organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-butyl 2-benzoyl­hydrazine-1,1-di­carboxyl­ate

aLaboratoire de Cristallographie et Modélisation des Matériaux Minéraux, et Biologiques (LCM3B), UMR n° 7036, Nancy Université, Faculté des Sciences et Techniques, BP 239, 54506 Vandoeuvre lès Nancy Cedex, France, and bLaboratoire de Chimie Physique Macromoléculaire, UMR CNRS-INPL 7568, Nancy-Université, ENSIC 1, rue grandville BP 451, 54001 Nancy, France
*Correspondence e-mail: claude.didierjean@lcm3b.uhp-nancy.fr

(Received 22 November 2007; accepted 27 November 2007; online 6 December 2007)

The crystal structure of the title compound, C17H24N2O5, was determined in the course of our studies on the preparation of two families of pseudopeptides, viz. hydrazino- and N-amino- peptides. The most significant inter­action in the crystal structure is a bifurcated inter­molecular N—H⋯O hydrogen bond.

Related literature

For the synthesis, see: Brosse et al. (2003[Brosse, N., Pinto, M.-F. & Jamart-Grégoire, B. (2003). Eur. J. Org. Chem. 24, 4757-4764.]). For geometry, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Kauffmann et al. (2004[Kauffmann, B., Didierjean, C., Brosse, N., Jamart-Grégoire, B. & Aubry, A. (2004). Acta Cryst. E60, o934-o935.]); Fong et al. (1996[Fong, M. C., Gable, R. W. & Schiesser, C. H. (1996). Acta Cryst. C52, 1886-1889.]).

[Scheme 1]

Experimental

Crystal data
  • C17H24N2O5

  • Mr = 336.38

  • Orthorhombic, P 21 21 21

  • a = 9.9794 (2) Å

  • b = 11.5763 (3) Å

  • c = 16.0720 (4) Å

  • V = 1856.71 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.3 × 0.05 × 0.05 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 9649 measured reflections

  • 1944 independent reflections

  • 1559 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.109

  • S = 1.03

  • 1944 reflections

  • 226 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.82 (3) 2.53 (3) 3.233 (3) 145 (3)
N2—H2⋯O4i 0.82 (3) 2.32 (3) 3.062 (3) 150 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and WebLab ViewerPro 3.5 (MSI, 1999[MSI (1999). WebLab ViewerPro 3.5. Molecular Simulation Inc., San Diego, USA.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our continuing studies on the synthesis and structure of hydrazino- and N-amino-peptides, we have described the crystal structure of N-(tert-Butyloxycarbonylamino)phthalimide (Kauffmann et al., 2004). Here we report the crystal structure of the title compound, N-benzoyl-Nβ, Nα- bis (tert-butoxycarbonyl) hydrazine (Fig. 1).

Although the title compound is not chiral, it crystallizes in the non-centrosymmetric space group P212121. The angle between the amide plane and the mean plane of the imidodicarbonate group is 78.43 (18)°, showing that these two groups are nearly perpendicular. The angle between the best-fit phenyl plane and the amide plane of 27.34 (7)° is similar to that reported for the benzamide group (Fong et al., 1996).

In the crystal structure of the title compound, molecules are linked into infinite chains parallel to a via bifurcated N—H···O hydrogen bonds involving both carbonate of the aminoimidodicarbonate group (Fig. 2). All other intermolecular interactions are due to van der Waals forces.

Related literature top

For the synthesis, see: Brosse et al. (2003). For geometry, see: Allen (2002); Kauffmann et al. (2004); Fong et al. (1996).

Experimental top

The title compound was prepared from N-(tert-Butyloxycarbonylamino)phthalimide (Brosse et al., 2003), and was crystallized by slow evaporation of an ethanol solution.

Refinement top

All H atoms were located in difference maps. The C-bonded H atoms were placed at calculated positions and refined using a riding model, with C—H distances of 0.93–0.96 Å. The N-bonded H atom was refined with free positional parameters. The H-atom Uiso parameters were fixed at 1.3Ueq(C) for aromatic C—H groups, at 1.3Ueq(N) for the N—H group and at 1.5Ueq(C) for methyl C—H.

Structure description top

As part of our continuing studies on the synthesis and structure of hydrazino- and N-amino-peptides, we have described the crystal structure of N-(tert-Butyloxycarbonylamino)phthalimide (Kauffmann et al., 2004). Here we report the crystal structure of the title compound, N-benzoyl-Nβ, Nα- bis (tert-butoxycarbonyl) hydrazine (Fig. 1).

Although the title compound is not chiral, it crystallizes in the non-centrosymmetric space group P212121. The angle between the amide plane and the mean plane of the imidodicarbonate group is 78.43 (18)°, showing that these two groups are nearly perpendicular. The angle between the best-fit phenyl plane and the amide plane of 27.34 (7)° is similar to that reported for the benzamide group (Fong et al., 1996).

In the crystal structure of the title compound, molecules are linked into infinite chains parallel to a via bifurcated N—H···O hydrogen bonds involving both carbonate of the aminoimidodicarbonate group (Fig. 2). All other intermolecular interactions are due to van der Waals forces.

For the synthesis, see: Brosse et al. (2003). For geometry, see: Allen (2002); Kauffmann et al. (2004); Fong et al. (1996).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and WebLab ViewerPro 3.5 (MSI, 1999); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing the atom-numbering scheme. All non-H atoms are represented by 25% probability displacement ellipsoids.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing the chains along [100]. The intermolecular hydrogen bonds are shown as dashed lines.
Di-tert-butyl 2-benzoylhydrazine-1,1-dicarboxylate top
Crystal data top
C17H24N2O5F(000) = 720
Mr = 336.38Dx = 1.203 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.7107 Å
Hall symbol: P 2ac 2abCell parameters from 9649 reflections
a = 9.9794 (2) Åθ = 2.5–25.5°
b = 11.5763 (3) ŵ = 0.09 mm1
c = 16.0720 (4) ÅT = 293 K
V = 1856.71 (8) Å3Prism, colorless
Z = 40.3 × 0.05 × 0.05 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1559 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 25.5°, θmin = 2.5°
ω and φ scansh = 1111
9649 measured reflectionsk = 1414
1944 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0717P)2 + 0.077P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max = 0.044
S = 1.03Δρmax = 0.16 e Å3
1944 reflectionsΔρmin = 0.15 e Å3
226 parameters
Crystal data top
C17H24N2O5V = 1856.71 (8) Å3
Mr = 336.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.9794 (2) ŵ = 0.09 mm1
b = 11.5763 (3) ÅT = 293 K
c = 16.0720 (4) Å0.3 × 0.05 × 0.05 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1559 reflections with I > 2σ(I)
9649 measured reflectionsRint = 0.032
1944 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.16 e Å3
1944 reflectionsΔρmin = 0.15 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5100 (2)0.0209 (2)0.17416 (18)0.0659 (7)
C20.6320 (3)0.0439 (4)0.2024 (2)0.0978 (11)
H2A0.65660.09970.16090.147*
H2B0.61280.08290.25380.147*
H2C0.70460.00920.21060.147*
C30.3937 (3)0.0597 (3)0.1641 (3)0.1131 (13)
H3A0.31370.01580.1540.17*
H3B0.38290.10450.21390.17*
H3C0.40990.11040.11790.17*
C40.4826 (5)0.1216 (4)0.2302 (2)0.1084 (12)
H4A0.56090.16950.23340.163*
H4B0.46020.0940.28480.163*
H4C0.40920.16570.20840.163*
O10.55435 (15)0.06767 (16)0.09296 (11)0.0615 (5)
C50.4705 (2)0.1231 (2)0.04390 (17)0.0556 (6)
O20.35449 (18)0.14394 (19)0.05764 (15)0.0834 (6)
N10.53802 (19)0.15842 (17)0.02859 (13)0.0533 (5)
N20.67171 (18)0.12688 (16)0.03912 (13)0.0493 (5)
H20.723 (3)0.177 (2)0.0211 (18)0.064*
C60.7009 (2)0.0142 (2)0.05343 (15)0.0501 (6)
O30.61438 (18)0.05698 (16)0.06796 (13)0.0722 (5)
C70.8465 (2)0.0151 (2)0.04796 (15)0.0530 (6)
C80.9465 (2)0.0644 (2)0.06302 (17)0.0629 (7)
H80.92440.1390.07950.082*
C91.0804 (3)0.0334 (3)0.0536 (2)0.0855 (10)
H91.14770.08720.06370.111*
C101.1127 (3)0.0761 (4)0.0296 (2)0.0952 (11)
H101.20220.09650.02320.124*
C111.0149 (4)0.1561 (3)0.0149 (2)0.0937 (11)
H111.03780.23040.00190.122*
C120.8811 (3)0.1263 (3)0.02503 (19)0.0735 (8)
H120.81460.18120.01640.096*
C130.4706 (2)0.2161 (2)0.09331 (16)0.0542 (6)
O40.35904 (18)0.25409 (17)0.08502 (12)0.0743 (6)
O50.54681 (15)0.22196 (15)0.15998 (11)0.0584 (4)
C140.5017 (3)0.2927 (2)0.23280 (17)0.0595 (6)
C150.3708 (3)0.2462 (2)0.26688 (19)0.0715 (8)
H15A0.37910.16460.27640.107*
H15B0.35020.28430.31840.107*
H15C0.30030.26010.22750.107*
C160.4944 (3)0.4176 (3)0.2060 (2)0.0883 (10)
H16A0.4230.4270.16650.132*
H16B0.47780.46550.25360.132*
H16C0.57770.43960.18070.132*
C170.6120 (3)0.2720 (4)0.2951 (2)0.0920 (10)
H17A0.69620.29530.27170.138*
H17B0.59470.31620.34450.138*
H17C0.61530.19140.30890.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0554 (13)0.0720 (17)0.0704 (16)0.0016 (12)0.0099 (13)0.0087 (14)
C20.077 (2)0.125 (3)0.091 (2)0.022 (2)0.0004 (18)0.034 (2)
C30.080 (2)0.096 (2)0.163 (4)0.026 (2)0.012 (3)0.041 (3)
C40.137 (3)0.108 (3)0.080 (2)0.020 (3)0.023 (2)0.010 (2)
O10.0458 (8)0.0760 (11)0.0626 (10)0.0073 (9)0.0035 (8)0.0080 (9)
C50.0431 (13)0.0549 (13)0.0689 (16)0.0016 (11)0.0006 (12)0.0000 (12)
O20.0423 (10)0.1008 (14)0.1071 (16)0.0138 (9)0.0132 (10)0.0264 (13)
N10.0362 (10)0.0588 (11)0.0648 (12)0.0080 (8)0.0018 (9)0.0017 (10)
N20.0359 (10)0.0495 (11)0.0626 (12)0.0023 (8)0.0041 (9)0.0032 (9)
C60.0476 (13)0.0537 (13)0.0490 (13)0.0005 (10)0.0015 (11)0.0047 (11)
O30.0571 (10)0.0634 (10)0.0960 (13)0.0068 (9)0.0060 (9)0.0205 (11)
C70.0470 (12)0.0615 (14)0.0503 (13)0.0099 (11)0.0009 (11)0.0090 (11)
C80.0499 (13)0.0681 (15)0.0707 (16)0.0058 (13)0.0006 (12)0.0143 (14)
C90.0511 (15)0.106 (3)0.099 (2)0.0035 (16)0.0008 (16)0.032 (2)
C100.0616 (18)0.125 (3)0.099 (2)0.039 (2)0.0132 (18)0.022 (2)
C110.088 (2)0.096 (2)0.098 (3)0.042 (2)0.0036 (19)0.0067 (19)
C120.0696 (17)0.0702 (17)0.0806 (19)0.0189 (14)0.0040 (15)0.0049 (16)
C130.0439 (13)0.0551 (13)0.0637 (14)0.0060 (11)0.0075 (12)0.0056 (12)
O40.0537 (10)0.0951 (14)0.0740 (12)0.0262 (10)0.0028 (9)0.0005 (10)
O50.0451 (8)0.0669 (10)0.0632 (10)0.0113 (8)0.0039 (8)0.0058 (9)
C140.0508 (13)0.0568 (15)0.0711 (17)0.0038 (11)0.0058 (12)0.0078 (12)
C150.0632 (16)0.0717 (18)0.0796 (18)0.0039 (14)0.0190 (14)0.0056 (14)
C160.092 (2)0.0553 (17)0.118 (3)0.0054 (16)0.023 (2)0.0053 (16)
C170.0674 (17)0.123 (3)0.086 (2)0.0129 (19)0.0080 (17)0.027 (2)
Geometric parameters (Å, º) top
C1—O11.481 (3)C8—C91.393 (4)
C1—C31.498 (4)C8—H80.93
C1—C41.498 (5)C9—C101.363 (5)
C1—C21.500 (4)C9—H90.93
C2—H2A0.96C10—C111.367 (5)
C2—H2B0.96C10—H100.93
C2—H2C0.96C11—C121.388 (4)
C3—H3A0.96C11—H110.93
C3—H3B0.96C12—H120.93
C3—H3C0.96C13—O41.204 (3)
C4—H4A0.96C13—O51.316 (3)
C4—H4B0.96O5—C141.498 (3)
C4—H4C0.96C14—C171.508 (4)
O1—C51.317 (3)C14—C161.510 (4)
C5—O21.203 (3)C14—C151.515 (4)
C5—N11.407 (3)C15—H15A0.96
N1—N21.393 (3)C15—H15B0.96
N1—C131.407 (3)C15—H15C0.96
N2—C61.356 (3)C16—H16A0.96
N2—H20.82 (3)C16—H16B0.96
C6—O31.216 (3)C16—H16C0.96
C6—C71.495 (3)C17—H17A0.96
C7—C81.378 (4)C17—H17B0.96
C7—C121.383 (4)C17—H17C0.96
O1—C1—C3111.4 (3)C9—C8—H8119.9
O1—C1—C4107.5 (2)C10—C9—C8119.8 (3)
C3—C1—C4114.0 (3)C10—C9—H9120.1
O1—C1—C2102.0 (2)C8—C9—H9120.1
C3—C1—C2110.5 (3)C9—C10—C11120.7 (3)
C4—C1—C2110.8 (3)C9—C10—H10119.6
C1—C2—H2A109.5C11—C10—H10119.6
C1—C2—H2B109.5C10—C11—C12119.8 (3)
H2A—C2—H2B109.5C10—C11—H11120.1
C1—C2—H2C109.5C12—C11—H11120.1
H2A—C2—H2C109.5C7—C12—C11120.2 (3)
H2B—C2—H2C109.5C7—C12—H12119.9
C1—C3—H3A109.5C11—C12—H12119.9
C1—C3—H3B109.5O4—C13—O5127.3 (2)
H3A—C3—H3B109.5O4—C13—N1122.3 (2)
C1—C3—H3C109.5O5—C13—N1110.47 (18)
H3A—C3—H3C109.5C13—O5—C14119.39 (17)
H3B—C3—H3C109.5O5—C14—C17102.3 (2)
C1—C4—H4A109.5O5—C14—C16108.3 (2)
C1—C4—H4B109.5C17—C14—C16112.2 (3)
H4A—C4—H4B109.5O5—C14—C15110.3 (2)
C1—C4—H4C109.5C17—C14—C15109.4 (2)
H4A—C4—H4C109.5C16—C14—C15113.7 (2)
H4B—C4—H4C109.5C14—C15—H15A109.5
C5—O1—C1121.07 (18)C14—C15—H15B109.5
O2—C5—O1126.8 (3)H15A—C15—H15B109.5
O2—C5—N1123.7 (2)C14—C15—H15C109.5
O1—C5—N1109.43 (19)H15A—C15—H15C109.5
N2—N1—C5118.9 (2)H15B—C15—H15C109.5
N2—N1—C13119.5 (2)C14—C16—H16A109.5
C5—N1—C13121.37 (19)C14—C16—H16B109.5
C6—N2—N1118.55 (19)H16A—C16—H16B109.5
C6—N2—H2127.0 (19)C14—C16—H16C109.5
N1—N2—H2111.5 (19)H16A—C16—H16C109.5
O3—C6—N2122.2 (2)H16B—C16—H16C109.5
O3—C6—C7123.2 (2)C14—C17—H17A109.5
N2—C6—C7114.6 (2)C14—C17—H17B109.5
C8—C7—C12119.1 (2)H17A—C17—H17B109.5
C8—C7—C6122.8 (2)C14—C17—H17C109.5
C12—C7—C6118.0 (2)H17A—C17—H17C109.5
C7—C8—C9120.2 (3)H17B—C17—H17C109.5
C7—C8—H8119.9
C3—C1—O1—C556.4 (3)C12—C7—C8—C91.3 (4)
C4—C1—O1—C569.2 (3)C6—C7—C8—C9177.3 (3)
C2—C1—O1—C5174.2 (3)C7—C8—C9—C100.2 (5)
C1—O1—C5—O21.2 (4)C8—C9—C10—C110.2 (5)
C1—O1—C5—N1179.81 (19)C9—C10—C11—C120.5 (6)
O2—C5—N1—N2178.3 (2)C8—C7—C12—C112.0 (4)
O1—C5—N1—N23.1 (3)C6—C7—C12—C11176.7 (3)
O2—C5—N1—C133.7 (4)C10—C11—C12—C71.6 (5)
O1—C5—N1—C13177.6 (2)N2—N1—C13—O4173.4 (2)
C5—N1—N2—C669.7 (3)C5—N1—C13—O412.0 (4)
C13—N1—N2—C6105.0 (3)N2—N1—C13—O55.8 (3)
N1—N2—C6—O39.7 (4)C5—N1—C13—O5168.72 (19)
N1—N2—C6—C7169.0 (2)O4—C13—O5—C146.9 (4)
O3—C6—C7—C8154.6 (3)N1—C13—O5—C14172.37 (19)
N2—C6—C7—C826.7 (4)C13—O5—C14—C17177.6 (2)
O3—C6—C7—C1226.7 (4)C13—O5—C14—C1663.8 (3)
N2—C6—C7—C12151.9 (2)C13—O5—C14—C1561.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.82 (3)2.53 (3)3.233 (3)145 (3)
N2—H2···O4i0.82 (3)2.32 (3)3.062 (3)150 (3)
Symmetry code: (i) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC17H24N2O5
Mr336.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)9.9794 (2), 11.5763 (3), 16.0720 (4)
V3)1856.71 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9649, 1944, 1559
Rint0.032
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.109, 1.03
No. of reflections1944
No. of parameters226
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.15

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and WebLab ViewerPro 3.5 (MSI, 1999), WinGX publication routines (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.82 (3)2.53 (3)3.233 (3)145 (3)
N2—H2···O4i0.82 (3)2.32 (3)3.062 (3)150 (3)
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

The authors thank the National Research Agency (ANR) for financial support (No. NT05_4_42848) and the Service Commun de Diffraction X (Nancy Université) for providing access to experimental crystallographic facilities.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrosse, N., Pinto, M.-F. & Jamart-Grégoire, B. (2003). Eur. J. Org. Chem. 24, 4757–4764.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFong, M. C., Gable, R. W. & Schiesser, C. H. (1996). Acta Cryst. C52, 1886–1889.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKauffmann, B., Didierjean, C., Brosse, N., Jamart-Grégoire, B. & Aubry, A. (2004). Acta Cryst. E60, o934–o935.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMSI (1999). WebLab ViewerPro 3.5. Molecular Simulation Inc., San Diego, USA.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds