metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ-2,2′-[1,1′-(ethane-1,2-diyldi­nitrilo)di­ethyl­­idyne]diphenolato}bis­­[(benzoato-κO)manganese(III)] dihydrate

aDepartment of Chemistry, SN College, Varkala, Kerala 695 145, India, bDepartment of Chemistry, University of Kerala, Thiruvananthapuram, Kerala 695 581, India, and cDepartment of Chemistry, College of William and Mary, P. O. Box 8795, Williamsburg, VA 23187-8795, USA
*Correspondence e-mail: dasthampi@hotmail.com

(Received 22 November 2007; accepted 29 November 2007; online 12 December 2007)

The title compound, [Mn2(C18H18N2O2)2(C7H5O2)2]·2H2O, was synthesized by the reaction between manganese(II) benzoate and the Schiff base generated in situ by the condensation of ethane-1,2-diamine and o-hydroxy­aceto­phen­one. The Jahn–Teller-distorted manganese(III) ions of the centrosymmetric dimer are connected through phen­oxy bridges. Hydrogen-bonding inter­actions between the uncoord­in­ated C=O of the benzoate and uncoordinated water mol­ecules link the dimers into a chain running parallel to the c axis.

Related literature

For related literature, see: Antonyuk et al. (2000[Antonyuk, S. V., Melik-Adamayan, V. R., Popov, A. N., Lamzin, V. S., Hemsptead, P. D., Harrison, P. M., Artymyuk, P. J. & Barynin, V. V. (2000). Crystallogr. Rep. 45, 105-116.]); Aurengzeb et al. (1992[Aurengzeb, N., Hulme, C. E., McAuliff, C. A., Pritchard, R. G., Watkinson, M., Garcia-Deibe, A., Bermejo, M. R. & Sousa, A. (1992). J. Chem. Soc. Chem. Commun. pp. 1524-1526.]); Aurengzeb et al. (1994[Aurengzeb, N., Hulme, C. E., McAuliff, C. A., Pritchard, R. G., Watkinson, M., Garcia-Deibe, A., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193-2195.]); Barynin et al. (2001[Barynin, V. V., Whittaker, M. M., Antonyuk, S. V., Lamzin, V. S., Harrison, P. M., Artymyuk, P. J. & Whittaker, J. W. (2001). Structure, 9, 725-738.]); Christou (1989[Christou, G. (1989). Acc. Chem. Res. 22, 328-335.]); Hulme et al. (1997[Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliff, C. A., Jaiboon, N., Beagley, B., Sousa, A., Brrmejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805-1814.]); Meier et al. (1996[Meier, A. E., Whittaker, M. M. & Whittaker, J. W. (1996). Biochemistry, 35, 348-360.]); Pecoraro & Hsieh (2000[Pecoraro, V. L. & Hsieh, W.-Y. (2000). The Use of Model Complexes to Elucidate the Structure and Function of Manganese Redox Enzymes. In Metals in Biological Systems, edited by Astrid Sigel & Helmut Sigel, vol. 37, ch 14, p. 429. Basel: Marcel-Dekker, Inc.]); Yocum & Pecoraro (1999[Yocum, C. F. & Pecoraro, V. L. (1999). Curr. Opin. Chem. Biol. 3, 182-187.]); Stemmler et al. (1997[Stemmler, T. L., Sossong, T. M., Goldstein, J. I., Ash, D. E., Elgren, T. E., Krutz, D. M. & Penner Hahn, J. E. (1997). Biochemistry, 36, 9847-9858.]); Zhang & Janiak (2001[Zhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719-720.]); Zouni et al. (2001[Zouni, A., Witt, H. T., Kern, J., Fromme, P., Krauss, N., Sanger, W. & Orth, P. (2001). Nature (London), 85, 379-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C18H18N2O2)2(C7H5O2)2]·2H2O

  • Mr = 976.82

  • Monoclinic, P 21 /c

  • a = 12.9376 (4) Å

  • b = 12.3983 (4) Å

  • c = 13.8470 (4) Å

  • β = 103.702 (2)°

  • V = 2157.91 (11) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 5.33 mm−1

  • T = 100 (2) K

  • 0.23 × 0.22 × 0.03 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical(SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.374, Tmax = 0.857

  • 21968 measured reflections

  • 3711 independent reflections

  • 3465 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.03

  • 3711 reflections

  • 398 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1W⋯O4i 0.83 (3) 2.02 (3) 2.8452 (19) 173 (2)
O5—H2W⋯O4ii 0.88 (3) 1.89 (3) 2.7579 (18) 171 (3)
Symmetry codes: (i) x, y, z-1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 2.1) and SAINT-Plus (Version 7.34A). Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 (Version 2.1) and SAINT-Plus (Version 7.34A). Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The role played by manganese in biological systems like the oxygen-evolving complex (OEC) of photosystem II (Zouni et al.,2001) and enzymes like superoxide dismutase, catalase, arginase etc. is now well-recognized (Pecoraro & Yocum, 2004). Inorganic model complexes have made significant contributions to the progress in delineating the structural and functional aspects of the active-sites of these systems. An enormous number of such manganese complexes have been reported during the last few decades (Christou, 1989; Pecoraro & Hsieh, 2000). One class of high-valent manganese complexes which has received considerable attention in this connection recently is those involving carboxylic acid and Schiff base ligands (Aurengzeb et al., 1992; Aurengzeb et al. 1994; Hulme et al., 1997; Zhang et al., 2001). Crystallographic studies on the active sites of a relatively rare class of manganese catalases found in bacteria-like Thermus thermophilus and Lactobacillus plantarum point to a dinuclear manganese core with an Mn···Mn separation of 3.13 Å (reduced state) and 3.03 Å (oxidized state) respectively (Antonyuk et al., 2000; Barynin et al., 2001). The Mn···Mn distances derived from the EPR and EXAFS data provide complementary structural parameters with the Mn···Mn distances being 3.4 Å and 3.54 Å, respectively (Meier et al., 1996; Stemmler et al., 1997). Here we report the crystal structure of a dimeric manganese complex with a Mn···Mn distance of 3.4616 (5)Å, I (Figure 1).

Compound I crystallizes in the monoclinic space group P21/c. The two manganese(III) ions, which are in slightly distorted octahedral environments, are linked by phenoxy bridges using the phenolic oxygen atoms of each ligand. The formation of the phenoxy bridges and the nearly planar nature of the tetradentate Schiff base ligand lead the carboxylates to adopt a relatively rare unidentate bonding mode. Each manganese(III) ion is at the centre of an approximate square plane consisting of two Mn–N bonds [Mn1-N1 = 1.9903 (13) Å and Mn1-N2 = 2.0091 (13) Å] and two Mn–O bonds [Mn1-O2 = 1.8673 (11) Å and Mn1-O1= 1.9324 (11) Å]. An axial elongation, of the Mn–Ocarb bond [Mn1–O3 = 2.1306 (11)Å], nearly orthogonal to the plane of the Schiff base, is indicative of the Jahn-Teller distortion anticipated of a high-spin manganese(III) ion in octahedral surroundings. This also causes a considerable weakening of the Mn–O bond along the phenoxy bridge [Mn1-O1(i) = 2.4399 (11)Å; Symmetry codes: (i) -x+1, -y+1, -z+1], leading to an asymmetric Mn1–O–Mn1(i) bridge. The Mn···Mn separation [Mn1···Mn1(i)] of 3.4616 (5)Å is comparable to 3.485 (7)Å and 3.529 (4)Å, the corresponding Mn···Mn separations of the previously reported complexes,[{Mn(msalen)(EtCO2)}2] and [{Mn(msalen)(BunCO2)}2] respectively. [H2msalen = N,N-bis(3-methoxysalicylidene)-1,2-diaminoethane] (Hulme et al., 1997). The non-coordinated C-O of the benzoate and lattice water molecules interact through hydrogen producing chains of the dimers running parallel to the c-axis (Figure 2).

Related literature top

For related literature, see: Antonyuk et al. (2000); Aurengzeb et al. (1992); Aurengzeb et al. (1994); Barynin et al. (2001); Christou (1989); Hulme et al. (1997); Meier et al. (1996); Pecoraro & Hsieh (2000); Yocum & Pecoraro (1999); Stemmler et al. (1997); Zhang & Janiak (2001); Zouni et al. (2001).

Experimental top

To a solution of Mn(C6H5CO2)2.2H2O (1.00 g, 3.00 mmol) and o-hydroxyacetophenone (0.82 g, 6.00 mmol) in methanol (40 ml), ethane-1,2-diamine (0.18 g, 3.00 mmol) was added. The solution was stirred for 20 minutes, filtered and left to evaporation in an open conical flask. Greenish brown crystals were deposited in 2–3 days. These were collected by filtration, washed with methanol, and dried in air. Yield of 1 is 1.20 g (82.0%) based on manganese.

Refinement top

All hydrogen atoms were located in the difference map and refined isotropically.

Structure description top

The role played by manganese in biological systems like the oxygen-evolving complex (OEC) of photosystem II (Zouni et al.,2001) and enzymes like superoxide dismutase, catalase, arginase etc. is now well-recognized (Pecoraro & Yocum, 2004). Inorganic model complexes have made significant contributions to the progress in delineating the structural and functional aspects of the active-sites of these systems. An enormous number of such manganese complexes have been reported during the last few decades (Christou, 1989; Pecoraro & Hsieh, 2000). One class of high-valent manganese complexes which has received considerable attention in this connection recently is those involving carboxylic acid and Schiff base ligands (Aurengzeb et al., 1992; Aurengzeb et al. 1994; Hulme et al., 1997; Zhang et al., 2001). Crystallographic studies on the active sites of a relatively rare class of manganese catalases found in bacteria-like Thermus thermophilus and Lactobacillus plantarum point to a dinuclear manganese core with an Mn···Mn separation of 3.13 Å (reduced state) and 3.03 Å (oxidized state) respectively (Antonyuk et al., 2000; Barynin et al., 2001). The Mn···Mn distances derived from the EPR and EXAFS data provide complementary structural parameters with the Mn···Mn distances being 3.4 Å and 3.54 Å, respectively (Meier et al., 1996; Stemmler et al., 1997). Here we report the crystal structure of a dimeric manganese complex with a Mn···Mn distance of 3.4616 (5)Å, I (Figure 1).

Compound I crystallizes in the monoclinic space group P21/c. The two manganese(III) ions, which are in slightly distorted octahedral environments, are linked by phenoxy bridges using the phenolic oxygen atoms of each ligand. The formation of the phenoxy bridges and the nearly planar nature of the tetradentate Schiff base ligand lead the carboxylates to adopt a relatively rare unidentate bonding mode. Each manganese(III) ion is at the centre of an approximate square plane consisting of two Mn–N bonds [Mn1-N1 = 1.9903 (13) Å and Mn1-N2 = 2.0091 (13) Å] and two Mn–O bonds [Mn1-O2 = 1.8673 (11) Å and Mn1-O1= 1.9324 (11) Å]. An axial elongation, of the Mn–Ocarb bond [Mn1–O3 = 2.1306 (11)Å], nearly orthogonal to the plane of the Schiff base, is indicative of the Jahn-Teller distortion anticipated of a high-spin manganese(III) ion in octahedral surroundings. This also causes a considerable weakening of the Mn–O bond along the phenoxy bridge [Mn1-O1(i) = 2.4399 (11)Å; Symmetry codes: (i) -x+1, -y+1, -z+1], leading to an asymmetric Mn1–O–Mn1(i) bridge. The Mn···Mn separation [Mn1···Mn1(i)] of 3.4616 (5)Å is comparable to 3.485 (7)Å and 3.529 (4)Å, the corresponding Mn···Mn separations of the previously reported complexes,[{Mn(msalen)(EtCO2)}2] and [{Mn(msalen)(BunCO2)}2] respectively. [H2msalen = N,N-bis(3-methoxysalicylidene)-1,2-diaminoethane] (Hulme et al., 1997). The non-coordinated C-O of the benzoate and lattice water molecules interact through hydrogen producing chains of the dimers running parallel to the c-axis (Figure 2).

For related literature, see: Antonyuk et al. (2000); Aurengzeb et al. (1992); Aurengzeb et al. (1994); Barynin et al. (2001); Christou (1989); Hulme et al. (1997); Meier et al. (1996); Pecoraro & Hsieh (2000); Yocum & Pecoraro (1999); Stemmler et al. (1997); Zhang & Janiak (2001); Zouni et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS (Sheldrick, 2004); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP picture (Farrugia, 1997) of (1) Displacement ellipsoids have been drawn at the 50% probability level.
[Figure 2] Fig. 2. Mercury ball and stick packing diagram (Macrae et al., 2006) of (1) showing hydrogen-bonding chains.
Bis{µ-2,2'-[1,1'-(ethane-1,2- diyldinitrilo)diethylidyne]diphenolato}bis[(benzoato-κO)manganese(III)] dihydrate top
Crystal data top
[Mn2(C18H18N2O2)2(C7H5O2)2]·2H2OF(000) = 1016
Mr = 976.82Dx = 1.503 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 218 reflections
a = 12.9376 (4) Åθ = 9.6–70.3°
b = 12.3983 (4) ŵ = 5.33 mm1
c = 13.8470 (4) ÅT = 100 K
β = 103.702 (2)°Plate, green
V = 2157.91 (11) Å30.23 × 0.22 × 0.03 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3711 independent reflections
Radiation source: fine-focus sealed tube3465 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and Phi scansθmax = 67.0°, θmin = 4.9°
Absorption correction: numerical
(SADABS; Sheldrick, 2004)
h = 1515
Tmin = 0.374, Tmax = 0.857k = 1414
21968 measured reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.9845P]
where P = (Fo2 + 2Fc2)/3
3711 reflections(Δ/σ)max = 0.001
398 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Mn2(C18H18N2O2)2(C7H5O2)2]·2H2OV = 2157.91 (11) Å3
Mr = 976.82Z = 2
Monoclinic, P21/cCu Kα radiation
a = 12.9376 (4) ŵ = 5.33 mm1
b = 12.3983 (4) ÅT = 100 K
c = 13.8470 (4) Å0.23 × 0.22 × 0.03 mm
β = 103.702 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3711 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2004)
3465 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.857Rint = 0.041
21968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.068All H-atom parameters refined
S = 1.03Δρmax = 0.24 e Å3
3711 reflectionsΔρmin = 0.36 e Å3
398 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.509469 (18)0.482743 (19)0.625826 (18)0.00737 (9)
O10.59764 (8)0.54044 (9)0.54335 (8)0.0097 (2)
O20.44338 (8)0.61250 (8)0.64417 (8)0.0115 (2)
O30.63962 (9)0.50305 (9)0.75151 (8)0.0141 (3)
O40.60249 (9)0.50899 (10)0.90102 (9)0.0171 (3)
O50.59404 (11)0.57505 (11)0.09578 (10)0.0243 (3)
N10.56577 (10)0.33741 (10)0.60493 (9)0.0097 (3)
N20.39511 (10)0.40011 (10)0.66981 (9)0.0093 (3)
C10.69961 (12)0.51025 (13)0.55995 (11)0.0095 (3)
C20.77582 (13)0.58879 (14)0.55177 (12)0.0123 (3)
C30.88167 (13)0.56196 (15)0.56395 (12)0.0149 (4)
C40.91550 (14)0.45594 (15)0.58562 (12)0.0165 (4)
C50.84191 (13)0.37768 (14)0.59350 (12)0.0146 (4)
C60.73315 (12)0.40178 (13)0.58058 (11)0.0103 (3)
C70.65666 (12)0.31506 (13)0.58595 (11)0.0100 (3)
C80.68401 (14)0.19971 (14)0.56750 (13)0.0133 (3)
C90.48612 (13)0.25258 (13)0.60535 (13)0.0134 (3)
C100.42002 (13)0.28324 (13)0.67791 (13)0.0129 (3)
C110.23512 (14)0.35696 (14)0.72628 (14)0.0155 (4)
C120.30861 (12)0.43524 (13)0.69174 (11)0.0102 (3)
C130.27896 (12)0.54987 (13)0.68234 (11)0.0109 (3)
C140.17770 (13)0.58263 (14)0.69292 (12)0.0134 (3)
C150.14654 (13)0.68915 (14)0.68857 (12)0.0148 (3)
C160.21835 (13)0.76876 (14)0.67560 (12)0.0135 (3)
C170.31734 (13)0.74033 (13)0.66321 (12)0.0119 (3)
C180.34894 (12)0.63105 (13)0.66258 (11)0.0097 (3)
C190.66321 (13)0.52194 (12)0.84366 (12)0.0106 (3)
C200.77494 (12)0.56330 (12)0.88745 (12)0.0110 (3)
C210.80612 (14)0.59426 (14)0.98683 (13)0.0164 (4)
C220.90820 (14)0.63329 (15)1.02608 (14)0.0213 (4)
C230.98022 (14)0.64194 (15)0.96662 (14)0.0204 (4)
C240.95039 (14)0.60999 (15)0.86776 (14)0.0193 (4)
C250.84822 (13)0.57172 (13)0.82813 (13)0.0146 (3)
H1W0.5942 (18)0.551 (2)0.040 (2)0.037 (7)*
H2W0.533 (2)0.551 (3)0.104 (2)0.063 (9)*
H20.7503 (14)0.6633 (16)0.5367 (13)0.014 (5)*
H30.9297 (16)0.6167 (16)0.5540 (14)0.018 (5)*
H40.9887 (17)0.4374 (17)0.5946 (15)0.024 (5)*
H50.8668 (14)0.3032 (16)0.6101 (13)0.016 (5)*
H8A0.6937 (16)0.1564 (17)0.6265 (16)0.026 (5)*
H8B0.6257 (15)0.1675 (16)0.5194 (15)0.017 (5)*
H8C0.7486 (16)0.1934 (16)0.5453 (14)0.020 (5)*
H9A0.5200 (15)0.1837 (17)0.6237 (13)0.018 (5)*
H9B0.4416 (14)0.2485 (15)0.5379 (13)0.011 (4)*
H10A0.4591 (15)0.2663 (16)0.7458 (15)0.020 (5)*
H10B0.3541 (15)0.2407 (16)0.6621 (13)0.016 (5)*
H11A0.1945 (16)0.3951 (17)0.7646 (16)0.026 (5)*
H11B0.1857 (17)0.3241 (18)0.6685 (16)0.029 (6)*
H11C0.2752 (16)0.3009 (17)0.7682 (15)0.023 (5)*
H140.1268 (17)0.5287 (17)0.7030 (15)0.022 (5)*
H150.0770 (15)0.7067 (15)0.6954 (13)0.012 (4)*
H160.1971 (15)0.8440 (17)0.6749 (14)0.018 (5)*
H170.3653 (15)0.7921 (16)0.6531 (14)0.016 (5)*
H210.7569 (15)0.5871 (15)1.0269 (14)0.016 (5)*
H220.9271 (16)0.6530 (17)1.0948 (16)0.028 (6)*
H231.0513 (18)0.6677 (18)0.9934 (16)0.032 (6)*
H241.0010 (16)0.6136 (16)0.8257 (15)0.024 (5)*
H250.8267 (14)0.5498 (15)0.7629 (15)0.014 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.00810 (14)0.00576 (14)0.00858 (15)0.00092 (9)0.00260 (10)0.00002 (9)
O10.0091 (5)0.0097 (5)0.0101 (6)0.0008 (4)0.0022 (4)0.0011 (4)
O20.0117 (6)0.0078 (5)0.0165 (6)0.0014 (4)0.0061 (4)0.0006 (4)
O30.0144 (6)0.0169 (6)0.0100 (6)0.0008 (5)0.0010 (5)0.0019 (4)
O40.0162 (6)0.0227 (7)0.0134 (6)0.0035 (5)0.0052 (5)0.0022 (5)
O50.0229 (7)0.0358 (8)0.0151 (7)0.0116 (6)0.0064 (5)0.0064 (6)
N10.0119 (7)0.0080 (7)0.0089 (7)0.0009 (5)0.0016 (5)0.0011 (5)
N20.0106 (6)0.0080 (7)0.0084 (7)0.0010 (5)0.0004 (5)0.0005 (5)
C10.0114 (8)0.0140 (8)0.0032 (8)0.0020 (6)0.0020 (6)0.0024 (6)
C20.0136 (8)0.0137 (9)0.0093 (8)0.0031 (7)0.0022 (6)0.0010 (6)
C30.0130 (8)0.0213 (9)0.0110 (8)0.0054 (7)0.0040 (6)0.0021 (7)
C40.0108 (8)0.0252 (10)0.0137 (9)0.0013 (7)0.0034 (6)0.0026 (7)
C50.0156 (8)0.0175 (9)0.0105 (8)0.0026 (7)0.0026 (6)0.0007 (6)
C60.0128 (8)0.0136 (8)0.0045 (7)0.0003 (7)0.0021 (6)0.0011 (6)
C70.0125 (8)0.0122 (8)0.0038 (7)0.0014 (6)0.0009 (6)0.0010 (6)
C80.0162 (9)0.0114 (8)0.0127 (9)0.0023 (7)0.0044 (7)0.0005 (7)
C90.0133 (8)0.0083 (8)0.0180 (9)0.0021 (7)0.0025 (7)0.0010 (6)
C100.0121 (8)0.0077 (8)0.0184 (9)0.0005 (7)0.0029 (7)0.0031 (6)
C110.0160 (8)0.0129 (9)0.0190 (10)0.0016 (7)0.0069 (7)0.0011 (7)
C120.0114 (8)0.0126 (8)0.0057 (8)0.0031 (6)0.0002 (6)0.0023 (6)
C130.0132 (8)0.0116 (8)0.0077 (8)0.0015 (7)0.0022 (6)0.0014 (6)
C140.0121 (8)0.0158 (9)0.0118 (8)0.0026 (7)0.0020 (6)0.0022 (6)
C150.0120 (8)0.0180 (9)0.0139 (9)0.0022 (7)0.0023 (6)0.0024 (7)
C160.0176 (8)0.0122 (8)0.0098 (8)0.0029 (7)0.0012 (6)0.0004 (6)
C170.0151 (8)0.0110 (8)0.0094 (8)0.0019 (7)0.0027 (6)0.0003 (6)
C180.0119 (8)0.0114 (8)0.0052 (8)0.0001 (6)0.0009 (6)0.0017 (6)
C190.0131 (8)0.0062 (8)0.0121 (9)0.0027 (6)0.0024 (6)0.0000 (6)
C200.0132 (8)0.0069 (8)0.0122 (8)0.0015 (6)0.0015 (6)0.0007 (6)
C210.0162 (9)0.0192 (9)0.0141 (9)0.0020 (7)0.0041 (7)0.0027 (7)
C220.0203 (9)0.0251 (10)0.0162 (10)0.0039 (8)0.0006 (7)0.0050 (7)
C230.0146 (9)0.0205 (9)0.0234 (10)0.0054 (7)0.0008 (7)0.0008 (7)
C240.0173 (9)0.0212 (10)0.0205 (10)0.0025 (7)0.0064 (7)0.0028 (7)
C250.0171 (9)0.0145 (9)0.0120 (9)0.0004 (7)0.0030 (7)0.0006 (7)
Geometric parameters (Å, º) top
Mn1—O21.8673 (11)C9—C101.514 (2)
Mn1—O11.9324 (11)C9—H9A0.97 (2)
Mn1—N11.9903 (13)C9—H9B0.976 (18)
Mn1—N22.0091 (13)C10—H10A0.98 (2)
Mn1—O32.1306 (11)C10—H10B0.982 (19)
Mn1—O1i2.4399 (11)C11—C121.513 (2)
O1—C11.3377 (19)C11—H11A0.96 (2)
O1—Mn1i2.4398 (11)C11—H11B0.99 (2)
O2—C181.3259 (19)C11—H11C0.97 (2)
O3—C191.262 (2)C12—C131.470 (2)
O4—C191.253 (2)C13—C141.412 (2)
O5—H1W0.83 (3)C13—C181.423 (2)
O5—H2W0.88 (3)C14—C151.378 (2)
N1—C71.294 (2)C14—H140.97 (2)
N1—C91.473 (2)C15—C161.396 (2)
N2—C121.302 (2)C15—H150.951 (18)
N2—C101.483 (2)C16—C171.378 (2)
C1—C21.409 (2)C16—H160.97 (2)
C1—C61.421 (2)C17—C181.416 (2)
C2—C31.380 (2)C17—H170.93 (2)
C2—H20.987 (19)C19—C201.518 (2)
C3—C41.395 (3)C20—C211.393 (2)
C3—H30.95 (2)C20—C251.398 (2)
C4—C51.382 (3)C21—C221.391 (2)
C4—H40.95 (2)C21—H210.94 (2)
C5—C61.408 (2)C22—C231.386 (3)
C5—H50.99 (2)C22—H220.96 (2)
C6—C71.475 (2)C23—C241.389 (3)
C7—C81.509 (2)C23—H230.96 (2)
C8—H8A0.96 (2)C24—C251.389 (2)
C8—H8B0.97 (2)C24—H240.97 (2)
C8—H8C0.96 (2)C25—H250.92 (2)
O2—Mn1—O196.60 (5)N1—C9—H9B106.7 (11)
O2—Mn1—N1174.25 (5)C10—C9—H9B110.5 (10)
O1—Mn1—N187.80 (5)H9A—C9—H9B109.5 (15)
O2—Mn1—N290.25 (5)N2—C10—C9109.99 (13)
O1—Mn1—N2161.46 (5)N2—C10—H10A109.6 (12)
N1—Mn1—N284.46 (5)C9—C10—H10A109.8 (11)
O2—Mn1—O394.93 (5)N2—C10—H10B110.3 (11)
O1—Mn1—O388.63 (5)C9—C10—H10B108.3 (11)
N1—Mn1—O388.86 (5)H10A—C10—H10B108.8 (15)
N2—Mn1—O3107.99 (5)C12—C11—H11A109.1 (13)
O2—Mn1—O1i93.32 (4)C12—C11—H11B110.1 (13)
O1—Mn1—O1i75.92 (4)H11A—C11—H11B108.5 (17)
N1—Mn1—O1i84.14 (4)C12—C11—H11C111.2 (12)
N2—Mn1—O1i86.53 (4)H11A—C11—H11C107.9 (17)
O3—Mn1—O1i163.22 (4)H11B—C11—H11C109.9 (17)
C1—O1—Mn1119.41 (9)N2—C12—C13121.56 (14)
C1—O1—Mn1i116.41 (9)N2—C12—C11119.88 (15)
Mn1—O1—Mn1i104.08 (4)C13—C12—C11118.55 (14)
C18—O2—Mn1130.40 (10)C14—C13—C18117.69 (15)
C19—O3—Mn1143.43 (11)C14—C13—C12119.87 (14)
H1W—O5—H2W101 (2)C18—C13—C12122.44 (14)
C7—N1—C9121.19 (14)C15—C14—C13122.70 (16)
C7—N1—Mn1127.22 (11)C15—C14—H14117.7 (12)
C9—N1—Mn1111.42 (10)C13—C14—H14119.6 (12)
C12—N2—C10119.51 (13)C14—C15—C16119.12 (16)
C12—N2—Mn1129.45 (11)C14—C15—H15119.2 (11)
C10—N2—Mn1111.03 (10)C16—C15—H15121.7 (11)
O1—C1—C2118.23 (14)C17—C16—C15120.11 (16)
O1—C1—C6122.75 (14)C17—C16—H16120.9 (12)
C2—C1—C6118.94 (15)C15—C16—H16119.0 (12)
C3—C2—C1121.10 (16)C16—C17—C18121.60 (15)
C3—C2—H2121.6 (11)C16—C17—H17121.2 (12)
C1—C2—H2117.3 (11)C18—C17—H17117.2 (12)
C2—C3—C4120.32 (16)O2—C18—C17116.60 (14)
C2—C3—H3118.2 (12)O2—C18—C13124.85 (14)
C4—C3—H3121.4 (12)C17—C18—C13118.55 (14)
C5—C4—C3119.44 (16)O4—C19—O3125.43 (15)
C5—C4—H4120.1 (13)O4—C19—C20118.09 (14)
C3—C4—H4120.5 (13)O3—C19—C20116.48 (14)
C4—C5—C6121.85 (16)C21—C20—C25118.81 (15)
C4—C5—H5118.8 (11)C21—C20—C19120.87 (15)
C6—C5—H5119.3 (11)C25—C20—C19120.32 (14)
C5—C6—C1118.34 (15)C22—C21—C20120.53 (16)
C5—C6—C7120.08 (15)C22—C21—H21120.9 (12)
C1—C6—C7121.56 (14)C20—C21—H21118.5 (12)
N1—C7—C6120.45 (14)C23—C22—C21120.30 (17)
N1—C7—C8119.86 (14)C23—C22—H22121.5 (13)
C6—C7—C8119.68 (14)C21—C22—H22118.2 (13)
C7—C8—H8A112.0 (12)C22—C23—C24119.63 (16)
C7—C8—H8B109.4 (11)C22—C23—H23120.9 (13)
H8A—C8—H8B106.2 (16)C24—C23—H23119.5 (13)
C7—C8—H8C112.9 (12)C25—C24—C23120.20 (16)
H8A—C8—H8C106.1 (17)C25—C24—H24119.3 (12)
H8B—C8—H8C110.0 (16)C23—C24—H24120.5 (12)
N1—C9—C10109.20 (13)C24—C25—C20120.51 (16)
N1—C9—H9A111.0 (11)C24—C25—H25121.7 (12)
C10—C9—H9A109.9 (11)C20—C25—H25117.7 (12)
O2—Mn1—O1—C1136.33 (11)O1—C1—C6—C70.6 (2)
N1—Mn1—O1—C147.38 (11)C2—C1—C6—C7177.45 (14)
N2—Mn1—O1—C1112.66 (17)C9—N1—C7—C6176.72 (14)
O3—Mn1—O1—C141.53 (11)Mn1—N1—C7—C61.8 (2)
O1i—Mn1—O1—C1131.89 (12)C9—N1—C7—C82.3 (2)
O2—Mn1—O1—Mn1i91.78 (5)Mn1—N1—C7—C8177.14 (11)
N1—Mn1—O1—Mn1i84.51 (5)C5—C6—C7—N1158.58 (15)
N2—Mn1—O1—Mn1i19.23 (17)C1—C6—C7—N123.0 (2)
O3—Mn1—O1—Mn1i173.42 (5)C5—C6—C7—C822.4 (2)
O1i—Mn1—O1—Mn1i0.0C1—C6—C7—C8155.94 (15)
O1—Mn1—O2—C18153.11 (13)C7—N1—C9—C10150.24 (14)
N2—Mn1—O2—C189.62 (13)Mn1—N1—C9—C1034.14 (15)
O3—Mn1—O2—C18117.70 (13)C12—N2—C10—C9152.00 (14)
O1i—Mn1—O2—C1876.92 (13)Mn1—N2—C10—C928.88 (15)
O2—Mn1—O3—C1952.96 (17)N1—C9—C10—N240.92 (17)
O1—Mn1—O3—C19149.46 (17)C10—N2—C12—C13178.33 (13)
N1—Mn1—O3—C19122.71 (17)Mn1—N2—C12—C132.7 (2)
N2—Mn1—O3—C1938.91 (18)C10—N2—C12—C110.7 (2)
O1i—Mn1—O3—C19172.10 (15)Mn1—N2—C12—C11178.26 (11)
O1—Mn1—N1—C726.94 (13)N2—C12—C13—C14170.91 (15)
N2—Mn1—N1—C7169.93 (14)C11—C12—C13—C148.1 (2)
O3—Mn1—N1—C761.73 (13)N2—C12—C13—C189.0 (2)
O1i—Mn1—N1—C7103.00 (13)C11—C12—C13—C18171.94 (15)
O1—Mn1—N1—C9148.35 (11)C18—C13—C14—C152.5 (2)
N2—Mn1—N1—C914.78 (10)C12—C13—C14—C15177.56 (15)
O3—Mn1—N1—C9122.98 (11)C13—C14—C15—C161.6 (2)
O1i—Mn1—N1—C972.29 (10)C14—C15—C16—C172.7 (2)
O2—Mn1—N2—C124.96 (14)C15—C16—C17—C180.4 (2)
O1—Mn1—N2—C12107.01 (19)Mn1—O2—C18—C17174.08 (10)
N1—Mn1—N2—C12172.79 (14)Mn1—O2—C18—C136.5 (2)
O3—Mn1—N2—C12100.22 (13)C16—C17—C18—O2176.07 (14)
O1i—Mn1—N2—C1288.34 (13)C16—C17—C18—C134.5 (2)
O2—Mn1—N2—C10174.04 (10)C14—C13—C18—O2175.22 (14)
O1—Mn1—N2—C1073.98 (19)C12—C13—C18—O24.7 (2)
N1—Mn1—N2—C108.21 (10)C14—C13—C18—C175.4 (2)
O3—Mn1—N2—C1078.78 (10)C12—C13—C18—C17174.64 (14)
O1i—Mn1—N2—C1092.65 (10)Mn1—O3—C19—O420.1 (3)
Mn1—O1—C1—C2140.61 (12)Mn1—O3—C19—C20160.12 (12)
Mn1i—O1—C1—C293.12 (14)O4—C19—C20—C215.1 (2)
Mn1—O1—C1—C642.54 (18)O3—C19—C20—C21175.11 (15)
Mn1i—O1—C1—C683.74 (15)O4—C19—C20—C25175.36 (15)
O1—C1—C2—C3177.31 (14)O3—C19—C20—C254.4 (2)
C6—C1—C2—C30.3 (2)C25—C20—C21—C220.3 (3)
C1—C2—C3—C40.6 (2)C19—C20—C21—C22179.22 (15)
C2—C3—C4—C50.8 (2)C20—C21—C22—C230.1 (3)
C3—C4—C5—C60.2 (2)C21—C22—C23—C240.9 (3)
C4—C5—C6—C10.7 (2)C22—C23—C24—C251.4 (3)
C4—C5—C6—C7177.73 (15)C23—C24—C25—C201.0 (3)
O1—C1—C6—C5177.78 (14)C21—C20—C25—C240.2 (2)
C2—C1—C6—C50.9 (2)C19—C20—C25—C24179.70 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O4ii0.83 (3)2.02 (3)2.8452 (19)173 (2)
O5—H2W···O4i0.88 (3)1.89 (3)2.7579 (18)171 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Mn2(C18H18N2O2)2(C7H5O2)2]·2H2O
Mr976.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.9376 (4), 12.3983 (4), 13.8470 (4)
β (°) 103.702 (2)
V3)2157.91 (11)
Z2
Radiation typeCu Kα
µ (mm1)5.33
Crystal size (mm)0.23 × 0.22 × 0.03
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionNumerical
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.374, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
21968, 3711, 3465
Rint0.041
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.03
No. of reflections3711
No. of parameters398
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.24, 0.36

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS (Sheldrick, 2004), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O4i0.83 (3)2.02 (3)2.8452 (19)173 (2)
O5—H2W···O4ii0.88 (3)1.89 (3)2.7579 (18)171 (3)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1.
 

Acknowledgements

We acknowledge the authorities of SN College, Varkala, Kerala, India for providing the facilities of the college for this research. We also acknowledge the NSF (CHE-0443345) and the College of William and Mary for the purchase of the X-ray equipment.

References

First citationAntonyuk, S. V., Melik-Adamayan, V. R., Popov, A. N., Lamzin, V. S., Hemsptead, P. D., Harrison, P. M., Artymyuk, P. J. & Barynin, V. V. (2000). Crystallogr. Rep. 45, 105–116.  Web of Science CrossRef Google Scholar
First citationAurengzeb, N., Hulme, C. E., McAuliff, C. A., Pritchard, R. G., Watkinson, M., Garcia-Deibe, A., Bermejo, M. R. & Sousa, A. (1992). J. Chem. Soc. Chem. Commun. pp. 1524-1526.  Google Scholar
First citationAurengzeb, N., Hulme, C. E., McAuliff, C. A., Pritchard, R. G., Watkinson, M., Garcia-Deibe, A., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195.  Google Scholar
First citationBarynin, V. V., Whittaker, M. M., Antonyuk, S. V., Lamzin, V. S., Harrison, P. M., Artymyuk, P. J. & Whittaker, J. W. (2001). Structure, 9, 725–738.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 (Version 2.1) and SAINT-Plus (Version 7.34A). Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationChristou, G. (1989). Acc. Chem. Res. 22, 328–335.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliff, C. A., Jaiboon, N., Beagley, B., Sousa, A., Brrmejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.  CSD CrossRef Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMeier, A. E., Whittaker, M. M. & Whittaker, J. W. (1996). Biochemistry, 35, 348–360.  CrossRef CAS PubMed Web of Science Google Scholar
First citationPecoraro, V. L. & Hsieh, W.-Y. (2000). The Use of Model Complexes to Elucidate the Structure and Function of Manganese Redox Enzymes. In Metals in Biological Systems, edited by Astrid Sigel & Helmut Sigel, vol. 37, ch 14, p. 429. Basel: Marcel-Dekker, Inc.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationStemmler, T. L., Sossong, T. M., Goldstein, J. I., Ash, D. E., Elgren, T. E., Krutz, D. M. & Penner Hahn, J. E. (1997). Biochemistry, 36, 9847–9858.  CrossRef CAS PubMed Web of Science Google Scholar
First citationYocum, C. F. & Pecoraro, V. L. (1999). Curr. Opin. Chem. Biol. 3, 182–187.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, C. & Janiak, C. (2001). Acta Cryst. C57, 719–720.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationZouni, A., Witt, H. T., Kern, J., Fromme, P., Krauss, N., Sanger, W. & Orth, P. (2001). Nature (London), 85, 379–388.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds