metal-organic compounds
Bis{μ-2,2′-[1,1′-(ethane-1,2-diyldinitrilo)diethylidyne]diphenolato}bis[(benzoato-κO)manganese(III)] dihydrate
aDepartment of Chemistry, SN College, Varkala, Kerala 695 145, India, bDepartment of Chemistry, University of Kerala, Thiruvananthapuram, Kerala 695 581, India, and cDepartment of Chemistry, College of William and Mary, P. O. Box 8795, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: dasthampi@hotmail.com
The title compound, [Mn2(C18H18N2O2)2(C7H5O2)2]·2H2O, was synthesized by the reaction between manganese(II) benzoate and the Schiff base generated in situ by the condensation of ethane-1,2-diamine and o-hydroxyacetophenone. The Jahn–Teller-distorted manganese(III) ions of the centrosymmetric dimer are connected through phenoxy bridges. Hydrogen-bonding interactions between the uncoordinated C=O of the benzoate and uncoordinated water molecules link the dimers into a chain running parallel to the c axis.
Related literature
For related literature, see: Antonyuk et al. (2000); Aurengzeb et al. (1992); Aurengzeb et al. (1994); Barynin et al. (2001); Christou (1989); Hulme et al. (1997); Meier et al. (1996); Pecoraro & Hsieh (2000); Yocum & Pecoraro (1999); Stemmler et al. (1997); Zhang & Janiak (2001); Zouni et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
Supporting information
https://doi.org/10.1107/S160053680706446X/hj2002sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680706446X/hj2002Isup2.hkl
To a solution of Mn(C6H5CO2)2.2H2O (1.00 g, 3.00 mmol) and o-hydroxyacetophenone (0.82 g, 6.00 mmol) in methanol (40 ml), ethane-1,2-diamine (0.18 g, 3.00 mmol) was added. The solution was stirred for 20 minutes, filtered and left to evaporation in an open conical flask. Greenish brown crystals were deposited in 2–3 days. These were collected by filtration, washed with methanol, and dried in air. Yield of 1 is 1.20 g (82.0%) based on manganese.
The role played by manganese in biological systems like the oxygen-evolving complex (OEC) of photosystem II (Zouni et al.,2001) and enzymes like superoxide dismutase, catalase, arginase etc. is now well-recognized (Pecoraro & Yocum, 2004). Inorganic model complexes have made significant contributions to the progress in delineating the structural and functional aspects of the active-sites of these systems. An enormous number of such manganese complexes have been reported during the last few decades (Christou, 1989; Pecoraro & Hsieh, 2000). One class of high-valent manganese complexes which has received considerable attention in this connection recently is those involving carboxylic acid and Schiff base ligands (Aurengzeb et al., 1992; Aurengzeb et al. 1994; Hulme et al., 1997; Zhang et al., 2001). Crystallographic studies on the active sites of a relatively rare class of manganese catalases found in bacteria-like Thermus thermophilus and Lactobacillus plantarum point to a dinuclear manganese core with an Mn···Mn separation of 3.13 Å (reduced state) and 3.03 Å (oxidized state) respectively (Antonyuk et al., 2000; Barynin et al., 2001). The Mn···Mn distances derived from the EPR and
data provide complementary structural parameters with the Mn···Mn distances being 3.4 Å and 3.54 Å, respectively (Meier et al., 1996; Stemmler et al., 1997). Here we report the of a dimeric manganese complex with a Mn···Mn distance of 3.4616 (5)Å, I (Figure 1).Compound I crystallizes in the monoclinic
P21/c. The two manganese(III) ions, which are in slightly distorted octahedral environments, are linked by phenoxy bridges using the phenolic oxygen atoms of each ligand. The formation of the phenoxy bridges and the nearly planar nature of the tetradentate Schiff base ligand lead the carboxylates to adopt a relatively rare unidentate bonding mode. Each manganese(III) ion is at the centre of an approximate square plane consisting of two Mn–N bonds [Mn1-N1 = 1.9903 (13) Å and Mn1-N2 = 2.0091 (13) Å] and two Mn–O bonds [Mn1-O2 = 1.8673 (11) Å and Mn1-O1= 1.9324 (11) Å]. An axial elongation, of the Mn–Ocarb bond [Mn1–O3 = 2.1306 (11)Å], nearly orthogonal to the plane of the Schiff base, is indicative of the Jahn-Teller distortion anticipated of a high-spin manganese(III) ion in octahedral surroundings. This also causes a considerable weakening of the Mn–O bond along the phenoxy bridge [Mn1-O1(i) = 2.4399 (11)Å; Symmetry codes: (i) -x+1, -y+1, -z+1], leading to an asymmetric Mn1–O–Mn1(i) bridge. The Mn···Mn separation [Mn1···Mn1(i)] of 3.4616 (5)Å is comparable to 3.485 (7)Å and 3.529 (4)Å, the corresponding Mn···Mn separations of the previously reported complexes,[{Mn(msalen)(EtCO2)}2] and [{Mn(msalen)(BunCO2)}2] respectively. [H2msalen = N,N-bis(3-methoxysalicylidene)-1,2-diaminoethane] (Hulme et al., 1997). The non-coordinated C-O of the benzoate and lattice water molecules interact through hydrogen producing chains of the dimers running parallel to the c-axis (Figure 2).For related literature, see: Antonyuk et al. (2000); Aurengzeb et al. (1992); Aurengzeb et al. (1994); Barynin et al. (2001); Christou (1989); Hulme et al. (1997); Meier et al. (1996); Pecoraro & Hsieh (2000); Yocum & Pecoraro (1999); Stemmler et al. (1997); Zhang & Janiak (2001); Zouni et al. (2001).
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS (Sheldrick, 2004); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).[Mn2(C18H18N2O2)2(C7H5O2)2]·2H2O | F(000) = 1016 |
Mr = 976.82 | Dx = 1.503 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 218 reflections |
a = 12.9376 (4) Å | θ = 9.6–70.3° |
b = 12.3983 (4) Å | µ = 5.33 mm−1 |
c = 13.8470 (4) Å | T = 100 K |
β = 103.702 (2)° | Plate, green |
V = 2157.91 (11) Å3 | 0.23 × 0.22 × 0.03 mm |
Z = 2 |
Bruker APEXII CCD diffractometer | 3711 independent reflections |
Radiation source: fine-focus sealed tube | 3465 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
ω and Phi scans | θmax = 67.0°, θmin = 4.9° |
Absorption correction: numerical (SADABS; Sheldrick, 2004) | h = −15→15 |
Tmin = 0.374, Tmax = 0.857 | k = −14→14 |
21968 measured reflections | l = −15→12 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.068 | All H-atom parameters refined |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0388P)2 + 0.9845P] where P = (Fo2 + 2Fc2)/3 |
3711 reflections | (Δ/σ)max = 0.001 |
398 parameters | Δρmax = 0.24 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
[Mn2(C18H18N2O2)2(C7H5O2)2]·2H2O | V = 2157.91 (11) Å3 |
Mr = 976.82 | Z = 2 |
Monoclinic, P21/c | Cu Kα radiation |
a = 12.9376 (4) Å | µ = 5.33 mm−1 |
b = 12.3983 (4) Å | T = 100 K |
c = 13.8470 (4) Å | 0.23 × 0.22 × 0.03 mm |
β = 103.702 (2)° |
Bruker APEXII CCD diffractometer | 3711 independent reflections |
Absorption correction: numerical (SADABS; Sheldrick, 2004) | 3465 reflections with I > 2σ(I) |
Tmin = 0.374, Tmax = 0.857 | Rint = 0.041 |
21968 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.068 | All H-atom parameters refined |
S = 1.03 | Δρmax = 0.24 e Å−3 |
3711 reflections | Δρmin = −0.36 e Å−3 |
398 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.509469 (18) | 0.482743 (19) | 0.625826 (18) | 0.00737 (9) | |
O1 | 0.59764 (8) | 0.54044 (9) | 0.54335 (8) | 0.0097 (2) | |
O2 | 0.44338 (8) | 0.61250 (8) | 0.64417 (8) | 0.0115 (2) | |
O3 | 0.63962 (9) | 0.50305 (9) | 0.75151 (8) | 0.0141 (3) | |
O4 | 0.60249 (9) | 0.50899 (10) | 0.90102 (9) | 0.0171 (3) | |
O5 | 0.59404 (11) | 0.57505 (11) | 0.09578 (10) | 0.0243 (3) | |
N1 | 0.56577 (10) | 0.33741 (10) | 0.60493 (9) | 0.0097 (3) | |
N2 | 0.39511 (10) | 0.40011 (10) | 0.66981 (9) | 0.0093 (3) | |
C1 | 0.69961 (12) | 0.51025 (13) | 0.55995 (11) | 0.0095 (3) | |
C2 | 0.77582 (13) | 0.58879 (14) | 0.55177 (12) | 0.0123 (3) | |
C3 | 0.88167 (13) | 0.56196 (15) | 0.56395 (12) | 0.0149 (4) | |
C4 | 0.91550 (14) | 0.45594 (15) | 0.58562 (12) | 0.0165 (4) | |
C5 | 0.84191 (13) | 0.37768 (14) | 0.59350 (12) | 0.0146 (4) | |
C6 | 0.73315 (12) | 0.40178 (13) | 0.58058 (11) | 0.0103 (3) | |
C7 | 0.65666 (12) | 0.31506 (13) | 0.58595 (11) | 0.0100 (3) | |
C8 | 0.68401 (14) | 0.19971 (14) | 0.56750 (13) | 0.0133 (3) | |
C9 | 0.48612 (13) | 0.25258 (13) | 0.60535 (13) | 0.0134 (3) | |
C10 | 0.42002 (13) | 0.28324 (13) | 0.67791 (13) | 0.0129 (3) | |
C11 | 0.23512 (14) | 0.35696 (14) | 0.72628 (14) | 0.0155 (4) | |
C12 | 0.30861 (12) | 0.43524 (13) | 0.69174 (11) | 0.0102 (3) | |
C13 | 0.27896 (12) | 0.54987 (13) | 0.68234 (11) | 0.0109 (3) | |
C14 | 0.17770 (13) | 0.58263 (14) | 0.69292 (12) | 0.0134 (3) | |
C15 | 0.14654 (13) | 0.68915 (14) | 0.68857 (12) | 0.0148 (3) | |
C16 | 0.21835 (13) | 0.76876 (14) | 0.67560 (12) | 0.0135 (3) | |
C17 | 0.31734 (13) | 0.74033 (13) | 0.66321 (12) | 0.0119 (3) | |
C18 | 0.34894 (12) | 0.63105 (13) | 0.66258 (11) | 0.0097 (3) | |
C19 | 0.66321 (13) | 0.52194 (12) | 0.84366 (12) | 0.0106 (3) | |
C20 | 0.77494 (12) | 0.56330 (12) | 0.88745 (12) | 0.0110 (3) | |
C21 | 0.80612 (14) | 0.59426 (14) | 0.98683 (13) | 0.0164 (4) | |
C22 | 0.90820 (14) | 0.63329 (15) | 1.02608 (14) | 0.0213 (4) | |
C23 | 0.98022 (14) | 0.64194 (15) | 0.96662 (14) | 0.0204 (4) | |
C24 | 0.95039 (14) | 0.60999 (15) | 0.86776 (14) | 0.0193 (4) | |
C25 | 0.84822 (13) | 0.57172 (13) | 0.82813 (13) | 0.0146 (3) | |
H1W | 0.5942 (18) | 0.551 (2) | 0.040 (2) | 0.037 (7)* | |
H2W | 0.533 (2) | 0.551 (3) | 0.104 (2) | 0.063 (9)* | |
H2 | 0.7503 (14) | 0.6633 (16) | 0.5367 (13) | 0.014 (5)* | |
H3 | 0.9297 (16) | 0.6167 (16) | 0.5540 (14) | 0.018 (5)* | |
H4 | 0.9887 (17) | 0.4374 (17) | 0.5946 (15) | 0.024 (5)* | |
H5 | 0.8668 (14) | 0.3032 (16) | 0.6101 (13) | 0.016 (5)* | |
H8A | 0.6937 (16) | 0.1564 (17) | 0.6265 (16) | 0.026 (5)* | |
H8B | 0.6257 (15) | 0.1675 (16) | 0.5194 (15) | 0.017 (5)* | |
H8C | 0.7486 (16) | 0.1934 (16) | 0.5453 (14) | 0.020 (5)* | |
H9A | 0.5200 (15) | 0.1837 (17) | 0.6237 (13) | 0.018 (5)* | |
H9B | 0.4416 (14) | 0.2485 (15) | 0.5379 (13) | 0.011 (4)* | |
H10A | 0.4591 (15) | 0.2663 (16) | 0.7458 (15) | 0.020 (5)* | |
H10B | 0.3541 (15) | 0.2407 (16) | 0.6621 (13) | 0.016 (5)* | |
H11A | 0.1945 (16) | 0.3951 (17) | 0.7646 (16) | 0.026 (5)* | |
H11B | 0.1857 (17) | 0.3241 (18) | 0.6685 (16) | 0.029 (6)* | |
H11C | 0.2752 (16) | 0.3009 (17) | 0.7682 (15) | 0.023 (5)* | |
H14 | 0.1268 (17) | 0.5287 (17) | 0.7030 (15) | 0.022 (5)* | |
H15 | 0.0770 (15) | 0.7067 (15) | 0.6954 (13) | 0.012 (4)* | |
H16 | 0.1971 (15) | 0.8440 (17) | 0.6749 (14) | 0.018 (5)* | |
H17 | 0.3653 (15) | 0.7921 (16) | 0.6531 (14) | 0.016 (5)* | |
H21 | 0.7569 (15) | 0.5871 (15) | 1.0269 (14) | 0.016 (5)* | |
H22 | 0.9271 (16) | 0.6530 (17) | 1.0948 (16) | 0.028 (6)* | |
H23 | 1.0513 (18) | 0.6677 (18) | 0.9934 (16) | 0.032 (6)* | |
H24 | 1.0010 (16) | 0.6136 (16) | 0.8257 (15) | 0.024 (5)* | |
H25 | 0.8267 (14) | 0.5498 (15) | 0.7629 (15) | 0.014 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.00810 (14) | 0.00576 (14) | 0.00858 (15) | −0.00092 (9) | 0.00260 (10) | 0.00002 (9) |
O1 | 0.0091 (5) | 0.0097 (5) | 0.0101 (6) | −0.0008 (4) | 0.0022 (4) | 0.0011 (4) |
O2 | 0.0117 (6) | 0.0078 (5) | 0.0165 (6) | −0.0014 (4) | 0.0061 (4) | −0.0006 (4) |
O3 | 0.0144 (6) | 0.0169 (6) | 0.0100 (6) | −0.0008 (5) | 0.0010 (5) | −0.0019 (4) |
O4 | 0.0162 (6) | 0.0227 (7) | 0.0134 (6) | −0.0035 (5) | 0.0052 (5) | −0.0022 (5) |
O5 | 0.0229 (7) | 0.0358 (8) | 0.0151 (7) | −0.0116 (6) | 0.0064 (5) | −0.0064 (6) |
N1 | 0.0119 (7) | 0.0080 (7) | 0.0089 (7) | −0.0009 (5) | 0.0016 (5) | 0.0011 (5) |
N2 | 0.0106 (6) | 0.0080 (7) | 0.0084 (7) | −0.0010 (5) | 0.0004 (5) | 0.0005 (5) |
C1 | 0.0114 (8) | 0.0140 (8) | 0.0032 (8) | −0.0020 (6) | 0.0020 (6) | −0.0024 (6) |
C2 | 0.0136 (8) | 0.0137 (9) | 0.0093 (8) | −0.0031 (7) | 0.0022 (6) | −0.0010 (6) |
C3 | 0.0130 (8) | 0.0213 (9) | 0.0110 (8) | −0.0054 (7) | 0.0040 (6) | −0.0021 (7) |
C4 | 0.0108 (8) | 0.0252 (10) | 0.0137 (9) | 0.0013 (7) | 0.0034 (6) | −0.0026 (7) |
C5 | 0.0156 (8) | 0.0175 (9) | 0.0105 (8) | 0.0026 (7) | 0.0026 (6) | −0.0007 (6) |
C6 | 0.0128 (8) | 0.0136 (8) | 0.0045 (7) | 0.0003 (7) | 0.0021 (6) | −0.0011 (6) |
C7 | 0.0125 (8) | 0.0122 (8) | 0.0038 (7) | 0.0014 (6) | −0.0009 (6) | 0.0010 (6) |
C8 | 0.0162 (9) | 0.0114 (8) | 0.0127 (9) | 0.0023 (7) | 0.0044 (7) | −0.0005 (7) |
C9 | 0.0133 (8) | 0.0083 (8) | 0.0180 (9) | −0.0021 (7) | 0.0025 (7) | −0.0010 (6) |
C10 | 0.0121 (8) | 0.0077 (8) | 0.0184 (9) | −0.0005 (7) | 0.0029 (7) | 0.0031 (6) |
C11 | 0.0160 (8) | 0.0129 (9) | 0.0190 (10) | −0.0016 (7) | 0.0069 (7) | 0.0011 (7) |
C12 | 0.0114 (8) | 0.0126 (8) | 0.0057 (8) | −0.0031 (6) | 0.0002 (6) | −0.0023 (6) |
C13 | 0.0132 (8) | 0.0116 (8) | 0.0077 (8) | −0.0015 (7) | 0.0022 (6) | −0.0014 (6) |
C14 | 0.0121 (8) | 0.0158 (9) | 0.0118 (8) | −0.0026 (7) | 0.0020 (6) | −0.0022 (6) |
C15 | 0.0120 (8) | 0.0180 (9) | 0.0139 (9) | 0.0022 (7) | 0.0023 (6) | −0.0024 (7) |
C16 | 0.0176 (8) | 0.0122 (8) | 0.0098 (8) | 0.0029 (7) | 0.0012 (6) | −0.0004 (6) |
C17 | 0.0151 (8) | 0.0110 (8) | 0.0094 (8) | −0.0019 (7) | 0.0027 (6) | −0.0003 (6) |
C18 | 0.0119 (8) | 0.0114 (8) | 0.0052 (8) | −0.0001 (6) | 0.0009 (6) | −0.0017 (6) |
C19 | 0.0131 (8) | 0.0062 (8) | 0.0121 (9) | 0.0027 (6) | 0.0024 (6) | 0.0000 (6) |
C20 | 0.0132 (8) | 0.0069 (8) | 0.0122 (8) | 0.0015 (6) | 0.0015 (6) | 0.0007 (6) |
C21 | 0.0162 (9) | 0.0192 (9) | 0.0141 (9) | −0.0020 (7) | 0.0041 (7) | −0.0027 (7) |
C22 | 0.0203 (9) | 0.0251 (10) | 0.0162 (10) | −0.0039 (8) | −0.0006 (7) | −0.0050 (7) |
C23 | 0.0146 (9) | 0.0205 (9) | 0.0234 (10) | −0.0054 (7) | −0.0008 (7) | 0.0008 (7) |
C24 | 0.0173 (9) | 0.0212 (10) | 0.0205 (10) | −0.0025 (7) | 0.0064 (7) | 0.0028 (7) |
C25 | 0.0171 (9) | 0.0145 (9) | 0.0120 (9) | −0.0004 (7) | 0.0030 (7) | 0.0006 (7) |
Mn1—O2 | 1.8673 (11) | C9—C10 | 1.514 (2) |
Mn1—O1 | 1.9324 (11) | C9—H9A | 0.97 (2) |
Mn1—N1 | 1.9903 (13) | C9—H9B | 0.976 (18) |
Mn1—N2 | 2.0091 (13) | C10—H10A | 0.98 (2) |
Mn1—O3 | 2.1306 (11) | C10—H10B | 0.982 (19) |
Mn1—O1i | 2.4399 (11) | C11—C12 | 1.513 (2) |
O1—C1 | 1.3377 (19) | C11—H11A | 0.96 (2) |
O1—Mn1i | 2.4398 (11) | C11—H11B | 0.99 (2) |
O2—C18 | 1.3259 (19) | C11—H11C | 0.97 (2) |
O3—C19 | 1.262 (2) | C12—C13 | 1.470 (2) |
O4—C19 | 1.253 (2) | C13—C14 | 1.412 (2) |
O5—H1W | 0.83 (3) | C13—C18 | 1.423 (2) |
O5—H2W | 0.88 (3) | C14—C15 | 1.378 (2) |
N1—C7 | 1.294 (2) | C14—H14 | 0.97 (2) |
N1—C9 | 1.473 (2) | C15—C16 | 1.396 (2) |
N2—C12 | 1.302 (2) | C15—H15 | 0.951 (18) |
N2—C10 | 1.483 (2) | C16—C17 | 1.378 (2) |
C1—C2 | 1.409 (2) | C16—H16 | 0.97 (2) |
C1—C6 | 1.421 (2) | C17—C18 | 1.416 (2) |
C2—C3 | 1.380 (2) | C17—H17 | 0.93 (2) |
C2—H2 | 0.987 (19) | C19—C20 | 1.518 (2) |
C3—C4 | 1.395 (3) | C20—C21 | 1.393 (2) |
C3—H3 | 0.95 (2) | C20—C25 | 1.398 (2) |
C4—C5 | 1.382 (3) | C21—C22 | 1.391 (2) |
C4—H4 | 0.95 (2) | C21—H21 | 0.94 (2) |
C5—C6 | 1.408 (2) | C22—C23 | 1.386 (3) |
C5—H5 | 0.99 (2) | C22—H22 | 0.96 (2) |
C6—C7 | 1.475 (2) | C23—C24 | 1.389 (3) |
C7—C8 | 1.509 (2) | C23—H23 | 0.96 (2) |
C8—H8A | 0.96 (2) | C24—C25 | 1.389 (2) |
C8—H8B | 0.97 (2) | C24—H24 | 0.97 (2) |
C8—H8C | 0.96 (2) | C25—H25 | 0.92 (2) |
O2—Mn1—O1 | 96.60 (5) | N1—C9—H9B | 106.7 (11) |
O2—Mn1—N1 | 174.25 (5) | C10—C9—H9B | 110.5 (10) |
O1—Mn1—N1 | 87.80 (5) | H9A—C9—H9B | 109.5 (15) |
O2—Mn1—N2 | 90.25 (5) | N2—C10—C9 | 109.99 (13) |
O1—Mn1—N2 | 161.46 (5) | N2—C10—H10A | 109.6 (12) |
N1—Mn1—N2 | 84.46 (5) | C9—C10—H10A | 109.8 (11) |
O2—Mn1—O3 | 94.93 (5) | N2—C10—H10B | 110.3 (11) |
O1—Mn1—O3 | 88.63 (5) | C9—C10—H10B | 108.3 (11) |
N1—Mn1—O3 | 88.86 (5) | H10A—C10—H10B | 108.8 (15) |
N2—Mn1—O3 | 107.99 (5) | C12—C11—H11A | 109.1 (13) |
O2—Mn1—O1i | 93.32 (4) | C12—C11—H11B | 110.1 (13) |
O1—Mn1—O1i | 75.92 (4) | H11A—C11—H11B | 108.5 (17) |
N1—Mn1—O1i | 84.14 (4) | C12—C11—H11C | 111.2 (12) |
N2—Mn1—O1i | 86.53 (4) | H11A—C11—H11C | 107.9 (17) |
O3—Mn1—O1i | 163.22 (4) | H11B—C11—H11C | 109.9 (17) |
C1—O1—Mn1 | 119.41 (9) | N2—C12—C13 | 121.56 (14) |
C1—O1—Mn1i | 116.41 (9) | N2—C12—C11 | 119.88 (15) |
Mn1—O1—Mn1i | 104.08 (4) | C13—C12—C11 | 118.55 (14) |
C18—O2—Mn1 | 130.40 (10) | C14—C13—C18 | 117.69 (15) |
C19—O3—Mn1 | 143.43 (11) | C14—C13—C12 | 119.87 (14) |
H1W—O5—H2W | 101 (2) | C18—C13—C12 | 122.44 (14) |
C7—N1—C9 | 121.19 (14) | C15—C14—C13 | 122.70 (16) |
C7—N1—Mn1 | 127.22 (11) | C15—C14—H14 | 117.7 (12) |
C9—N1—Mn1 | 111.42 (10) | C13—C14—H14 | 119.6 (12) |
C12—N2—C10 | 119.51 (13) | C14—C15—C16 | 119.12 (16) |
C12—N2—Mn1 | 129.45 (11) | C14—C15—H15 | 119.2 (11) |
C10—N2—Mn1 | 111.03 (10) | C16—C15—H15 | 121.7 (11) |
O1—C1—C2 | 118.23 (14) | C17—C16—C15 | 120.11 (16) |
O1—C1—C6 | 122.75 (14) | C17—C16—H16 | 120.9 (12) |
C2—C1—C6 | 118.94 (15) | C15—C16—H16 | 119.0 (12) |
C3—C2—C1 | 121.10 (16) | C16—C17—C18 | 121.60 (15) |
C3—C2—H2 | 121.6 (11) | C16—C17—H17 | 121.2 (12) |
C1—C2—H2 | 117.3 (11) | C18—C17—H17 | 117.2 (12) |
C2—C3—C4 | 120.32 (16) | O2—C18—C17 | 116.60 (14) |
C2—C3—H3 | 118.2 (12) | O2—C18—C13 | 124.85 (14) |
C4—C3—H3 | 121.4 (12) | C17—C18—C13 | 118.55 (14) |
C5—C4—C3 | 119.44 (16) | O4—C19—O3 | 125.43 (15) |
C5—C4—H4 | 120.1 (13) | O4—C19—C20 | 118.09 (14) |
C3—C4—H4 | 120.5 (13) | O3—C19—C20 | 116.48 (14) |
C4—C5—C6 | 121.85 (16) | C21—C20—C25 | 118.81 (15) |
C4—C5—H5 | 118.8 (11) | C21—C20—C19 | 120.87 (15) |
C6—C5—H5 | 119.3 (11) | C25—C20—C19 | 120.32 (14) |
C5—C6—C1 | 118.34 (15) | C22—C21—C20 | 120.53 (16) |
C5—C6—C7 | 120.08 (15) | C22—C21—H21 | 120.9 (12) |
C1—C6—C7 | 121.56 (14) | C20—C21—H21 | 118.5 (12) |
N1—C7—C6 | 120.45 (14) | C23—C22—C21 | 120.30 (17) |
N1—C7—C8 | 119.86 (14) | C23—C22—H22 | 121.5 (13) |
C6—C7—C8 | 119.68 (14) | C21—C22—H22 | 118.2 (13) |
C7—C8—H8A | 112.0 (12) | C22—C23—C24 | 119.63 (16) |
C7—C8—H8B | 109.4 (11) | C22—C23—H23 | 120.9 (13) |
H8A—C8—H8B | 106.2 (16) | C24—C23—H23 | 119.5 (13) |
C7—C8—H8C | 112.9 (12) | C25—C24—C23 | 120.20 (16) |
H8A—C8—H8C | 106.1 (17) | C25—C24—H24 | 119.3 (12) |
H8B—C8—H8C | 110.0 (16) | C23—C24—H24 | 120.5 (12) |
N1—C9—C10 | 109.20 (13) | C24—C25—C20 | 120.51 (16) |
N1—C9—H9A | 111.0 (11) | C24—C25—H25 | 121.7 (12) |
C10—C9—H9A | 109.9 (11) | C20—C25—H25 | 117.7 (12) |
O2—Mn1—O1—C1 | 136.33 (11) | O1—C1—C6—C7 | −0.6 (2) |
N1—Mn1—O1—C1 | −47.38 (11) | C2—C1—C6—C7 | −177.45 (14) |
N2—Mn1—O1—C1 | −112.66 (17) | C9—N1—C7—C6 | 176.72 (14) |
O3—Mn1—O1—C1 | 41.53 (11) | Mn1—N1—C7—C6 | 1.8 (2) |
O1i—Mn1—O1—C1 | −131.89 (12) | C9—N1—C7—C8 | −2.3 (2) |
O2—Mn1—O1—Mn1i | −91.78 (5) | Mn1—N1—C7—C8 | −177.14 (11) |
N1—Mn1—O1—Mn1i | 84.51 (5) | C5—C6—C7—N1 | 158.58 (15) |
N2—Mn1—O1—Mn1i | 19.23 (17) | C1—C6—C7—N1 | −23.0 (2) |
O3—Mn1—O1—Mn1i | 173.42 (5) | C5—C6—C7—C8 | −22.4 (2) |
O1i—Mn1—O1—Mn1i | 0.0 | C1—C6—C7—C8 | 155.94 (15) |
O1—Mn1—O2—C18 | 153.11 (13) | C7—N1—C9—C10 | 150.24 (14) |
N2—Mn1—O2—C18 | −9.62 (13) | Mn1—N1—C9—C10 | −34.14 (15) |
O3—Mn1—O2—C18 | −117.70 (13) | C12—N2—C10—C9 | 152.00 (14) |
O1i—Mn1—O2—C18 | 76.92 (13) | Mn1—N2—C10—C9 | −28.88 (15) |
O2—Mn1—O3—C19 | 52.96 (17) | N1—C9—C10—N2 | 40.92 (17) |
O1—Mn1—O3—C19 | 149.46 (17) | C10—N2—C12—C13 | −178.33 (13) |
N1—Mn1—O3—C19 | −122.71 (17) | Mn1—N2—C12—C13 | 2.7 (2) |
N2—Mn1—O3—C19 | −38.91 (18) | C10—N2—C12—C11 | 0.7 (2) |
O1i—Mn1—O3—C19 | 172.10 (15) | Mn1—N2—C12—C11 | −178.26 (11) |
O1—Mn1—N1—C7 | 26.94 (13) | N2—C12—C13—C14 | 170.91 (15) |
N2—Mn1—N1—C7 | −169.93 (14) | C11—C12—C13—C14 | −8.1 (2) |
O3—Mn1—N1—C7 | −61.73 (13) | N2—C12—C13—C18 | −9.0 (2) |
O1i—Mn1—N1—C7 | 103.00 (13) | C11—C12—C13—C18 | 171.94 (15) |
O1—Mn1—N1—C9 | −148.35 (11) | C18—C13—C14—C15 | −2.5 (2) |
N2—Mn1—N1—C9 | 14.78 (10) | C12—C13—C14—C15 | 177.56 (15) |
O3—Mn1—N1—C9 | 122.98 (11) | C13—C14—C15—C16 | −1.6 (2) |
O1i—Mn1—N1—C9 | −72.29 (10) | C14—C15—C16—C17 | 2.7 (2) |
O2—Mn1—N2—C12 | 4.96 (14) | C15—C16—C17—C18 | 0.4 (2) |
O1—Mn1—N2—C12 | −107.01 (19) | Mn1—O2—C18—C17 | −174.08 (10) |
N1—Mn1—N2—C12 | −172.79 (14) | Mn1—O2—C18—C13 | 6.5 (2) |
O3—Mn1—N2—C12 | 100.22 (13) | C16—C17—C18—O2 | 176.07 (14) |
O1i—Mn1—N2—C12 | −88.34 (13) | C16—C17—C18—C13 | −4.5 (2) |
O2—Mn1—N2—C10 | −174.04 (10) | C14—C13—C18—O2 | −175.22 (14) |
O1—Mn1—N2—C10 | 73.98 (19) | C12—C13—C18—O2 | 4.7 (2) |
N1—Mn1—N2—C10 | 8.21 (10) | C14—C13—C18—C17 | 5.4 (2) |
O3—Mn1—N2—C10 | −78.78 (10) | C12—C13—C18—C17 | −174.64 (14) |
O1i—Mn1—N2—C10 | 92.65 (10) | Mn1—O3—C19—O4 | 20.1 (3) |
Mn1—O1—C1—C2 | −140.61 (12) | Mn1—O3—C19—C20 | −160.12 (12) |
Mn1i—O1—C1—C2 | 93.12 (14) | O4—C19—C20—C21 | −5.1 (2) |
Mn1—O1—C1—C6 | 42.54 (18) | O3—C19—C20—C21 | 175.11 (15) |
Mn1i—O1—C1—C6 | −83.74 (15) | O4—C19—C20—C25 | 175.36 (15) |
O1—C1—C2—C3 | −177.31 (14) | O3—C19—C20—C25 | −4.4 (2) |
C6—C1—C2—C3 | −0.3 (2) | C25—C20—C21—C22 | 0.3 (3) |
C1—C2—C3—C4 | −0.6 (2) | C19—C20—C21—C22 | −179.22 (15) |
C2—C3—C4—C5 | 0.8 (2) | C20—C21—C22—C23 | 0.1 (3) |
C3—C4—C5—C6 | −0.2 (2) | C21—C22—C23—C24 | −0.9 (3) |
C4—C5—C6—C1 | −0.7 (2) | C22—C23—C24—C25 | 1.4 (3) |
C4—C5—C6—C7 | 177.73 (15) | C23—C24—C25—C20 | −1.0 (3) |
O1—C1—C6—C5 | 177.78 (14) | C21—C20—C25—C24 | 0.2 (2) |
C2—C1—C6—C5 | 0.9 (2) | C19—C20—C25—C24 | 179.70 (15) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H1W···O4ii | 0.83 (3) | 2.02 (3) | 2.8452 (19) | 173 (2) |
O5—H2W···O4i | 0.88 (3) | 1.89 (3) | 2.7579 (18) | 171 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Mn2(C18H18N2O2)2(C7H5O2)2]·2H2O |
Mr | 976.82 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 12.9376 (4), 12.3983 (4), 13.8470 (4) |
β (°) | 103.702 (2) |
V (Å3) | 2157.91 (11) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 5.33 |
Crystal size (mm) | 0.23 × 0.22 × 0.03 |
Data collection | |
Diffractometer | Bruker APEXII CCD |
Absorption correction | Numerical (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.374, 0.857 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21968, 3711, 3465 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.068, 1.03 |
No. of reflections | 3711 |
No. of parameters | 398 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.24, −0.36 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS (Sheldrick, 2004), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 and PRPKAPPA (Ferguson, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H1W···O4i | 0.83 (3) | 2.02 (3) | 2.8452 (19) | 173 (2) |
O5—H2W···O4ii | 0.88 (3) | 1.89 (3) | 2.7579 (18) | 171 (3) |
Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
We acknowledge the authorities of SN College, Varkala, Kerala, India for providing the facilities of the college for this research. We also acknowledge the NSF (CHE-0443345) and the College of William and Mary for the purchase of the X-ray equipment.
References
Antonyuk, S. V., Melik-Adamayan, V. R., Popov, A. N., Lamzin, V. S., Hemsptead, P. D., Harrison, P. M., Artymyuk, P. J. & Barynin, V. V. (2000). Crystallogr. Rep. 45, 105–116. Web of Science CrossRef Google Scholar
Aurengzeb, N., Hulme, C. E., McAuliff, C. A., Pritchard, R. G., Watkinson, M., Garcia-Deibe, A., Bermejo, M. R. & Sousa, A. (1992). J. Chem. Soc. Chem. Commun. pp. 1524-1526. Google Scholar
Aurengzeb, N., Hulme, C. E., McAuliff, C. A., Pritchard, R. G., Watkinson, M., Garcia-Deibe, A., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195. Google Scholar
Barynin, V. V., Whittaker, M. M., Antonyuk, S. V., Lamzin, V. S., Harrison, P. M., Artymyuk, P. J. & Whittaker, J. W. (2001). Structure, 9, 725–738. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2004). APEX2 (Version 2.1) and SAINT-Plus (Version 7.34A). Bruker AXS Inc., Madison Wisconsin, USA. Google Scholar
Christou, G. (1989). Acc. Chem. Res. 22, 328–335. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliff, C. A., Jaiboon, N., Beagley, B., Sousa, A., Brrmejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814. CSD CrossRef Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Meier, A. E., Whittaker, M. M. & Whittaker, J. W. (1996). Biochemistry, 35, 348–360. CrossRef CAS PubMed Web of Science Google Scholar
Pecoraro, V. L. & Hsieh, W.-Y. (2000). The Use of Model Complexes to Elucidate the Structure and Function of Manganese Redox Enzymes. In Metals in Biological Systems, edited by Astrid Sigel & Helmut Sigel, vol. 37, ch 14, p. 429. Basel: Marcel-Dekker, Inc. Google Scholar
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Stemmler, T. L., Sossong, T. M., Goldstein, J. I., Ash, D. E., Elgren, T. E., Krutz, D. M. & Penner Hahn, J. E. (1997). Biochemistry, 36, 9847–9858. CrossRef CAS PubMed Web of Science Google Scholar
Yocum, C. F. & Pecoraro, V. L. (1999). Curr. Opin. Chem. Biol. 3, 182–187. Web of Science CrossRef PubMed CAS Google Scholar
Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719–720. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Zouni, A., Witt, H. T., Kern, J., Fromme, P., Krauss, N., Sanger, W. & Orth, P. (2001). Nature (London), 85, 379–388. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The role played by manganese in biological systems like the oxygen-evolving complex (OEC) of photosystem II (Zouni et al.,2001) and enzymes like superoxide dismutase, catalase, arginase etc. is now well-recognized (Pecoraro & Yocum, 2004). Inorganic model complexes have made significant contributions to the progress in delineating the structural and functional aspects of the active-sites of these systems. An enormous number of such manganese complexes have been reported during the last few decades (Christou, 1989; Pecoraro & Hsieh, 2000). One class of high-valent manganese complexes which has received considerable attention in this connection recently is those involving carboxylic acid and Schiff base ligands (Aurengzeb et al., 1992; Aurengzeb et al. 1994; Hulme et al., 1997; Zhang et al., 2001). Crystallographic studies on the active sites of a relatively rare class of manganese catalases found in bacteria-like Thermus thermophilus and Lactobacillus plantarum point to a dinuclear manganese core with an Mn···Mn separation of 3.13 Å (reduced state) and 3.03 Å (oxidized state) respectively (Antonyuk et al., 2000; Barynin et al., 2001). The Mn···Mn distances derived from the EPR and EXAFS data provide complementary structural parameters with the Mn···Mn distances being 3.4 Å and 3.54 Å, respectively (Meier et al., 1996; Stemmler et al., 1997). Here we report the crystal structure of a dimeric manganese complex with a Mn···Mn distance of 3.4616 (5)Å, I (Figure 1).
Compound I crystallizes in the monoclinic space group P21/c. The two manganese(III) ions, which are in slightly distorted octahedral environments, are linked by phenoxy bridges using the phenolic oxygen atoms of each ligand. The formation of the phenoxy bridges and the nearly planar nature of the tetradentate Schiff base ligand lead the carboxylates to adopt a relatively rare unidentate bonding mode. Each manganese(III) ion is at the centre of an approximate square plane consisting of two Mn–N bonds [Mn1-N1 = 1.9903 (13) Å and Mn1-N2 = 2.0091 (13) Å] and two Mn–O bonds [Mn1-O2 = 1.8673 (11) Å and Mn1-O1= 1.9324 (11) Å]. An axial elongation, of the Mn–Ocarb bond [Mn1–O3 = 2.1306 (11)Å], nearly orthogonal to the plane of the Schiff base, is indicative of the Jahn-Teller distortion anticipated of a high-spin manganese(III) ion in octahedral surroundings. This also causes a considerable weakening of the Mn–O bond along the phenoxy bridge [Mn1-O1(i) = 2.4399 (11)Å; Symmetry codes: (i) -x+1, -y+1, -z+1], leading to an asymmetric Mn1–O–Mn1(i) bridge. The Mn···Mn separation [Mn1···Mn1(i)] of 3.4616 (5)Å is comparable to 3.485 (7)Å and 3.529 (4)Å, the corresponding Mn···Mn separations of the previously reported complexes,[{Mn(msalen)(EtCO2)}2] and [{Mn(msalen)(BunCO2)}2] respectively. [H2msalen = N,N-bis(3-methoxysalicylidene)-1,2-diaminoethane] (Hulme et al., 1997). The non-coordinated C-O of the benzoate and lattice water molecules interact through hydrogen producing chains of the dimers running parallel to the c-axis (Figure 2).