organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-5-iodo-1,3-di­methyl­benzene

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 25 May 2007; accepted 4 December 2007; online 18 December 2007)

In the mol­ecule of the title compound, C8H6BrI, the H atoms of methyl groups are disordered; site-occupation factors were fixed at 0.50. The non-H atoms all lie on a crystallographic mirror plane. Weak intra­molecular C—H⋯Br hydrogen bonds result in the formation of two non-planar five-membered rings.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8BrI

  • Mr = 310.94

  • Orthorhombic, P n m a

  • a = 16.686 (3) Å

  • b = 7.0640 (14) Å

  • c = 8.2130 (16) Å

  • V = 968.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.37 mm−1

  • T = 294 (2) K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.157, Tmax = 0.479

  • 1030 measured reflections

  • 1030 independent reflections

  • 659 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.137

  • S = 1.10

  • 1030 reflections

  • 63 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7C⋯Br2 0.96 2.74 3.156 (6) 107
C8—H8C⋯Br2 0.96 2.77 3.115 (5) 102

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

The title compound, (I), is a fine organic intermediate, which can be utilized to construct practical functional molecules. We herein report its crystal structure.

In the molecule of (I), (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). When the crystal structure was solved, H atoms of methyl groups were found to be disordered.

The atoms Br2, I1, C7 and C8 lie in the benzene ring plane. The weak intra- molecular C—H···Br hydrogen bonds (Table 1) result in the formations of two non-planar five-membered rings; B (Br2/C1/C6/C7/H7C) and C (Br2/C1/C2/C8/H8C). Ring A (C1—C6) is, of course, planar.

As can be seen from the packing diagram, (Fig. 2), the molecules are stacked along the b axis.

Related literature top

For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, 4-iodo-2,6-dimethylaniline (5.0 g, 20 mmol), concentrated sulfuric acid (40 mmol, 2.23 ml) and water (100 ml) were stirred in an ice bath. When the temperature was below 278 K, the solution of sodium nitrite (1.44 g, 21 mmol) in water (100 ml) was added dropwise. Then, the mixture was added to a solution of CuBr (2.86 g, 20 mmol) and hydrobromic acid (20 mmol, 2.71 ml) with stirring. The solid residue was extracted with boiling hexane (40 ml) and hexane was distilled off. Crystals suitable for X-ray analysis were obtained by slow evaporation of ethanol at room temperature for about 20 d.

Refinement top

When the crystal structure was solved, the H atoms of methyl groups were found to be disordered over two mirror image sites of the symmetry plane passing through the benzene ring. The occupancies of disordered H atoms were kept fixed as 0.50. H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for methyl H atoms.

Structure description top

The title compound, (I), is a fine organic intermediate, which can be utilized to construct practical functional molecules. We herein report its crystal structure.

In the molecule of (I), (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). When the crystal structure was solved, H atoms of methyl groups were found to be disordered.

The atoms Br2, I1, C7 and C8 lie in the benzene ring plane. The weak intra- molecular C—H···Br hydrogen bonds (Table 1) result in the formations of two non-planar five-membered rings; B (Br2/C1/C6/C7/H7C) and C (Br2/C1/C2/C8/H8C). Ring A (C1—C6) is, of course, planar.

As can be seen from the packing diagram, (Fig. 2), the molecules are stacked along the b axis.

For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
2-Bromo-5-iodo-1,3-dimethylbenzene top
Crystal data top
C8H8BrIDx = 2.133 Mg m3
Mr = 310.94Melting point: 307 K
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 25 reflections
a = 16.686 (3) Åθ = 10–13°
b = 7.0640 (14) ŵ = 7.37 mm1
c = 8.2130 (16) ÅT = 294 K
V = 968.1 (3) Å3Needle, colorless
Z = 40.40 × 0.20 × 0.10 mm
F(000) = 576.0
Data collection top
Enraf–Nonius CAD-4
diffractometer
659 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 26.0°, θmin = 2.4°
ω/2θ scansh = 020
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.157, Tmax = 0.479l = 010
1030 measured reflections3 standard reflections every 120 min
1030 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0602P)2 + 1.4567P]
where P = (Fo2 + 2Fc2)/3
1030 reflections(Δ/σ)max < 0.001
63 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.85 e Å3
Crystal data top
C8H8BrIV = 968.1 (3) Å3
Mr = 310.94Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 16.686 (3) ŵ = 7.37 mm1
b = 7.0640 (14) ÅT = 294 K
c = 8.2130 (16) Å0.40 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
659 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.157, Tmax = 0.4793 standard reflections every 120 min
1030 measured reflections intensity decay: none
1030 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.10Δρmax = 0.62 e Å3
1030 reflectionsΔρmin = 0.85 e Å3
63 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.25441 (7)0.25001.15579 (9)0.0902 (5)
Br20.08058 (5)0.25000.69651 (7)0.0800 (5)
C10.0160 (4)0.25000.8282 (5)0.055 (3)
C20.0066 (4)0.25000.9955 (6)0.051 (3)
C30.0768 (4)0.25001.0850 (6)0.054 (3)
H30.07400.25001.19810.065*
C40.1500 (5)0.25001.0117 (6)0.057 (3)
C50.1580 (5)0.25000.8449 (5)0.055 (3)
H50.20850.25000.79720.066*
C60.0897 (4)0.25000.7489 (5)0.050 (3)
C70.0984 (4)0.25000.5721 (4)0.093 (5)
H7A0.09470.12260.53220.139*0.50
H7B0.14960.30220.54340.139*0.50
H7C0.05670.32520.52440.139*0.50
C80.0730 (4)0.25001.0755 (6)0.077 (4)
H8A0.06720.28781.18710.116*0.50
H8B0.09550.12511.07090.116*0.50
H8C0.10780.33711.02030.116*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0675 (6)0.1300 (10)0.0731 (6)0.0000.0170 (5)0.000
Br20.0850 (9)0.0714 (8)0.0837 (9)0.0000.0394 (8)0.000
C10.065 (7)0.038 (6)0.063 (8)0.0000.022 (6)0.000
C60.074 (7)0.049 (5)0.047 (6)0.0000.006 (5)0.000
C40.068 (7)0.057 (7)0.046 (7)0.0000.002 (6)0.000
C30.079 (8)0.053 (6)0.031 (5)0.0000.012 (6)0.000
C20.054 (5)0.046 (6)0.052 (7)0.0000.010 (5)0.000
C50.060 (6)0.059 (7)0.045 (6)0.0000.017 (5)0.000
C70.108 (13)0.098 (10)0.083 (6)0.0000.012 (7)0.000
C80.071 (8)0.079 (8)0.082 (9)0.0000.003 (7)0.000
Geometric parameters (Å, º) top
I1—C42.105 (7)C3—H30.9300
Br2—C11.941 (6)C2—C81.481 (6)
C1—C21.383 (6)C5—H50.9300
C1—C61.392 (6)C7—H7A0.9600
C6—C51.385 (6)C7—H7B0.9600
C6—C71.460 (5)C7—H7C0.9600
C4—C31.362 (6)C8—H8A0.9600
C4—C51.377 (6)C8—H8B0.9600
C3—C21.384 (6)C8—H8C0.9600
C2—C1—C6124.4 (5)C4—C5—C6119.2 (5)
C2—C1—Br2117.4 (5)C4—C5—H5120.4
C6—C1—Br2118.2 (3)C6—C5—H5120.4
C5—C6—C1117.4 (4)C6—C7—H7A109.5
C5—C6—C7118.9 (5)C6—C7—H7B109.5
C1—C6—C7123.6 (5)H7A—C7—H7B109.5
C3—C4—C5121.7 (4)C6—C7—H7C109.5
C3—C4—I1119.6 (4)H7A—C7—H7C109.5
C5—C4—I1118.7 (4)H7B—C7—H7C109.5
C4—C3—C2121.6 (5)C2—C8—H8A109.5
C4—C3—H3119.2C2—C8—H8B109.5
C2—C3—H3119.2H8A—C8—H8B109.5
C1—C2—C3115.6 (5)C2—C8—H8C109.5
C1—C2—C8122.8 (6)H8A—C8—H8C109.5
C3—C2—C8121.5 (5)H8B—C8—H8C109.5
C2—C1—C6—C50.000 (3)C6—C1—C2—C8180.000 (3)
Br2—C1—C6—C5180.000 (2)Br2—C1—C2—C80.000 (3)
C2—C1—C6—C7180.000 (2)C4—C3—C2—C10.000 (3)
Br2—C1—C6—C70.000 (2)C4—C3—C2—C8180.000 (3)
C5—C4—C3—C20.000 (3)C3—C4—C5—C60.000 (3)
I1—C4—C3—C2180.000 (3)I1—C4—C5—C6180.000 (2)
C6—C1—C2—C30.000 (3)C1—C6—C5—C40.000 (3)
Br2—C1—C2—C3180.000 (2)C7—C6—C5—C4180.000 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···Br20.962.743.156 (6)107
C8—H8C···Br20.962.773.115 (5)102

Experimental details

Crystal data
Chemical formulaC8H8BrI
Mr310.94
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)294
a, b, c (Å)16.686 (3), 7.0640 (14), 8.2130 (16)
V3)968.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)7.37
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.157, 0.479
No. of measured, independent and
observed [I > 2σ(I)] reflections
1030, 1030, 659
Rint0.000
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.137, 1.10
No. of reflections1030
No. of parameters63
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.85

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7C···Br20.962.7403.156 (6)107.00
C8—H8C···Br20.962.7703.115 (5)102.00
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds