metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N-(5-Chloro-2-oxido­benzyl­idene)valinato-κ3O,N,O′]di­cyclo­hexyl­tin(IV)

aDepartment of Chemistry, Qufu Normal University, Qufu 273165, People's Republic of China
*Correspondence e-mail: laijintian@163.com

(Received 23 November 2007; accepted 29 November 2007; online 6 December 2007)

The tin atom of the title compound, [Sn(C6H11)2(C12H12ClNO3)], adopts a distorted SnNC2O2 trigonal–bipyramidal geometry, and forms five- and six-membered chelate rings with the tridentate ligand.

Related literature

For related literature, see: Beltran et al. (2003[Beltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J. 9, 2291-2306.]); Dakternieks et al. (1998[Dakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058-3062.]); Tian et al. (2004[Tian, L., Liu, X., Shang, Z., Li, D. & Yu, Q. (2004). Appl. Organomet. Chem. 18, 483-484.], 2005[Tian, L., Qian, B., Sun, Y., Zheng, X., Yang, M., Li, H. & Liu, X. (2005). Appl. Organomet. Chem. 19, 980-987.], 2006[Tian, L., Shang, Z., Zheng, X., Sun, Y., You, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem. 19, 74-80.], 2007[Tian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). Chin. J. Chem. 25, 312-318.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H11)2(C12H12ClNO3)]

  • Mr = 538.66

  • Monoclinic, P 21 /n

  • a = 9.9830 (18) Å

  • b = 10.7284 (19) Å

  • c = 22.705 (4) Å

  • β = 91.759 (3)°

  • V = 2430.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 295 (2) K

  • 0.11 × 0.08 × 0.05 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.881, Tmax = 0.943

  • 17254 measured reflections

  • 4754 independent reflections

  • 3608 reflections with I > 2σ(I)

  • Rint = 0.063

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.104

  • S = 1.04

  • 4754 reflections

  • 287 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.80 e Å−3

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The organotin complexes with Schiff bases derived from α-amino acids continue to receives attention due to their biological activities (Beltran et al., 2003; Dakternieks et al., 1998; Tian et al., 2005, 2006, 2007). The structures of two dicyclohexyltin complexes with the Schiff base ligand, [N-(5-chloro-2-oxidophenylmethylene)isoleucinato]dicyclohexyltin (Tian et al., 2004) and [N-(3,5-dibromo-2-oxidophenylmethylene)alaninato]dicyclohexyltin (Tian et al., 2007) have been reported. As a continuation of these studies, the structure of the title compound, (I), is now described.

The coordination geometry about the tin atom in (I) is that of a distorted trigonal bipyramid with two cyclohexyl groups and the imino N1 atom occupying the equatorial positions and the axial positions being occupied by phenoxide O1 atom and a unidentate carboxylate O2 atom (Fig. 1). The bond length of Sn—O1 was shorter than that of Sn—O2 and the bond angle O1—Sn—O2 was 155.75 (12) °. The monodentate mode of coordination of carboxylate is reflected in the disparate C9—O2 and C9—O3 bond lengths of 1.282 (5) and 1.221 (6) Å, respectively. The distances of bonds around the tin atom were comparable to those observed in the dicyclohexyltin complexes mentioned above.

Related literature top

For related literature, see: Beltran et al. (2003); Dakternieks et al. (1998); Tian et al. (2004, 2005, 2006, 2007).

Experimental top

The title compound was synthesized by the reaction of dicyclohexyltin dichloride (0.71 g, 2 mmol) with potassium N-(5-chlorosalicylidene)valinate (0.59 g, 2 mmol) in the presence of Et3N (0.20 g, 2 mmol) in 40 ml me thanol. The reaction mixture was refluxed for 3 h and filtered. The yellow solid obtained, (I), by removal of solvent under reduce pressure was recrystallized from dichloromethane-petroleum ether (60–90) (1:1, V/V) and crystals of (I) were obtained from chloroform-hexane (1:1, V/V) by slow evaporation at room temperature (yield 67%, m.p. 439–440 K).

Refinement top

One cyclohexyl group (C19–C24) is disordered over two positions. The site occupancy factors were refined with sum constrained to 1, converging to 0.708 (10) for atoms C19–C24 and 0.292 (10) for atoms C19'–C24'. For the cyclohexyl rings, the carbon-carbon distance was constrained to 1.52 (1) Å and 1,3-related distance to 2.50 (2) Å. The C19 and C19' atoms were constrained to occupy the same position, and the temperature factors for each pair of atoms were set to equal. H atoms were placed at calculated positions and were included in the refinement in the riding-model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for methine H atoms.

Structure description top

The organotin complexes with Schiff bases derived from α-amino acids continue to receives attention due to their biological activities (Beltran et al., 2003; Dakternieks et al., 1998; Tian et al., 2005, 2006, 2007). The structures of two dicyclohexyltin complexes with the Schiff base ligand, [N-(5-chloro-2-oxidophenylmethylene)isoleucinato]dicyclohexyltin (Tian et al., 2004) and [N-(3,5-dibromo-2-oxidophenylmethylene)alaninato]dicyclohexyltin (Tian et al., 2007) have been reported. As a continuation of these studies, the structure of the title compound, (I), is now described.

The coordination geometry about the tin atom in (I) is that of a distorted trigonal bipyramid with two cyclohexyl groups and the imino N1 atom occupying the equatorial positions and the axial positions being occupied by phenoxide O1 atom and a unidentate carboxylate O2 atom (Fig. 1). The bond length of Sn—O1 was shorter than that of Sn—O2 and the bond angle O1—Sn—O2 was 155.75 (12) °. The monodentate mode of coordination of carboxylate is reflected in the disparate C9—O2 and C9—O3 bond lengths of 1.282 (5) and 1.221 (6) Å, respectively. The distances of bonds around the tin atom were comparable to those observed in the dicyclohexyltin complexes mentioned above.

For related literature, see: Beltran et al. (2003); Dakternieks et al. (1998); Tian et al. (2004, 2005, 2006, 2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids are drawn at the 30% probability level. For cyclohexyl group C19–C24, the minor disordered component has been omitted for clarity.
[N-(5-Chloro-2-oxidobenzylidene)valinato-κ3O,N,O']dicyclohexyltin(IV) top
Crystal data top
[Sn(C6H11)2(C12H12ClNO3)]F(000) = 1104
Mr = 538.66Dx = 1.472 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2430 reflections
a = 9.9830 (18) Åθ = 2.6–19.8°
b = 10.7284 (19) ŵ = 1.19 mm1
c = 22.705 (4) ÅT = 295 K
β = 91.759 (3)°Prism, yellow
V = 2430.6 (7) Å30.11 × 0.08 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX detector
diffractometer
4754 independent reflections
Radiation source: fine-focus sealed tube3608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.881, Tmax = 0.943k = 1313
17254 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.1331P]
where P = (Fo2 + 2Fc2)/3
4754 reflections(Δ/σ)max = 0.001
287 parametersΔρmax = 0.62 e Å3
24 restraintsΔρmin = 0.80 e Å3
Crystal data top
[Sn(C6H11)2(C12H12ClNO3)]V = 2430.6 (7) Å3
Mr = 538.66Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.9830 (18) ŵ = 1.19 mm1
b = 10.7284 (19) ÅT = 295 K
c = 22.705 (4) Å0.11 × 0.08 × 0.05 mm
β = 91.759 (3)°
Data collection top
Bruker SMART APEX detector
diffractometer
4754 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3608 reflections with I > 2σ(I)
Tmin = 0.881, Tmax = 0.943Rint = 0.063
17254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04724 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 1.04Δρmax = 0.62 e Å3
4754 reflectionsΔρmin = 0.80 e Å3
287 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn11.12598 (3)0.20087 (3)0.854731 (14)0.03571 (12)
N11.1870 (3)0.3911 (3)0.83569 (15)0.0337 (8)
O11.0335 (3)0.2897 (3)0.92506 (14)0.0471 (8)
O21.2493 (3)0.1893 (3)0.77824 (14)0.0482 (8)
O31.3868 (4)0.2863 (3)0.71861 (15)0.0581 (10)
Cl10.75627 (17)0.76889 (14)0.93223 (7)0.0752 (5)
C10.9725 (5)0.3979 (4)0.9241 (2)0.0399 (11)
C20.8670 (5)0.4189 (4)0.9628 (2)0.0472 (12)
H20.84100.35480.98750.057*
C30.8021 (5)0.5305 (5)0.9648 (2)0.0512 (13)
H30.73240.54190.99050.061*
C40.8407 (5)0.6271 (4)0.9284 (2)0.0478 (13)
C50.9418 (5)0.6126 (4)0.8906 (2)0.0454 (12)
H50.96710.67880.86690.054*
C61.0087 (4)0.4973 (4)0.88714 (18)0.0342 (10)
C71.1167 (4)0.4896 (4)0.84753 (19)0.0382 (11)
H71.13920.56260.82810.046*
C81.3004 (4)0.4043 (4)0.79714 (19)0.0386 (11)
H81.28140.47320.76990.046*
C91.3146 (5)0.2848 (4)0.7611 (2)0.0407 (11)
C101.4318 (5)0.4346 (4)0.8325 (2)0.0462 (12)
H101.50420.43590.80430.055*
C111.4686 (5)0.3373 (5)0.8786 (2)0.0574 (14)
H11A1.47260.25670.86030.086*
H11B1.40220.33640.90830.086*
H11C1.55450.35710.89650.086*
C121.4268 (5)0.5636 (5)0.8605 (2)0.0634 (16)
H12A1.40410.62430.83080.095*
H12B1.51280.58330.87810.095*
H12C1.36040.56450.89020.095*
C131.2432 (4)0.0796 (4)0.9097 (2)0.0391 (11)
H131.30210.13140.93490.047*
C141.3322 (5)0.0079 (4)0.8743 (2)0.0499 (13)
H14A1.27640.05750.84760.060*
H14B1.39250.04120.85100.060*
C151.4130 (6)0.0934 (5)0.9149 (3)0.0662 (16)
H15A1.46470.15050.89150.079*
H15B1.47540.04400.93880.079*
C161.3243 (6)0.1665 (5)0.9545 (3)0.0728 (18)
H16A1.37940.21630.98140.087*
H16B1.26900.22290.93080.087*
C171.2343 (6)0.0816 (5)0.9898 (2)0.0666 (16)
H17A1.17390.13191.01250.080*
H17B1.28890.03231.01710.080*
C181.1540 (5)0.0037 (4)0.9497 (2)0.0502 (13)
H18A1.10190.06000.97330.060*
H18B1.09200.04550.92560.060*
C190.9504 (4)0.1411 (5)0.8079 (2)0.0554 (14)0.708 (10)
H19A0.97790.06740.78580.066*0.708 (10)
C200.8944 (8)0.2290 (7)0.7624 (4)0.055 (2)0.708 (10)
H20A0.96330.24790.73460.066*0.708 (10)
H20B0.87000.30620.78150.066*0.708 (10)
C210.7723 (9)0.1776 (11)0.7290 (4)0.077 (3)0.708 (10)
H21A0.73440.24220.70370.092*0.708 (10)
H21B0.79960.10910.70420.092*0.708 (10)
C220.6677 (9)0.1328 (13)0.7698 (6)0.081 (3)0.708 (10)
H22A0.59760.09100.74680.098*0.708 (10)
H22B0.62790.20430.78860.098*0.708 (10)
C230.7204 (8)0.0447 (10)0.8168 (4)0.072 (3)0.708 (10)
H23A0.74170.03460.79880.087*0.708 (10)
H23B0.65090.03010.84490.087*0.708 (10)
C240.8441 (8)0.0943 (10)0.8492 (4)0.071 (3)0.708 (10)
H24A0.88240.02870.87390.085*0.708 (10)
H24B0.81830.16210.87480.085*0.708 (10)
C19'0.9504 (4)0.1411 (5)0.8079 (2)0.0554 (14)0.292 (10)
H19B0.98250.11010.77020.066*0.292 (10)
C20'0.8588 (15)0.2491 (12)0.7912 (9)0.055 (2)0.292 (10)
H20C0.82890.28850.82700.066*0.292 (10)
H20D0.90960.31040.76980.066*0.292 (10)
C21'0.737 (2)0.212 (2)0.7539 (10)0.077 (3)0.292 (10)
H21C0.67690.28240.74950.092*0.292 (10)
H21D0.76490.18760.71500.092*0.292 (10)
C22'0.6640 (17)0.105 (2)0.7817 (17)0.081 (3)0.292 (10)
H22C0.62410.13320.81770.098*0.292 (10)
H22D0.59210.07710.75510.098*0.292 (10)
C23'0.7553 (19)0.0043 (17)0.7958 (12)0.072 (3)0.292 (10)
H23C0.78500.04050.75930.087*0.292 (10)
H23D0.70550.06750.81640.087*0.292 (10)
C24'0.8766 (18)0.0332 (17)0.8333 (10)0.071 (3)0.292 (10)
H24C0.84790.05520.87240.085*0.292 (10)
H24D0.93690.03740.83720.085*0.292 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0373 (2)0.02864 (17)0.04125 (19)0.00125 (14)0.00194 (13)0.00021 (15)
N10.035 (2)0.033 (2)0.034 (2)0.0053 (16)0.0086 (16)0.0009 (16)
O10.056 (2)0.0334 (18)0.053 (2)0.0095 (15)0.0164 (17)0.0055 (15)
O20.063 (2)0.0366 (19)0.046 (2)0.0013 (16)0.0115 (17)0.0090 (15)
O30.071 (3)0.057 (2)0.048 (2)0.0110 (19)0.0197 (19)0.0038 (18)
Cl10.0850 (11)0.0588 (9)0.0823 (11)0.0411 (8)0.0093 (9)0.0086 (8)
C10.043 (3)0.034 (3)0.043 (3)0.002 (2)0.001 (2)0.003 (2)
C20.048 (3)0.041 (3)0.053 (3)0.003 (2)0.018 (2)0.001 (2)
C30.045 (3)0.055 (3)0.055 (3)0.005 (2)0.012 (2)0.015 (3)
C40.048 (3)0.042 (3)0.052 (3)0.016 (2)0.006 (3)0.007 (2)
C50.052 (3)0.039 (3)0.045 (3)0.007 (2)0.002 (2)0.002 (2)
C60.038 (3)0.031 (2)0.034 (2)0.0065 (19)0.004 (2)0.0007 (19)
C70.043 (3)0.029 (2)0.042 (3)0.000 (2)0.001 (2)0.002 (2)
C80.043 (3)0.034 (2)0.039 (3)0.001 (2)0.009 (2)0.005 (2)
C90.047 (3)0.040 (3)0.035 (3)0.012 (2)0.001 (2)0.002 (2)
C100.041 (3)0.044 (3)0.054 (3)0.007 (2)0.011 (2)0.005 (2)
C110.052 (3)0.056 (3)0.063 (4)0.002 (3)0.007 (3)0.002 (3)
C120.067 (4)0.050 (3)0.073 (4)0.012 (3)0.003 (3)0.009 (3)
C130.043 (3)0.027 (2)0.047 (3)0.001 (2)0.001 (2)0.001 (2)
C140.047 (3)0.051 (3)0.052 (3)0.010 (2)0.012 (2)0.005 (2)
C150.059 (4)0.059 (4)0.082 (4)0.026 (3)0.015 (3)0.008 (3)
C160.087 (5)0.052 (3)0.079 (4)0.027 (3)0.009 (4)0.018 (3)
C170.085 (4)0.054 (3)0.062 (4)0.016 (3)0.014 (3)0.014 (3)
C180.054 (3)0.039 (3)0.058 (3)0.008 (2)0.016 (3)0.009 (2)
C190.040 (3)0.063 (3)0.063 (4)0.007 (3)0.006 (3)0.006 (3)
C200.059 (5)0.072 (5)0.033 (5)0.011 (4)0.009 (4)0.005 (4)
C210.075 (6)0.097 (8)0.055 (7)0.017 (5)0.026 (5)0.011 (5)
C220.049 (4)0.109 (8)0.086 (8)0.004 (4)0.016 (4)0.002 (6)
C230.050 (5)0.081 (8)0.085 (8)0.019 (5)0.004 (5)0.006 (5)
C240.050 (5)0.086 (8)0.076 (6)0.020 (5)0.015 (4)0.028 (6)
C19'0.040 (3)0.063 (3)0.063 (4)0.007 (3)0.006 (3)0.006 (3)
C20'0.059 (5)0.072 (5)0.033 (5)0.011 (4)0.009 (4)0.005 (4)
C21'0.075 (6)0.097 (8)0.055 (7)0.017 (5)0.026 (5)0.011 (5)
C22'0.049 (4)0.109 (8)0.086 (8)0.004 (4)0.016 (4)0.002 (6)
C23'0.050 (5)0.081 (8)0.085 (8)0.019 (5)0.004 (5)0.006 (5)
C24'0.050 (5)0.086 (8)0.076 (6)0.020 (5)0.015 (4)0.028 (6)
Geometric parameters (Å, º) top
Sn1—O12.098 (3)C15—H15A0.9700
Sn1—C192.122 (4)C15—H15B0.9700
Sn1—C132.128 (4)C16—C171.525 (7)
Sn1—O22.163 (3)C16—H16A0.9700
Sn1—N12.177 (4)C16—H16B0.9700
N1—C71.301 (5)C17—C181.504 (6)
N1—C81.459 (5)C17—H17A0.9700
O1—C11.311 (5)C17—H17B0.9700
O2—C91.282 (5)C18—H18A0.9700
O3—C91.221 (6)C18—H18B0.9700
Cl1—C41.742 (5)C19—C201.494 (7)
C1—C21.409 (6)C19—C241.524 (7)
C1—C61.411 (6)C19—H19A0.9800
C2—C31.363 (6)C20—C211.519 (7)
C2—H20.9300C20—H20A0.9700
C3—C41.387 (7)C20—H20B0.9700
C3—H30.9300C21—C221.496 (8)
C4—C51.354 (6)C21—H21A0.9700
C5—C61.410 (6)C21—H21B0.9700
C5—H50.9300C22—C231.509 (8)
C6—C71.428 (6)C22—H22A0.9700
C7—H70.9300C22—H22B0.9700
C8—C91.530 (6)C23—C241.515 (7)
C8—C101.552 (6)C23—H23A0.9700
C8—H80.9800C23—H23B0.9700
C10—C111.516 (7)C24—H24A0.9700
C10—C121.525 (6)C24—H24B0.9700
C10—H100.9800C20'—C21'1.515 (9)
C11—H11A0.9600C20'—H20C0.9700
C11—H11B0.9600C20'—H20D0.9700
C11—H11C0.9600C21'—C22'1.510 (10)
C12—H12A0.9600C21'—H21C0.9700
C12—H12B0.9600C21'—H21D0.9700
C12—H12C0.9600C22'—C23'1.510 (10)
C13—C181.527 (6)C22'—H22C0.9700
C13—C141.535 (6)C22'—H22D0.9700
C13—H130.9800C23'—C24'1.513 (10)
C14—C151.516 (6)C23'—H23C0.9700
C14—H14A0.9700C23'—H23D0.9700
C14—H14B0.9700C24'—H24C0.9700
C15—C161.502 (7)C24'—H24D0.9700
O1—Sn1—C1998.23 (17)H15A—C15—H15B108.0
O1—Sn1—C1394.51 (15)C15—C16—C17111.7 (5)
C19—Sn1—C13122.71 (18)C15—C16—H16A109.3
O1—Sn1—O2155.75 (12)C17—C16—H16A109.3
C19—Sn1—O293.54 (17)C15—C16—H16B109.3
C13—Sn1—O296.83 (15)C17—C16—H16B109.3
O1—Sn1—N181.80 (12)H16A—C16—H16B107.9
C19—Sn1—N1114.56 (16)C18—C17—C16110.9 (5)
C13—Sn1—N1122.50 (15)C18—C17—H17A109.5
O2—Sn1—N174.02 (12)C16—C17—H17A109.5
C7—N1—C8118.6 (4)C18—C17—H17B109.5
C7—N1—Sn1124.3 (3)C16—C17—H17B109.5
C8—N1—Sn1115.9 (3)H17A—C17—H17B108.1
C1—O1—Sn1127.2 (3)C17—C18—C13112.0 (4)
C9—O2—Sn1120.4 (3)C17—C18—H18A109.2
O1—C1—C2119.1 (4)C13—C18—H18A109.2
O1—C1—C6123.4 (4)C17—C18—H18B109.2
C2—C1—C6117.4 (4)C13—C18—H18B109.2
C3—C2—C1121.8 (5)H18A—C18—H18B107.9
C3—C2—H2119.1C20—C19—C24112.4 (5)
C1—C2—H2119.1C20—C19—Sn1116.2 (4)
C2—C3—C4119.7 (5)C24—C19—Sn1111.7 (4)
C2—C3—H3120.2C20—C19—H19A105.1
C4—C3—H3120.2C24—C19—H19A105.1
C5—C4—C3121.2 (4)Sn1—C19—H19A105.1
C5—C4—Cl1120.2 (4)C19—C20—C21113.2 (6)
C3—C4—Cl1118.6 (4)C19—C20—H20A108.9
C4—C5—C6120.0 (5)C21—C20—H20A108.9
C4—C5—H5120.0C19—C20—H20B108.9
C6—C5—H5120.0C21—C20—H20B108.9
C5—C6—C1120.0 (4)H20A—C20—H20B107.8
C5—C6—C7117.0 (4)C22—C21—C20111.8 (7)
C1—C6—C7122.9 (4)C22—C21—H21A109.2
N1—C7—C6126.9 (4)C20—C21—H21A109.2
N1—C7—H7116.6C22—C21—H21B109.2
C6—C7—H7116.6C20—C21—H21B109.2
N1—C8—C9109.1 (4)H21A—C21—H21B107.9
N1—C8—C10111.7 (4)C21—C22—C23113.9 (7)
C9—C8—C10111.2 (4)C21—C22—H22A108.8
N1—C8—H8108.3C23—C22—H22A108.8
C9—C8—H8108.3C21—C22—H22B108.8
C10—C8—H8108.3C23—C22—H22B108.8
O3—C9—O2124.6 (4)H22A—C22—H22B107.7
O3—C9—C8118.6 (4)C22—C23—C24112.7 (7)
O2—C9—C8116.8 (4)C22—C23—H23A109.1
C11—C10—C12110.4 (4)C24—C23—H23A109.1
C11—C10—C8113.4 (4)C22—C23—H23B109.1
C12—C10—C8111.6 (4)C24—C23—H23B109.1
C11—C10—H10107.1H23A—C23—H23B107.8
C12—C10—H10107.1C23—C24—C19112.9 (6)
C8—C10—H10107.1C23—C24—H24A109.0
C10—C11—H11A109.5C19—C24—H24A109.0
C10—C11—H11B109.5C23—C24—H24B109.0
H11A—C11—H11B109.5C19—C24—H24B109.0
C10—C11—H11C109.5H24A—C24—H24B107.8
H11A—C11—H11C109.5C21'—C20'—H20C108.8
H11B—C11—H11C109.5C21'—C20'—H20D108.8
C10—C12—H12A109.5H20C—C20'—H20D107.7
C10—C12—H12B109.5C22'—C21'—C20'110.9 (12)
H12A—C12—H12B109.5C22'—C21'—H21C109.5
C10—C12—H12C109.5C20'—C21'—H21C109.5
H12A—C12—H12C109.5C22'—C21'—H21D109.5
H12B—C12—H12C109.5C20'—C21'—H21D109.5
C18—C13—C14110.0 (4)H21C—C21'—H21D108.0
C18—C13—Sn1110.8 (3)C23'—C22'—C21'112.4 (14)
C14—C13—Sn1112.6 (3)C23'—C22'—H22C109.1
C18—C13—H13107.8C21'—C22'—H22C109.1
C14—C13—H13107.8C23'—C22'—H22D109.1
Sn1—C13—H13107.8C21'—C22'—H22D109.1
C15—C14—C13111.0 (4)H22C—C22'—H22D107.9
C15—C14—H14A109.4C22'—C23'—C24'112.4 (13)
C13—C14—H14A109.4C22'—C23'—H23C109.1
C15—C14—H14B109.4C24'—C23'—H23C109.1
C13—C14—H14B109.4C22'—C23'—H23D109.1
H14A—C14—H14B108.0C24'—C23'—H23D109.1
C16—C15—C14111.5 (4)H23C—C23'—H23D107.8
C16—C15—H15A109.3C23'—C24'—H24C109.1
C14—C15—H15A109.3C23'—C24'—H24D109.1
C16—C15—H15B109.3H24C—C24'—H24D107.8
C14—C15—H15B109.3
O1—Sn1—N1—C731.2 (3)C10—C8—C9—O370.2 (5)
C19—Sn1—N1—C764.1 (4)N1—C8—C9—O214.2 (5)
C13—Sn1—N1—C7121.4 (3)C10—C8—C9—O2109.4 (5)
O2—Sn1—N1—C7150.7 (4)N1—C8—C10—C1158.1 (5)
O1—Sn1—N1—C8161.1 (3)C9—C8—C10—C1164.0 (5)
C19—Sn1—N1—C8103.5 (3)N1—C8—C10—C1267.3 (5)
C13—Sn1—N1—C871.0 (3)C9—C8—C10—C12170.6 (4)
O2—Sn1—N1—C817.0 (3)O1—Sn1—C13—C1856.4 (3)
C19—Sn1—O1—C175.0 (4)C19—Sn1—C13—C1846.4 (4)
C13—Sn1—O1—C1161.0 (4)O2—Sn1—C13—C18145.1 (3)
O2—Sn1—O1—C143.2 (6)N1—Sn1—C13—C18139.5 (3)
N1—Sn1—O1—C138.8 (4)O1—Sn1—C13—C14180.0 (3)
O1—Sn1—O2—C94.6 (5)C19—Sn1—C13—C1477.2 (4)
C19—Sn1—O2—C9123.7 (4)O2—Sn1—C13—C1421.5 (3)
C13—Sn1—O2—C9112.7 (3)N1—Sn1—C13—C1496.9 (3)
N1—Sn1—O2—C99.2 (3)C18—C13—C14—C1555.4 (5)
Sn1—O1—C1—C2150.7 (3)Sn1—C13—C14—C15179.5 (4)
Sn1—O1—C1—C630.9 (6)C13—C14—C15—C1656.0 (6)
O1—C1—C2—C3178.3 (4)C14—C15—C16—C1755.6 (7)
C6—C1—C2—C30.2 (7)C15—C16—C17—C1854.9 (7)
C1—C2—C3—C40.5 (8)C16—C17—C18—C1355.4 (6)
C2—C3—C4—C50.1 (8)C14—C13—C18—C1755.8 (6)
C2—C3—C4—Cl1179.8 (4)Sn1—C13—C18—C17179.1 (4)
C3—C4—C5—C60.8 (7)O1—Sn1—C19—C2090.7 (5)
Cl1—C4—C5—C6179.2 (4)C13—Sn1—C19—C20168.5 (5)
C4—C5—C6—C11.5 (7)O2—Sn1—C19—C2068.0 (5)
C4—C5—C6—C7178.3 (4)N1—Sn1—C19—C206.0 (6)
O1—C1—C6—C5177.2 (4)O1—Sn1—C19—C2440.1 (6)
C2—C1—C6—C51.2 (6)C13—Sn1—C19—C2460.7 (6)
O1—C1—C6—C70.6 (7)O2—Sn1—C19—C24161.2 (6)
C2—C1—C6—C7177.8 (4)N1—Sn1—C19—C24124.8 (6)
C8—N1—C7—C6175.4 (4)C24—C19—C20—C2151.9 (9)
Sn1—N1—C7—C617.3 (6)Sn1—C19—C20—C21177.6 (5)
C5—C6—C7—N1176.5 (4)C19—C20—C21—C2252.2 (11)
C1—C6—C7—N16.8 (7)C20—C21—C22—C2351.0 (14)
C7—N1—C8—C9146.8 (4)C21—C22—C23—C2450.0 (14)
Sn1—N1—C8—C921.6 (4)C22—C23—C24—C1948.9 (11)
C7—N1—C8—C1089.9 (5)C20—C19—C24—C2350.3 (9)
Sn1—N1—C8—C10101.7 (3)Sn1—C19—C24—C23177.0 (6)
Sn1—O2—C9—O3179.7 (4)C20'—C21'—C22'—C23'53 (3)
Sn1—O2—C9—C80.1 (5)C21'—C22'—C23'—C24'54 (3)
N1—C8—C9—O3166.2 (4)

Experimental details

Crystal data
Chemical formula[Sn(C6H11)2(C12H12ClNO3)]
Mr538.66
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.9830 (18), 10.7284 (19), 22.705 (4)
β (°) 91.759 (3)
V3)2430.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.11 × 0.08 × 0.05
Data collection
DiffractometerBruker SMART APEX detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.881, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
17254, 4754, 3608
Rint0.063
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.104, 1.04
No. of reflections4754
No. of parameters287
No. of restraints24
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.80

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

 

Acknowledgements

The authors thank the Science Foundation of Shandong Province and Qufu Normal University for supporting this work.

References

First citationBeltran, H. I., Zamudio-Rivera, L. S., Mancilla, T., Santillan, R. & Farfan, N. (2003). Chem. Eur. J. 9, 2291–2306.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDakternieks, D., Basu Baul, T. S., Dutta, S. & Tiekink, E. R. T. (1998). Organometallics, 17, 3058–3062.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTian, L., Liu, X., Shang, Z., Li, D. & Yu, Q. (2004). Appl. Organomet. Chem. 18, 483–484.  Web of Science CSD CrossRef CAS Google Scholar
First citationTian, L., Qian, B., Sun, Y., Zheng, X., Yang, M., Li, H. & Liu, X. (2005). Appl. Organomet. Chem. 19, 980–987.  Web of Science CSD CrossRef CAS Google Scholar
First citationTian, L., Shang, Z., Zheng, X., Sun, Y., You, Y., Qian, B. & Liu, X. (2006). Appl. Organomet. Chem. 19, 74–80.  Web of Science CSD CrossRef Google Scholar
First citationTian, L., Sun, Y., Zheng, X., Liu, X., You, Y., Liu, X. & Qian, B. (2007). Chin. J. Chem. 25, 312–318.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds