organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3:6,7-Bis(methyl­enedi­­oxy)­phenanthrene

aState Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, People's Republic of China, bSchool of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China, and cCollege of Environmental and Chemical Engineering, Nanchang University of Aeronautics, Nanchang 330063, People's Republic of China
*Correspondence e-mail: yuanxingwang@tom.com

(Received 24 November 2007; accepted 4 December 2007; online 18 December 2007)

In the title mol­ecule, C16H10O4, all the non-H atoms are coplanar. The crystal structure is stabilized by weak inter­molecular C—H⋯O contacts and ππ stacking inter­actions (the inter­planar distance is 3.43 Å).

Related literature

For related literature, see: Cragg et al. (1982[Cragg, J. E., Herbert, R. B., Jackson, F. B., Moody, C. J. & Nicolson, I. T. (1982). J. Chem. Soc. Perkin Trans 1, pp. 2477-2485.]); Nordlander & Njoroge (1987[Nordlander, J. E. & Njoroge, F. G. (1987). J. Org. Chem. 52, 1627-1630.]); Pausacker (1953[Pausacker, K. H. (1953). J. Chem. Soc. pp. 107-109.]); Wang et al. (2007[Wang, Y.-X., Liu, C.-B., Fang, Z.-J., Wen, H.-L. & Xie, M.-Y. (2007). Acta Cryst. E63, o3905.]).

[Scheme 1]

Experimental

Crystal data
  • C16H10O4

  • Mr = 266.24

  • Triclinic, [P \overline 1]

  • a = 6.862 (2) Å

  • b = 7.775 (2) Å

  • c = 11.495 (3) Å

  • α = 75.084 (3)°

  • β = 77.118 (3)°

  • γ = 86.460 (4)°

  • V = 577.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 (2) K

  • 0.34 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.973

  • 4267 measured reflections

  • 2126 independent reflections

  • 1543 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.126

  • S = 1.04

  • 2126 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.69 3.442 (3) 139
Symmetry code: (i) -x+2, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SHELXTL (Version 5.10), SAINT (Version 5.10) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisoconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SHELXTL (Version 5.10), SAINT (Version 5.10) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisoconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SHELXTL (Version 5.10), SAINT (Version 5.10) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisoconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, our group (Wang et al., 2007) decribed the crystal structure of 2,3-Dimethoxy-6,7- methylenedioxyphenanthrene [1] (C17H14O4). Here we report the crystal structure of 2,3:6,7-bis(methylenedioxy)phenanthrene, another important intermediate in the synthesis of phenanthroindolizidine and phenanthroquinolizidine alkaloids analogs. In the title molecule, all the non-hydrogen atoms are nearly coplanar, with the mean deviation of 0.0763 Å, The crystal structure is stabilized by weak intermolecular C11—H11···O1 contacts with C···O distance 3.442 (3) Å and ππ stacking interactions between the parallel molecules; the interplanar distance is 3.43 Å (symmetry code: -1 + x, y, z).

Related literature top

For related literature, see: Cragg et al. (1982); Nordlander & Njoroge (1987); Pausacker (1953); Wang et al. (2007).

Experimental top

The title compound was synthesized by the route depicted in Fig. 2 [Pausacker, 1953; Cragg et al., 1982; Nordlander & Njoroge, 1987] and recrystallized from chloroform–anhydrous ethanol (1:3, v/v) to give 2.2 g (50.3%) of block yellow crystals.

Refinement top

All H atoms were positioned geometrically and treated as riding (C—H = 0.97 Å for methylene and C—H = 0.93 Å for phenyl). Uiso(H) = 1.5 for methyl and 1.2 Ueq(C) for others of the carrier atom.

Structure description top

Recently, our group (Wang et al., 2007) decribed the crystal structure of 2,3-Dimethoxy-6,7- methylenedioxyphenanthrene [1] (C17H14O4). Here we report the crystal structure of 2,3:6,7-bis(methylenedioxy)phenanthrene, another important intermediate in the synthesis of phenanthroindolizidine and phenanthroquinolizidine alkaloids analogs. In the title molecule, all the non-hydrogen atoms are nearly coplanar, with the mean deviation of 0.0763 Å, The crystal structure is stabilized by weak intermolecular C11—H11···O1 contacts with C···O distance 3.442 (3) Å and ππ stacking interactions between the parallel molecules; the interplanar distance is 3.43 Å (symmetry code: -1 + x, y, z).

For related literature, see: Cragg et al. (1982); Nordlander & Njoroge (1987); Pausacker (1953); Wang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Synthesis of the title compound.
2,3:6,7-Bis(methylenedioxy)phenanthrene top
Crystal data top
C16H10O4Z = 2
Mr = 266.24F(000) = 276
Triclinic, P1Dx = 1.531 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 6.862 (2) ÅCell parameters from 1555 reflections
b = 7.775 (2) Åθ = 2.7–28.2°
c = 11.495 (3) ŵ = 0.11 mm1
α = 75.084 (3)°T = 293 K
β = 77.118 (3)°Block, yellow
γ = 86.460 (4)°0.34 × 0.30 × 0.25 mm
V = 577.7 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
2126 independent reflections
Radiation source: fine-focus sealed tube1543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 25.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.963, Tmax = 0.973k = 99
4267 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0713P)2 + 0.0394P]
where P = (Fo2 + 2Fc2)/3
2126 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H10O4γ = 86.460 (4)°
Mr = 266.24V = 577.7 (3) Å3
Triclinic, P1Z = 2
a = 6.862 (2) ÅMo Kα radiation
b = 7.775 (2) ŵ = 0.11 mm1
c = 11.495 (3) ÅT = 293 K
α = 75.084 (3)°0.34 × 0.30 × 0.25 mm
β = 77.118 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2126 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1543 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.973Rint = 0.024
4267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
2126 reflectionsΔρmin = 0.27 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.98631 (17)0.29142 (18)0.28720 (11)0.0600 (4)
O20.76359 (19)0.46464 (18)0.18194 (11)0.0593 (4)
O30.60609 (18)0.23746 (17)0.93565 (11)0.0600 (4)
O40.27411 (19)0.20727 (18)1.02816 (11)0.0635 (4)
C10.7991 (2)0.2792 (2)0.36405 (16)0.0419 (4)
C20.6664 (2)0.3858 (2)0.30069 (15)0.0431 (4)
C30.4708 (2)0.3990 (2)0.35505 (15)0.0440 (4)
H30.38230.47010.31260.053*
C40.4065 (2)0.3002 (2)0.47905 (15)0.0386 (4)
C50.2024 (2)0.3094 (2)0.53970 (16)0.0455 (4)
H50.11360.37960.49700.055*
C60.1352 (2)0.2188 (2)0.65725 (16)0.0461 (4)
H60.00130.22910.69420.055*
C70.2640 (2)0.1071 (2)0.72689 (15)0.0399 (4)
C80.1875 (3)0.0104 (2)0.84929 (16)0.0481 (5)
H80.05400.02100.88690.058*
C90.3135 (3)0.0980 (2)0.91036 (16)0.0459 (4)
C100.5148 (2)0.1147 (2)0.85469 (16)0.0424 (4)
C110.5953 (2)0.0243 (2)0.73845 (14)0.0398 (4)
H110.72980.03740.70400.048*
C120.4690 (2)0.0916 (2)0.66999 (14)0.0359 (4)
C130.5411 (2)0.1911 (2)0.54379 (14)0.0356 (4)
C140.7449 (2)0.1829 (2)0.48162 (15)0.0403 (4)
H140.83750.11300.52110.048*
C150.9666 (3)0.4100 (3)0.17378 (17)0.0599 (5)
H15A1.00830.35120.10730.072*
H15B1.05110.51300.15640.072*
C160.4614 (3)0.2862 (2)1.04828 (16)0.0522 (5)
H16A0.50250.24461.11180.063*
H16B0.44890.41471.07530.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0334 (7)0.0854 (9)0.0466 (8)0.0035 (6)0.0006 (5)0.0004 (7)
O20.0483 (8)0.0723 (9)0.0444 (8)0.0037 (6)0.0038 (6)0.0023 (6)
O30.0475 (8)0.0713 (9)0.0447 (8)0.0138 (6)0.0030 (6)0.0055 (6)
O40.0509 (8)0.0801 (9)0.0424 (8)0.0079 (7)0.0017 (6)0.0029 (7)
C10.0294 (8)0.0502 (10)0.0448 (10)0.0010 (7)0.0045 (7)0.0120 (8)
C20.0419 (10)0.0460 (10)0.0395 (10)0.0014 (7)0.0081 (8)0.0073 (8)
C30.0399 (10)0.0484 (10)0.0439 (10)0.0062 (7)0.0146 (8)0.0085 (8)
C40.0327 (9)0.0420 (9)0.0442 (10)0.0031 (7)0.0102 (7)0.0154 (7)
C50.0340 (9)0.0530 (10)0.0517 (11)0.0112 (7)0.0147 (8)0.0149 (8)
C60.0283 (8)0.0606 (11)0.0507 (11)0.0081 (8)0.0058 (7)0.0204 (9)
C70.0326 (9)0.0474 (9)0.0413 (10)0.0030 (7)0.0061 (7)0.0165 (7)
C80.0333 (9)0.0626 (11)0.0445 (10)0.0037 (8)0.0007 (7)0.0153 (9)
C90.0431 (10)0.0518 (10)0.0402 (10)0.0001 (8)0.0028 (7)0.0121 (8)
C100.0397 (9)0.0443 (9)0.0420 (10)0.0051 (7)0.0098 (7)0.0088 (7)
C110.0305 (8)0.0465 (9)0.0397 (9)0.0033 (7)0.0026 (7)0.0110 (7)
C120.0310 (8)0.0390 (8)0.0403 (9)0.0019 (7)0.0074 (7)0.0152 (7)
C130.0308 (8)0.0389 (9)0.0398 (9)0.0013 (7)0.0093 (7)0.0135 (7)
C140.0286 (8)0.0483 (10)0.0433 (10)0.0031 (7)0.0092 (7)0.0094 (8)
C150.0429 (11)0.0717 (13)0.0524 (12)0.0024 (9)0.0011 (9)0.0005 (10)
C160.0535 (11)0.0535 (11)0.0422 (10)0.0043 (8)0.0037 (8)0.0059 (8)
Geometric parameters (Å, º) top
O1—C11.3804 (19)C6—C71.428 (2)
O1—C151.419 (2)C6—H60.9300
O2—C21.3776 (19)C7—C81.413 (2)
O2—C151.421 (2)C7—C121.425 (2)
O3—C101.378 (2)C8—C91.352 (2)
O3—C161.423 (2)C8—H80.9300
O4—C91.379 (2)C9—C101.400 (2)
O4—C161.430 (2)C10—C111.349 (2)
C1—C141.347 (2)C11—C121.423 (2)
C1—C21.392 (2)C11—H110.9300
C2—C31.358 (2)C12—C131.448 (2)
C3—C41.419 (2)C13—C141.427 (2)
C3—H30.9300C14—H140.9300
C4—C131.418 (2)C15—H15A0.9700
C4—C51.425 (2)C15—H15B0.9700
C5—C61.344 (2)C16—H16A0.9700
C5—H50.9300C16—H16B0.9700
C1—O1—C15106.30 (13)C8—C9—C10121.33 (17)
C2—O2—C15105.66 (13)O4—C9—C10109.68 (15)
C10—O3—C16106.44 (13)C11—C10—O3128.20 (15)
C9—O4—C16105.87 (13)C11—C10—C9122.71 (16)
C14—C1—O1127.84 (15)O3—C10—C9109.07 (15)
C14—C1—C2123.24 (15)C10—C11—C12118.25 (15)
O1—C1—C2108.91 (15)C10—C11—H11120.9
C3—C2—O2128.62 (16)C12—C11—H11120.9
C3—C2—C1121.32 (16)C11—C12—C7118.78 (15)
O2—C2—C1110.05 (14)C11—C12—C13122.16 (14)
C2—C3—C4117.53 (16)C7—C12—C13119.06 (15)
C2—C3—H3121.2C4—C13—C14118.50 (15)
C4—C3—H3121.2C4—C13—C12119.54 (14)
C13—C4—C3121.32 (15)C14—C13—C12121.96 (14)
C13—C4—C5119.18 (15)C1—C14—C13118.09 (15)
C3—C4—C5119.50 (15)C1—C14—H14121.0
C6—C5—C4121.52 (16)C13—C14—H14121.0
C6—C5—H5119.2O1—C15—O2109.01 (14)
C4—C5—H5119.2O1—C15—H15A109.9
C5—C6—C7121.71 (15)O2—C15—H15A109.9
C5—C6—H6119.1O1—C15—H15B109.9
C7—C6—H6119.1O2—C15—H15B109.9
C8—C7—C12120.73 (15)H15A—C15—H15B108.3
C8—C7—C6120.27 (15)O3—C16—O4108.43 (14)
C12—C7—C6118.99 (15)O3—C16—H16A110.0
C9—C8—C7118.20 (16)O4—C16—H16A110.0
C9—C8—H8120.9O3—C16—H16B110.0
C7—C8—H8120.9O4—C16—H16B110.0
C8—C9—O4128.98 (16)H16A—C16—H16B108.4
C15—O1—C1—C14179.56 (17)C8—C9—C10—O3177.95 (16)
C15—O1—C1—C20.33 (19)O4—C9—C10—O31.0 (2)
C15—O2—C2—C3178.81 (18)O3—C10—C11—C12177.57 (15)
C15—O2—C2—C12.50 (19)C9—C10—C11—C120.4 (3)
C14—C1—C2—C30.1 (3)C10—C11—C12—C70.0 (2)
O1—C1—C2—C3179.80 (14)C10—C11—C12—C13178.68 (14)
C14—C1—C2—O2178.70 (15)C8—C7—C12—C110.5 (2)
O1—C1—C2—O21.40 (19)C6—C7—C12—C11178.00 (14)
O2—C2—C3—C4178.62 (15)C8—C7—C12—C13179.20 (14)
C1—C2—C3—C40.1 (2)C6—C7—C12—C130.7 (2)
C2—C3—C4—C130.2 (2)C3—C4—C13—C140.3 (2)
C2—C3—C4—C5179.74 (14)C5—C4—C13—C14179.76 (13)
C13—C4—C5—C60.8 (2)C3—C4—C13—C12179.58 (14)
C3—C4—C5—C6179.66 (16)C5—C4—C13—C120.1 (2)
C4—C5—C6—C70.8 (3)C11—C12—C13—C4178.00 (14)
C5—C6—C7—C8178.48 (16)C7—C12—C13—C40.7 (2)
C5—C6—C7—C120.0 (2)C11—C12—C13—C141.8 (2)
C12—C7—C8—C90.5 (3)C7—C12—C13—C14179.49 (13)
C6—C7—C8—C9177.93 (16)O1—C1—C14—C13179.80 (15)
C7—C8—C9—O4178.66 (16)C2—C1—C14—C130.1 (3)
C7—C8—C9—C100.1 (3)C4—C13—C14—C10.1 (2)
C16—O4—C9—C8177.63 (18)C12—C13—C14—C1179.74 (14)
C16—O4—C9—C103.49 (19)C1—O1—C15—O21.9 (2)
C16—O3—C10—C11176.67 (17)C2—O2—C15—O12.7 (2)
C16—O3—C10—C95.13 (19)C10—O3—C16—O47.28 (19)
C8—C9—C10—C110.4 (3)C9—O4—C16—O36.63 (19)
O4—C9—C10—C11179.36 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.693.442 (3)139
Symmetry code: (i) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H10O4
Mr266.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.862 (2), 7.775 (2), 11.495 (3)
α, β, γ (°)75.084 (3), 77.118 (3), 86.460 (4)
V3)577.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.34 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
4267, 2126, 1543
Rint0.024
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.126, 1.04
No. of reflections2126
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.6863.442 (3)138.8
Symmetry code: (i) x+2, y, z+1.
 

Acknowledgements

This work is supported by the Natural Science Foundation of Jiangxi Province (0420040).

References

First citationBruker (1998). SHELXTL (Version 5.10), SAINT (Version 5.10) and SMART (Version 5.0). Bruker AXS Inc., Madison, Wisoconsin, USA.  Google Scholar
First citationCragg, J. E., Herbert, R. B., Jackson, F. B., Moody, C. J. & Nicolson, I. T. (1982). J. Chem. Soc. Perkin Trans 1, pp. 2477–2485.  CrossRef Web of Science Google Scholar
First citationNordlander, J. E. & Njoroge, F. G. (1987). J. Org. Chem. 52, 1627–1630.  CrossRef CAS Web of Science Google Scholar
First citationPausacker, K. H. (1953). J. Chem. Soc. pp. 107–109.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWang, Y.-X., Liu, C.-B., Fang, Z.-J., Wen, H.-L. & Xie, M.-Y. (2007). Acta Cryst. E63, o3905.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds