—C9—C12 44.7 (3)°.

Related literature top

For related literature, see: Cativiela et al. (2000); Clausen et al. (2002); Schmidt et al. (1988); Trost & Dake, (1997); Wirth (1997); Osborn et al. (1966). For related structures, see: Ajò et al. (1984; 1979); Busetti et al. (1984; 1986).

Experimental top

To a solution of phthalimide (740 mg, 5 mmol), triphenylphosphine (130 mg, 0.5 mmol) and sodium acetate (210 mg, 2.5 mmol) in 10 ml of toluene at 378 K were added sequentially acetic acid (0.14 ml, 2.5 mmol) and methyl propiolate (420 mg, 5 mmol). After 18 h, the reaction mixture was cooled and directly subjected to chromatograph on silica gel (Hexane: EtOAc = 2: 1) to yield 928 mg (80% yield) of the title compound. 1H NMR (200 MHz, CDCl3): δ = 7.94–7.90 (m, 2H), 7.83–7.77 (m, 2H), 6.69 (s, 1H), 6.01 (s, 1H), 3.82 (s, 3H) p.p.m.; 13C NMR (50 MHz, CDCl3): δ = 166.2, 162.6, 134.2 (2 C), 131.7, 129.0, 127.9 (2 C), 123.8 (2 C), 52.7 p.p.m.. Single crystals suitable for X-ray determination were obtained by slow evaporation of a EtOAc solution over a period of several days.

Refinement top

All H atoms were placed geometrically (C—H values were set to 0.96 and 0.93 Å for atoms CH3, CH2, and CH (phenyl), respectively) and refined with a riding model, with Uiso(H) = 1.2 or 1.5 times Ueq(C).

Structure description top

Optical active nonproteinogenic amino acids (Clausen et al., 2002) are valuable compounds of high interest not only due to their remarkable pharmacological and biological activities but also for their role as a topographic probe for investigation of bioactive conformations of peptides and the mechanisms of enzyme reactions. Consequently, efficient and convenient methods for the preparation of optically pure enantiomers of amino acids are be general interest (Cativiela & Diaz-de-Villegas, 2000; Wirth, 1997). It is noteworthy that extraordinary progress has been made in the asymmetric hydrogenation of dehydroamino acids (Osborn et al., 1966; Schmidt et al., 1988), which serve as important precursors of saturated ones.

The title compound belong to one of dehydroamino acids mentioned above. Its molecular structure is shown in Fig.1 and can be prepared conveniently through nucleophilic addition of phthalimide to propiolate according to the precedent procedure (Trost & Dake, 1997). The exceptionally large difference (Δ δ= 0.68 p.p.m.) between the chemical shifts of the two protons (Ha and Hb) on the double bond suggest that the chemical environments (e.g., deshielding effect of the phthalimidyl group) of them are considerably different. As shown in Fig. 1, An s-trans conformation is observed, which was discussed in detail other groups previously (Ajò et al., 1984; Ajò et al., 1979; Busetti, et al., 1984; Busetti, et al., 1986). The double bond (C9–C12) is not parallel with the carbonyl (C10–O1) group with the C12-C9_C10-O1 torsion angle -142.3 (2)° while the double bond (C9–C12) lies out of the plane of the phthalimidyl group with the torsion angle C7—N1—C9—C12 44.7 (3)°.

For related literature, see: Cativiela et al. (2000); Clausen et al. (2002); Schmidt et al. (1988); Trost & Dake, (1997); Wirth (1997); Osborn et al. (1966). For related structures, see: Ajò et al. (1984; 1979); Busetti et al. (1984; 1986).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXL97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The independent components of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
Methyl 2-(1,3-dioxoisoindolin-2-yl)acrylate top
Crystal data top
C12H9NO4Z = 2
Mr = 231.20F(000) = 240
Triclinic, P1Dx = 1.415 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5179 (3) ÅCell parameters from 1079 reflections
b = 7.4817 (4) Åθ = 2.8–23.7°
c = 11.7322 (6) ŵ = 0.11 mm1
α = 80.954 (2)°T = 294 K
β = 78.866 (2)°Block, colorless
γ = 76.723 (2)°0.20 × 0.18 × 0.15 mm
V = 542.52 (5) Å3
Data collection top
Bruker APEX CCD area-detector
diffractometer
1984 independent reflections
Radiation source: fine-focus sealed tube1497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
phi and ω scansθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.979, Tmax = 0.984k = 98
2932 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.1136P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
1984 reflectionsΔρmax = 0.18 e Å3
156 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.044 (7)
Crystal data top
C12H9NO4γ = 76.723 (2)°
Mr = 231.20V = 542.52 (5) Å3
Triclinic, P1Z = 2
a = 6.5179 (3) ÅMo Kα radiation
b = 7.4817 (4) ŵ = 0.11 mm1
c = 11.7322 (6) ÅT = 294 K
α = 80.954 (2)°0.20 × 0.18 × 0.15 mm
β = 78.866 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
1984 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1497 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.984Rint = 0.016
2932 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.04Δρmax = 0.18 e Å3
1984 reflectionsΔρmin = 0.14 e Å3
156 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.3823 (3)0.8001 (2)0.03710 (15)0.0475 (4)
C60.5949 (3)0.7126 (2)0.02643 (15)0.0471 (4)
C10.7069 (3)0.6511 (3)0.07723 (18)0.0594 (5)
H10.85020.59270.08410.071*
C20.5971 (4)0.6799 (3)0.17070 (18)0.0667 (6)
H20.66770.63960.24180.080*
C40.2737 (3)0.8285 (3)0.05580 (18)0.0618 (5)
H40.13030.88690.04890.074*
C30.3854 (4)0.7671 (3)0.15998 (18)0.0673 (6)
H30.31570.78520.22420.081*
C70.6660 (3)0.6964 (3)0.14049 (16)0.0503 (5)
C80.3091 (3)0.8473 (2)0.15854 (16)0.0485 (4)
N10.4864 (2)0.7786 (2)0.21650 (12)0.0483 (4)
C90.4784 (3)0.7876 (3)0.33739 (16)0.0512 (5)
C100.2984 (3)0.7159 (3)0.41433 (16)0.0560 (5)
C110.0631 (4)0.7296 (4)0.59378 (18)0.0740 (7)
H11A0.04730.72130.55250.111*
H11B0.00540.81400.65130.111*
H11C0.11820.60970.63180.111*
O20.2339 (2)0.7960 (2)0.51181 (11)0.0633 (4)
O10.2230 (3)0.5971 (3)0.39155 (13)0.0908 (6)
O40.1388 (2)0.9302 (2)0.20287 (13)0.0667 (4)
O30.8377 (2)0.6270 (2)0.16799 (13)0.0735 (5)
C120.6314 (3)0.8332 (3)0.3783 (2)0.0702 (6)
H12A0.75110.86120.32740.084*
H12B0.61980.83740.45820.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0503 (10)0.0393 (9)0.0514 (10)0.0052 (8)0.0077 (8)0.0076 (8)
C60.0462 (10)0.0416 (10)0.0507 (10)0.0090 (8)0.0008 (8)0.0063 (8)
C10.0592 (12)0.0547 (12)0.0595 (12)0.0115 (9)0.0063 (10)0.0126 (9)
C20.0907 (17)0.0596 (13)0.0482 (12)0.0221 (12)0.0054 (11)0.0126 (9)
C40.0660 (13)0.0545 (12)0.0644 (13)0.0011 (10)0.0197 (10)0.0114 (10)
C30.0923 (17)0.0585 (13)0.0547 (12)0.0146 (12)0.0202 (11)0.0083 (10)
C70.0414 (10)0.0476 (10)0.0584 (11)0.0055 (8)0.0031 (8)0.0081 (8)
C80.0426 (10)0.0459 (10)0.0554 (11)0.0051 (8)0.0056 (8)0.0103 (8)
N10.0416 (8)0.0536 (9)0.0472 (9)0.0035 (7)0.0052 (7)0.0102 (7)
C90.0530 (11)0.0514 (11)0.0500 (11)0.0085 (8)0.0091 (8)0.0102 (8)
C100.0640 (12)0.0582 (12)0.0486 (11)0.0144 (10)0.0094 (9)0.0116 (9)
C110.0720 (14)0.1010 (19)0.0505 (12)0.0271 (13)0.0016 (10)0.0143 (11)
O20.0649 (9)0.0775 (10)0.0517 (8)0.0216 (7)0.0003 (6)0.0216 (7)
O10.1201 (14)0.1023 (13)0.0672 (10)0.0674 (12)0.0164 (9)0.0346 (9)
O40.0460 (8)0.0774 (10)0.0729 (9)0.0052 (7)0.0061 (7)0.0287 (7)
O30.0454 (8)0.0910 (11)0.0790 (10)0.0080 (7)0.0149 (7)0.0214 (8)
C120.0627 (13)0.0895 (17)0.0636 (13)0.0207 (12)0.0133 (10)0.0135 (11)
Geometric parameters (Å, º) top
C5—C41.375 (3)C8—O41.204 (2)
C5—C61.381 (2)C8—N11.408 (2)
C5—C81.483 (3)N1—C91.421 (2)
C6—C11.379 (3)C9—C121.317 (3)
C6—C71.477 (3)C9—C101.485 (3)
C1—C21.385 (3)C10—O11.196 (2)
C1—H10.9300C10—O21.326 (2)
C2—C31.375 (3)C11—O21.449 (2)
C2—H20.9300C11—H11A0.9600
C4—C31.384 (3)C11—H11B0.9600
C4—H40.9300C11—H11C0.9600
C3—H30.9300C12—H12A0.9300
C7—O31.203 (2)C12—H12B0.9300
C7—N11.408 (2)
C4—C5—C6120.94 (17)O4—C8—C5129.91 (17)
C4—C5—C8130.64 (17)N1—C8—C5105.68 (14)
C6—C5—C8108.42 (15)C8—N1—C7111.36 (15)
C1—C6—C5121.66 (18)C8—N1—C9123.22 (15)
C1—C6—C7129.53 (17)C7—N1—C9125.39 (15)
C5—C6—C7108.79 (15)C12—C9—N1122.78 (18)
C6—C1—C2117.30 (19)C12—C9—C10122.85 (18)
C6—C1—H1121.3N1—C9—C10113.85 (15)
C2—C1—H1121.3O1—C10—O2123.94 (19)
C3—C2—C1120.99 (19)O1—C10—C9123.63 (18)
C3—C2—H2119.5O2—C10—C9112.41 (16)
C1—C2—H2119.5O2—C11—H11A109.5
C5—C4—C3117.59 (19)O2—C11—H11B109.5
C5—C4—H4121.2H11A—C11—H11B109.5
C3—C4—H4121.2O2—C11—H11C109.5
C2—C3—C4121.5 (2)H11A—C11—H11C109.5
C2—C3—H3119.2H11B—C11—H11C109.5
C4—C3—H3119.2C10—O2—C11116.00 (16)
O3—C7—N1124.79 (18)C9—C12—H12A120.0
O3—C7—C6129.47 (18)C9—C12—H12B120.0
N1—C7—C6105.73 (15)H12A—C12—H12B120.0
O4—C8—N1124.39 (17)
C4—C5—C6—C10.3 (3)O4—C8—N1—C7176.95 (18)
C8—C5—C6—C1179.59 (16)C5—C8—N1—C71.5 (2)
C4—C5—C6—C7178.18 (16)O4—C8—N1—C95.0 (3)
C8—C5—C6—C71.11 (19)C5—C8—N1—C9176.60 (15)
C5—C6—C1—C20.3 (3)O3—C7—N1—C8179.88 (18)
C7—C6—C1—C2177.86 (18)C6—C7—N1—C80.8 (2)
C6—C1—C2—C30.3 (3)O3—C7—N1—C91.9 (3)
C6—C5—C4—C30.3 (3)C6—C7—N1—C9177.20 (15)
C8—C5—C4—C3179.41 (19)C8—N1—C9—C12137.6 (2)
C1—C2—C3—C40.3 (3)C7—N1—C9—C1244.7 (3)
C5—C4—C3—C20.3 (3)C8—N1—C9—C1050.6 (2)
C1—C6—C7—O30.5 (3)C7—N1—C9—C10127.22 (19)
C5—C6—C7—O3178.8 (2)C12—C9—C10—O1142.1 (2)
C1—C6—C7—N1178.55 (18)N1—C9—C10—O129.7 (3)
C5—C6—C7—N10.22 (19)C12—C9—C10—O236.7 (3)
C4—C5—C8—O44.1 (3)N1—C9—C10—O2151.46 (16)
C6—C5—C8—O4176.72 (19)O1—C10—O2—C110.8 (3)
C4—C5—C8—N1177.62 (18)C9—C10—O2—C11178.04 (17)
C6—C5—C8—N11.57 (19)

Experimental details

Crystal data
Chemical formulaC12H9NO4
Mr231.20
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)6.5179 (3), 7.4817 (4), 11.7322 (6)
α, β, γ (°)80.954 (2), 78.866 (2), 76.723 (2)
V3)542.52 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
2932, 1984, 1497
Rint0.016
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.04
No. of reflections1984
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXL97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

 

Acknowledgements

We acknowledge financial support from the Research Fund for the new faculty at the State Key Laboratory of Applied Organic Chemstry.

References

First citationAjò, D., Busetti, V., Ottenheijm, H. C. J. & Plate, R. (1984). Acta Cryst. C40, 324–327.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationAjò, D., Granozzi, G., Tondello, E., Del Pra, A. & Zanotti, G. (1979). J. Chem. Soc. Perkin Trans. 2, pp. 927–929.  Google Scholar
First citationBruker (2000). SMART (Version 5.050), SAINT (Version 6.12) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBusetti, V., Ajò, D. & Casarin, M. (1984). Acta Cryst. C40, 1245–1248.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBusetti, V., Ajò, D. & Vittadini, A. (1986). Acta Cryst. C42, 1178–1181.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCativiela, C. & Diaz-de-Villegas, M. D. (2000). Tetrahedron Asymmetry, 11, 645–732.  Web of Science CrossRef CAS Google Scholar
First citationClausen, V., Frydenvang, K., Koopmann, R., Jorgensen, L. B., Abbiw, D. K., Ekpe, P. & Jaroszewski, J. W. (2002). J. Nat. Prod. 65, 542–547.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOsborn, J. A., Jardine, F. H., Young, J. F. & Wilkinson, G. (1966). J. Chem. Soc. A, pp. 1711–1732.  CrossRef Google Scholar
First citationSchmidt, U., Lieberknecht, A. & Wild, J. (1988). Synthesis, pp. 159–172.  CrossRef Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTrost, B. M. & Dake, G. R. (1997). J. Am. Chem. Soc. 119, 7595–7596.  CrossRef CAS Web of Science Google Scholar
First citationWirth, T. (1997). Angew. Chem. Int. Ed. 36, 225–227.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds