organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-furylmethyl­ene)-1,1′-bi­naphthyl-2,2′-di­amine

aDépartement de Chimie, Faculté des Sciences, 5019, Monastir, Tunisia, and bDépartement de Chimie, Faculté des Sciences, 7021, Bizerte, Tunisia
*Correspondence e-mail: najouahaj@yahoo.fr

(Received 22 November 2007; accepted 5 December 2007; online 12 December 2007)

In the title compound, C30H20N2O2, the orientation of the furyl group may induce a variety of coordination modes with this ligand. The dihedral angle between the two naphthyl rings is 79.25 (7)°. The furyl groups make dihedral angles of 62.0 (1) and 16.3 (2)° with the attached naphthyl groups. The dihedral angle between the two furyl rings is 49.3 (2)°.

Related literature

For related literature see: Chen et al. (1995[Chen, G. M., Chen, F. & Zhou, C. (1995). Gaodeng Xuexiao Huaxue Xuebao, 16, 216-218.]); Dang et al. (1971[Dang, T. P. & Kagan, H. B. (1971). J. Chem. Soc. Chem. Commun. pp. 481-482.]); Grubbs et al. (1977[Grubbs, R. H. & De Vries, R. A. (1977). Tetrahedron Lett. 22, 1879-1880.]); Horner et al. (1968[Horner, L., Siegel, H. & Buthe, H. (1968). Angew. Chem. Int. Ed. Engl. 7, 942-943.]); Miyashita et al. (1980[Miyashita, A., Yasuda, A., Takaya, H., Toriumi, K., Ito, T., Souchi, T. & Noyori, R. (1980). J. Am. Chem. Soc. 102, 7932-7934.]); Nishinaga et al. (1988[Nishinaga, A., Yamato, H., Abe, T., Maruyama, K. & Matsuura, T. (1988). Tetrahedron Lett. 29, 6309-6312.]); Pertici et al. (1996[Pertici, P., DArata, F. & Rosini, C. (1996). J. Organomet. Chem. 515, 163-171.]); Rosini et al. (1992[Rosini, C., Franzini, L., Raffaelli, A. & Salvadori, P. (1992). Synthesis, pp. 503-517.]); Suda et al. (1983[Suda, H., Kanoh, S., Murose, N., Goka, S. & Motoi, M. (1983). Polym. Bull. 10, 162-167.]); Spassky et al. (1996[Spassky, N., Wisniewski, M., Pluta, C. & Le Borgne, A. (1996). Macromol. Chem. Phys. 197, 2627-2637.]); Suga et al. (2003[Suga, H., Kakehi, A., Ito, S., Ibata, T., Fudo, T., Watanabe, Y. & Kinoshita, Y. (2003). Bull. Chem. Soc. Jpn, 76, 189-199.]).

[Scheme 1]

Experimental

Crystal data
  • C30H20N2O2

  • Mr = 440.48

  • Monoclinic, P 21 /n

  • a = 8.2433 (2) Å

  • b = 15.5046 (3) Å

  • c = 17.7432 (3) Å

  • β = 91.309 (3)°

  • V = 2267.15 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 (2) K

  • 0.23 × 0.15 × 0.12 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: none

  • 4133 measured reflections

  • 4016 independent reflections

  • 1600 reflections with I > 2σ(I)

  • Rint = 0.028

  • 2 standard reflections frequency: 120 min intensity decay: −1%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.146

  • S = 0.97

  • 4016 reflections

  • 331 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The importance of axially chiral ligands in catalytic asymmetric reactions is well known in the development of stereoselective hydrogenation of olefins.The low enantiomeric excess induced by the first chiral monodentate phosphane ligands (Horner et al., 1968) was soon enhanced by chelating bisphosphanes (Dang et al., 1971). Axially chiral ligands were first reported in a hydrogenation reaction in 1977 and have gained ground ever since (Grubbs et al., 1977).In addition to the biaryl backbone bisphosphanes (2,2'-bis (diphenylphosphino)-1,1'-binaphthyl) (Miyashita et al., 1980), derivatives of the corresponding diamines (biphenyldiamine and binaphthyldiamine) have performed successfully in many asymmetric catalytic reactions (Rosini et al., 1992). These include stereoselective polymerizations of methacrylate (Suda et al., 1983) and lactate (Spassky et al., 1996) and numerous enantioselective modifications of olefins such as epoxidation (Nishinaga et al., 1988), aziridination (Suga et al., 2003), cyclopropanation (Chen et al., 1995) and hydrogenation (Pertici et al., 1996). With a structurally rigid binaphthyl ligand backbone, the configuration of the ligand is fixed and its axial chirality can efficiently be transmitted to the active site catalyst. We report here the crystal structure of (I) which was synthesized via condensation of the axially chiral binaphthyldiamine with the 2-furfuraldehyde. The centrosymmetric crystal structure shows that there is racemization which may occur during the reaction of condensation. The molecule of (I) has two imine groups with bond distances N1—C1 1.264 (5) Å and N2—C26 1.268 (4) Å. Each imine group is bound to a furfuryl group such that C1—C2 1.445 (5) and C26—C27 1.431 (5) Å. Variation between N—C (N1—C1 and N2—C26) and C—C (C1—C2 and C26—C27) bonds are statistically insignificant. The naphthyl rings make a dihedral angle of 79.25 (7) ° with one another. The furyl group C2C3C4C5O1 makes a dihedral angle of 62.0 (1) ° with its attached binaphthyl group. The other furyl makes a dihedral angle of 16.3 (2) ° with its binaphthyl group. The furyl groups make a dihedral angle of 49.3 (2) ° with one another.

Related literature top

For related literature see: Chen et al. (1995); Dang et al. (1971); Grubbs et al. (1977); Horner et al. (1968); Miyashita et al. (1980); Nishinaga et al. (1988); Pertici et al. (1996); Rosini et al. (1992); Suda et al. (1983); Spassky et al. (1996); Suga et al. (2003)

Experimental top

The title compound was obtained as follows: to a stirred solution of the 2-furfuraldehyde (0.067 g, 0.703 mmol) in absolute ethanol (10 ml) was added the enantiomerically pure 2,2'-diamino-1,1'-binaphthyl (0.1 g,0.35 mmol). The resulting suspension was heated at reflux for 24 h. The pure yellow ligand was obtained after crystallization in absolute ethanol.

Refinement top

Hydrogen atoms H1, H3, H4, H5, H26, H28, H29 and H30 were located in a Fourier map and refined freely. All the other H atoms were placed in calculated positions and allowed to ride during subsequent refinement. The range of bond lengths to hydrogen is between 0.92 and 1.09 Å. Uiso of the H atoms were set to be equal to 1.2 Uiso of the parent atoms.

Structure description top

The importance of axially chiral ligands in catalytic asymmetric reactions is well known in the development of stereoselective hydrogenation of olefins.The low enantiomeric excess induced by the first chiral monodentate phosphane ligands (Horner et al., 1968) was soon enhanced by chelating bisphosphanes (Dang et al., 1971). Axially chiral ligands were first reported in a hydrogenation reaction in 1977 and have gained ground ever since (Grubbs et al., 1977).In addition to the biaryl backbone bisphosphanes (2,2'-bis (diphenylphosphino)-1,1'-binaphthyl) (Miyashita et al., 1980), derivatives of the corresponding diamines (biphenyldiamine and binaphthyldiamine) have performed successfully in many asymmetric catalytic reactions (Rosini et al., 1992). These include stereoselective polymerizations of methacrylate (Suda et al., 1983) and lactate (Spassky et al., 1996) and numerous enantioselective modifications of olefins such as epoxidation (Nishinaga et al., 1988), aziridination (Suga et al., 2003), cyclopropanation (Chen et al., 1995) and hydrogenation (Pertici et al., 1996). With a structurally rigid binaphthyl ligand backbone, the configuration of the ligand is fixed and its axial chirality can efficiently be transmitted to the active site catalyst. We report here the crystal structure of (I) which was synthesized via condensation of the axially chiral binaphthyldiamine with the 2-furfuraldehyde. The centrosymmetric crystal structure shows that there is racemization which may occur during the reaction of condensation. The molecule of (I) has two imine groups with bond distances N1—C1 1.264 (5) Å and N2—C26 1.268 (4) Å. Each imine group is bound to a furfuryl group such that C1—C2 1.445 (5) and C26—C27 1.431 (5) Å. Variation between N—C (N1—C1 and N2—C26) and C—C (C1—C2 and C26—C27) bonds are statistically insignificant. The naphthyl rings make a dihedral angle of 79.25 (7) ° with one another. The furyl group C2C3C4C5O1 makes a dihedral angle of 62.0 (1) ° with its attached binaphthyl group. The other furyl makes a dihedral angle of 16.3 (2) ° with its binaphthyl group. The furyl groups make a dihedral angle of 49.3 (2) ° with one another.

For related literature see: Chen et al. (1995); Dang et al. (1971); Grubbs et al. (1977); Horner et al. (1968); Miyashita et al. (1980); Nishinaga et al. (1988); Pertici et al. (1996); Rosini et al. (1992); Suda et al. (1983); Spassky et al. (1996); Suga et al. (2003)

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted.
N,N'-Bis(2-furylmethylene)-1,1'-binaphthyl-2,2'-diamine top
Crystal data top
C30H20N2O2F(000) = 920
Mr = 440.48Dx = 1.290 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 8.2433 (2) Åθ = 9.9–11.0°
b = 15.5046 (3) ŵ = 0.08 mm1
c = 17.7432 (3) ÅT = 293 K
β = 91.309 (3)°Prism, yellow
V = 2267.15 (8) Å30.23 × 0.15 × 0.12 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.028
Radiation source: fine-focus sealed tubeθmax = 25°, θmin = 2.3°
Graphite monochromatorh = 1010
non–profiled ω scansk = 018
4133 measured reflectionsl = 021
4016 independent reflections2 standard reflections every 120 min
1600 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0464P)2]
where P = (Fo2 + 2Fc2)/3
4016 reflections(Δ/σ)max < 0.001
331 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C30H20N2O2V = 2267.15 (8) Å3
Mr = 440.48Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2433 (2) ŵ = 0.08 mm1
b = 15.5046 (3) ÅT = 293 K
c = 17.7432 (3) Å0.23 × 0.15 × 0.12 mm
β = 91.309 (3)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.028
4133 measured reflections2 standard reflections every 120 min
4016 independent reflections intensity decay: 1%
1600 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.17 e Å3
4016 reflectionsΔρmin = 0.18 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9295 (4)0.7193 (2)0.20480 (18)0.0883 (10)
O20.4942 (3)0.94701 (19)0.06519 (15)0.0583 (7)
N11.0080 (4)0.7947 (2)0.0674 (2)0.0614 (10)
N20.6396 (3)0.7971 (2)0.00840 (18)0.0503 (9)
C11.0368 (5)0.8348 (3)0.1278 (3)0.0640 (13)
H11.086 (4)0.900 (2)0.128 (2)0.077*
C21.0049 (5)0.7968 (3)0.2010 (3)0.0572 (11)
C31.0277 (6)0.8265 (3)0.2713 (3)0.0731 (15)
H31.068 (5)0.882 (3)0.281 (2)0.088*
C40.9647 (6)0.7628 (4)0.3211 (3)0.0820 (16)
H40.959 (5)0.767 (3)0.373 (2)0.098*
C50.9084 (6)0.7002 (4)0.2798 (3)0.0917 (17)
H50.863 (5)0.635 (3)0.284 (2)0.110*
C61.0290 (4)0.8361 (2)0.0035 (2)0.0510 (11)
C71.1278 (5)0.9100 (3)0.0148 (3)0.0685 (13)
H71.18380.93310.02540.082*
C81.1413 (5)0.9477 (3)0.0842 (3)0.0670 (12)
H81.20560.99650.09080.080*
C91.0583 (5)0.9130 (3)0.1462 (3)0.0530 (11)
C101.0706 (5)0.9520 (3)0.2183 (3)0.0677 (13)
H101.13381.00120.22520.081*
C110.9906 (6)0.9180 (3)0.2772 (3)0.0758 (14)
H111.00080.94320.32470.091*
C120.8931 (5)0.8453 (3)0.2669 (2)0.0688 (13)
H120.83630.82330.30730.083*
C130.8799 (5)0.8062 (3)0.1986 (2)0.0568 (11)
H130.81590.75710.19300.068*
C140.9628 (4)0.8395 (2)0.1355 (2)0.0461 (10)
C150.9504 (4)0.7992 (2)0.0629 (2)0.0440 (10)
C160.8575 (4)0.7176 (2)0.05238 (19)0.0417 (9)
C170.7078 (4)0.7177 (3)0.0167 (2)0.0475 (10)
C180.6187 (5)0.6405 (3)0.0082 (2)0.0637 (12)
H180.51710.64120.01560.076*
C190.6821 (5)0.5652 (3)0.0349 (2)0.0703 (13)
H190.61990.51520.03090.085*
C200.8384 (5)0.5600 (3)0.0684 (2)0.0585 (11)
C210.9119 (7)0.4816 (3)0.0909 (2)0.0769 (14)
H210.85410.43030.08590.092*
C221.0659 (7)0.4800 (3)0.1198 (3)0.0835 (16)
H221.11310.42800.13460.100*
C231.1524 (6)0.5562 (3)0.1273 (2)0.0754 (14)
H231.25810.55480.14670.090*
C241.0856 (5)0.6329 (3)0.1068 (2)0.0610 (12)
H241.14610.68310.11290.073*
C250.9267 (5)0.6381 (2)0.0765 (2)0.0472 (10)
C260.5987 (5)0.8037 (3)0.0775 (2)0.0540 (11)
H260.619 (4)0.759 (2)0.1130 (19)0.065*
C270.5253 (5)0.8786 (3)0.1108 (2)0.0525 (11)
C280.4798 (7)0.8988 (3)0.1816 (3)0.0823 (16)
H280.500 (5)0.863 (3)0.223 (2)0.099*
C290.4167 (6)0.9820 (4)0.1811 (3)0.0842 (17)
H290.370 (5)1.015 (3)0.221 (2)0.102*
C300.4264 (6)1.0095 (3)0.1108 (3)0.0713 (14)
H300.399 (5)1.066 (2)0.082 (2)0.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C150.039 (2)0.042 (2)0.050 (3)0.0070 (19)0.009 (2)0.006 (2)
O20.0567 (17)0.0603 (19)0.0581 (17)0.0050 (16)0.0043 (14)0.0058 (17)
C140.037 (2)0.044 (3)0.056 (3)0.004 (2)0.013 (2)0.004 (2)
N20.0426 (19)0.057 (2)0.051 (2)0.0002 (17)0.0076 (17)0.0008 (18)
C160.043 (2)0.041 (2)0.041 (2)0.005 (2)0.0010 (18)0.0004 (19)
C60.048 (3)0.047 (3)0.058 (3)0.004 (2)0.002 (2)0.003 (2)
C170.046 (2)0.047 (3)0.049 (3)0.004 (2)0.006 (2)0.000 (2)
N10.065 (2)0.065 (2)0.055 (2)0.013 (2)0.0055 (19)0.011 (2)
O10.104 (3)0.089 (3)0.073 (2)0.031 (2)0.0025 (19)0.001 (2)
C90.045 (3)0.045 (3)0.068 (3)0.004 (2)0.014 (2)0.002 (2)
C180.058 (3)0.053 (3)0.079 (3)0.011 (3)0.014 (2)0.009 (2)
C270.055 (3)0.055 (3)0.047 (3)0.008 (2)0.009 (2)0.007 (2)
C120.080 (3)0.073 (3)0.053 (3)0.006 (3)0.005 (2)0.010 (3)
C250.055 (3)0.043 (3)0.044 (2)0.006 (2)0.001 (2)0.000 (2)
C20.056 (3)0.050 (3)0.066 (3)0.002 (2)0.009 (2)0.007 (3)
C260.049 (3)0.059 (3)0.053 (3)0.005 (2)0.003 (2)0.009 (2)
C200.068 (3)0.053 (3)0.055 (3)0.009 (3)0.001 (2)0.002 (2)
C80.051 (3)0.056 (3)0.094 (4)0.015 (2)0.007 (3)0.008 (3)
C130.062 (3)0.051 (3)0.057 (3)0.008 (2)0.007 (2)0.000 (2)
C240.068 (3)0.055 (3)0.059 (3)0.006 (2)0.016 (2)0.005 (2)
C10.071 (3)0.055 (3)0.066 (3)0.001 (3)0.010 (3)0.005 (3)
C70.059 (3)0.063 (3)0.084 (4)0.021 (2)0.007 (3)0.005 (3)
C300.066 (3)0.067 (3)0.081 (4)0.005 (3)0.009 (3)0.024 (3)
C110.089 (4)0.072 (4)0.065 (3)0.002 (3)0.019 (3)0.015 (3)
C100.067 (3)0.051 (3)0.084 (3)0.009 (2)0.024 (3)0.011 (3)
C210.117 (4)0.049 (3)0.065 (3)0.003 (3)0.004 (3)0.009 (2)
C230.085 (3)0.064 (3)0.076 (3)0.010 (3)0.017 (3)0.008 (3)
C190.079 (3)0.048 (3)0.084 (3)0.022 (3)0.002 (3)0.003 (3)
C290.089 (4)0.081 (4)0.082 (4)0.009 (3)0.025 (3)0.026 (3)
C50.095 (4)0.110 (5)0.071 (4)0.016 (4)0.001 (3)0.014 (4)
C40.073 (3)0.115 (5)0.058 (3)0.016 (3)0.010 (3)0.003 (4)
C30.092 (4)0.062 (3)0.067 (3)0.005 (3)0.023 (3)0.010 (3)
C280.112 (4)0.071 (4)0.062 (4)0.000 (3)0.013 (3)0.001 (3)
C220.115 (5)0.067 (4)0.068 (3)0.028 (4)0.003 (3)0.017 (3)
Geometric parameters (Å, º) top
C15—C61.374 (5)C26—H260.95 (3)
C15—C141.434 (5)C20—C191.409 (5)
C15—C161.488 (5)C20—C211.413 (6)
O2—C271.363 (4)C8—C71.366 (5)
O2—C301.373 (5)C8—H80.9300
C14—C91.395 (5)C13—H130.9300
C14—C131.421 (5)C24—C231.357 (5)
N2—C261.268 (4)C24—H240.9300
N2—C171.421 (4)C1—H11.09 (4)
C16—C171.374 (4)C7—H70.9300
C16—C251.420 (5)C30—C291.320 (6)
C6—C71.418 (5)C30—H301.04 (4)
C6—N11.420 (4)C11—C101.356 (6)
C17—C181.410 (5)C11—H110.9300
N1—C11.264 (5)C10—H100.9300
O1—C21.354 (5)C21—C221.359 (6)
O1—C51.370 (5)C21—H210.9300
C9—C81.415 (5)C23—C221.385 (6)
C9—C101.416 (5)C23—H230.9300
C18—C191.361 (5)C19—H190.9300
C18—H180.9300C29—C281.392 (6)
C27—C281.339 (5)C29—H290.95 (4)
C27—C261.431 (5)C5—C41.308 (7)
C12—C131.357 (5)C5—H51.08 (4)
C12—C111.394 (5)C4—C31.416 (7)
C12—H120.9300C4—H40.92 (4)
C25—C241.407 (5)C3—H30.94 (4)
C25—C201.418 (5)C28—H280.93 (4)
C2—C31.348 (5)C22—H220.9300
C2—C11.445 (5)
C6—C15—C14118.8 (4)C12—C13—H13119.6
C6—C15—C16120.6 (3)C14—C13—H13119.6
C14—C15—C16120.6 (4)C23—C24—C25121.4 (4)
C27—O2—C30106.2 (3)C23—C24—H24119.3
C9—C14—C13118.0 (4)C25—C24—H24119.3
C9—C14—C15120.4 (4)N1—C1—C2121.8 (4)
C13—C14—C15121.6 (4)N1—C1—H1122 (2)
C26—N2—C17117.9 (3)C2—C1—H1115.8 (19)
C17—C16—C25119.3 (3)C8—C7—C6120.5 (4)
C17—C16—C15120.8 (3)C8—C7—H7119.8
C25—C16—C15119.9 (3)C6—C7—H7119.8
C15—C6—C7120.6 (4)C29—C30—O2110.1 (5)
C15—C6—N1116.2 (4)C29—C30—H30136 (2)
C7—C6—N1123.2 (4)O2—C30—H30114 (2)
C16—C17—C18120.6 (4)C10—C11—C12120.2 (4)
C16—C17—N2119.3 (3)C10—C11—H11119.9
C18—C17—N2120.0 (3)C12—C11—H11119.9
C1—N1—C6120.5 (4)C11—C10—C9120.2 (4)
C2—O1—C5106.8 (4)C11—C10—H10119.9
C14—C9—C8119.1 (4)C9—C10—H10119.9
C14—C9—C10120.1 (4)C22—C21—C20120.9 (5)
C8—C9—C10120.9 (4)C22—C21—H21119.6
C19—C18—C17119.8 (4)C20—C21—H21119.6
C19—C18—H18120.1C24—C23—C22121.2 (4)
C17—C18—H18120.1C24—C23—H23119.4
C28—C27—O2108.8 (4)C22—C23—H23119.4
C28—C27—C26133.2 (5)C18—C19—C20122.4 (4)
O2—C27—C26118.0 (4)C18—C19—H19118.8
C13—C12—C11120.9 (4)C20—C19—H19118.8
C13—C12—H12119.6C30—C29—C28106.9 (5)
C11—C12—H12119.6C30—C29—H29123 (3)
C24—C25—C20117.4 (4)C28—C29—H29130 (3)
C24—C25—C16121.9 (4)C4—C5—O1110.2 (5)
C20—C25—C16120.6 (4)C4—C5—H5142 (2)
C3—C2—O1109.3 (4)O1—C5—H5107 (2)
C3—C2—C1131.9 (5)C5—C4—C3107.3 (5)
O1—C2—C1118.7 (4)C5—C4—H4127 (3)
N2—C26—C27124.5 (4)C3—C4—H4126 (3)
N2—C26—H26122 (2)C2—C3—C4106.4 (4)
C27—C26—H26113 (2)C2—C3—H3123 (3)
C19—C20—C21123.4 (4)C4—C3—H3130 (3)
C19—C20—C25117.2 (4)C27—C28—C29107.9 (5)
C21—C20—C25119.4 (4)C27—C28—H28123 (3)
C7—C8—C9120.5 (4)C29—C28—H28129 (3)
C7—C8—H8119.7C21—C22—C23119.7 (5)
C9—C8—H8119.7C21—C22—H22120.2
C12—C13—C14120.7 (4)C23—C22—H22120.2
C6—C15—C14—C92.4 (5)C16—C25—C20—C190.8 (5)
C16—C15—C14—C9176.0 (3)C24—C25—C20—C210.2 (5)
C6—C15—C14—C13177.8 (3)C16—C25—C20—C21178.3 (4)
C16—C15—C14—C133.8 (5)C14—C9—C8—C70.3 (6)
C6—C15—C16—C1776.0 (5)C10—C9—C8—C7179.5 (4)
C14—C15—C16—C17105.6 (4)C11—C12—C13—C141.2 (6)
C6—C15—C16—C25101.2 (4)C9—C14—C13—C120.3 (5)
C14—C15—C16—C2577.2 (4)C15—C14—C13—C12179.9 (4)
C14—C15—C6—C73.3 (5)C20—C25—C24—C230.3 (6)
C16—C15—C6—C7175.1 (4)C16—C25—C24—C23177.8 (4)
C14—C15—C6—N1178.1 (3)C6—N1—C1—C2175.2 (4)
C16—C15—C6—N13.5 (5)C3—C2—C1—N1179.0 (5)
C25—C16—C17—C184.0 (5)O1—C2—C1—N15.7 (7)
C15—C16—C17—C18178.7 (4)C9—C8—C7—C60.6 (6)
C25—C16—C17—N2179.1 (3)C15—C6—C7—C82.5 (6)
C15—C16—C17—N21.8 (5)N1—C6—C7—C8179.1 (4)
C26—N2—C17—C16124.2 (4)C27—O2—C30—C290.4 (5)
C26—N2—C17—C1858.9 (5)C13—C12—C11—C101.7 (7)
C15—C6—N1—C1160.8 (4)C12—C11—C10—C91.3 (6)
C7—C6—N1—C120.7 (6)C14—C9—C10—C110.4 (6)
C13—C14—C9—C8179.6 (3)C8—C9—C10—C11179.9 (4)
C15—C14—C9—C80.6 (5)C19—C20—C21—C22177.0 (4)
C13—C14—C9—C100.1 (5)C25—C20—C21—C220.3 (6)
C15—C14—C9—C10179.6 (3)C25—C24—C23—C220.7 (7)
C16—C17—C18—C190.6 (6)C17—C18—C19—C202.8 (6)
N2—C17—C18—C19177.5 (4)C21—C20—C19—C18174.6 (4)
C30—O2—C27—C280.6 (5)C25—C20—C19—C182.7 (6)
C30—O2—C27—C26179.4 (3)O2—C30—C29—C280.1 (6)
C17—C16—C25—C24173.9 (3)C2—O1—C5—C41.1 (6)
C15—C16—C25—C243.4 (5)O1—C5—C4—C30.5 (7)
C17—C16—C25—C204.1 (5)O1—C2—C3—C40.9 (5)
C15—C16—C25—C20178.6 (3)C1—C2—C3—C4176.6 (5)
C5—O1—C2—C31.2 (5)C5—C4—C3—C20.2 (6)
C5—O1—C2—C1177.5 (4)O2—C27—C28—C290.5 (6)
C17—N2—C26—C27178.6 (3)C26—C27—C28—C29179.1 (4)
C28—C27—C26—N2177.2 (5)C30—C29—C28—C270.2 (6)
O2—C27—C26—N21.4 (6)C20—C21—C22—C230.1 (7)
C24—C25—C20—C19177.3 (4)C24—C23—C22—C210.6 (7)

Experimental details

Crystal data
Chemical formulaC30H20N2O2
Mr440.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.2433 (2), 15.5046 (3), 17.7432 (3)
β (°) 91.309 (3)
V3)2267.15 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.23 × 0.15 × 0.12
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4133, 4016, 1600
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.146, 0.97
No. of reflections4016
No. of parameters331
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999).

Selected geometric parameters (Å, º) top
N2—C261.268 (4)C27—C261.431 (5)
N2—C171.421 (4)C2—C11.445 (5)
C6—N11.420 (4)C26—H260.95 (3)
N1—C11.264 (5)C1—H11.09 (4)
C26—N2—C17117.9 (3)C18—C17—N2120.0 (3)
C15—C6—N1116.2 (4)C1—N1—C6120.5 (4)
C7—C6—N1123.2 (4)N2—C26—C27124.5 (4)
C16—C17—N2119.3 (3)N1—C1—C2121.8 (4)
C6—C15—C16—C1776.0 (5)C6—C15—C16—C25101.2 (4)
 

References

First citationChen, G. M., Chen, F. & Zhou, C. (1995). Gaodeng Xuexiao Huaxue Xuebao, 16, 216–218.  CAS Google Scholar
First citationDang, T. P. & Kagan, H. B. (1971). J. Chem. Soc. Chem. Commun. pp. 481–482.  CrossRef Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGrubbs, R. H. & De Vries, R. A. (1977). Tetrahedron Lett. 22, 1879–1880.  CrossRef Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHorner, L., Siegel, H. & Buthe, H. (1968). Angew. Chem. Int. Ed. Engl. 7, 942–943.  CrossRef CAS Web of Science Google Scholar
First citationMiyashita, A., Yasuda, A., Takaya, H., Toriumi, K., Ito, T., Souchi, T. & Noyori, R. (1980). J. Am. Chem. Soc. 102, 7932–7934.  CSD CrossRef CAS Web of Science Google Scholar
First citationNishinaga, A., Yamato, H., Abe, T., Maruyama, K. & Matsuura, T. (1988). Tetrahedron Lett. 29, 6309–6312.  CrossRef CAS Web of Science Google Scholar
First citationPertici, P., DArata, F. & Rosini, C. (1996). J. Organomet. Chem. 515, 163–171.  CrossRef CAS Web of Science Google Scholar
First citationRosini, C., Franzini, L., Raffaelli, A. & Salvadori, P. (1992). Synthesis, pp. 503–517.  CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSpassky, N., Wisniewski, M., Pluta, C. & Le Borgne, A. (1996). Macromol. Chem. Phys. 197, 2627–2637.  CrossRef CAS Web of Science Google Scholar
First citationSuda, H., Kanoh, S., Murose, N., Goka, S. & Motoi, M. (1983). Polym. Bull. 10, 162–167.  CrossRef CAS Google Scholar
First citationSuga, H., Kakehi, A., Ito, S., Ibata, T., Fudo, T., Watanabe, Y. & Kinoshita, Y. (2003). Bull. Chem. Soc. Jpn, 76, 189–199.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds