organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-(4-hy­droxy­phen­yl)-6-methyl-2-thioxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate monohydrate

aDepartment of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China
*Correspondence e-mail: mjzhangtju@163.com

(Received 31 October 2007; accepted 5 December 2007; online 12 December 2007)

In the organic mol­ecule of the title compound, C14H16N2O3S·H2O, the two rings are oriented at a dihedral angle of 84.31 (2)°. In the crystal structure, intra­molecular O—H⋯O and inter­molecular O—H⋯O, N—H⋯O, O—H⋯S and N—H⋯S hydrogen bonds are found.

Related literature

For general background, see: Atwal et al. (1991[Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & Reilly, B. C. (1991). J. Med. Chem. 34, 806-811.]); Mayer et al. (1999[Mayer, T. M., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. & Mitchison, T. J. (1999). Science, 286, 971-974.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2O3S·H2O

  • Mr = 310.36

  • Triclinic, [P \overline 1]

  • a = 5.6702 (17) Å

  • b = 11.212 (3) Å

  • c = 12.343 (4) Å

  • α = 90.406 (5)°

  • β = 95.251 (5)°

  • γ = 104.393 (5)°

  • V = 756.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 294 (2) K

  • 0.22 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.951, Tmax = 0.964

  • 3958 measured reflections

  • 2655 independent reflections

  • 1741 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.117

  • S = 1.01

  • 2655 reflections

  • 209 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O1i 0.855 (10) 1.999 (14) 2.835 (3) 166 (3)
O4—H4A⋯S1ii 0.87 (3) 2.44 (2) 3.189 (2) 145 (3)
N2—H2A⋯O3iii 0.892 (10) 2.097 (11) 2.988 (3) 177 (3)
N1—H1A⋯S1iv 0.895 (10) 2.479 (11) 3.363 (2) 170 (2)
O3—H3⋯O4 0.82 1.90 2.724 (3) 179
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+1; (iv) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), is a kind of polyfunctionalized dihydropyrimidines (DHPMs), which represents a heterocyclic system of remarkable pharmacological efficiency and may exhibit antiviral, antitumor, antibacterial, and anti inflammatory properties (Atwal et al., 1991). It is the only cell-permeable molecule currently known to specifically inhibit mitotic kinesis Eg5 and is considered a lead for the development of new anticancer drugs (Mayer et al., 1999).

In the molecule of the title compound, (I), (Fig.1) the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A (N1/N2/C1—C4) and B (C9—C14) are, of course, planar and they are oriented at a dihedral angle of A/B = 84.31 (2)°.

In the crystal structure, intramolecular O—H···O and intermolecular O—H···O, N—H···O, O—H···S and N—H···S hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they seem to be effective in the stabilization of the structure.

Related literature top

For general background, see: Atwal et al. (1991); Mayer et al. (1999). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, a solution of ethyl acetoacetate (1.44 g, 10 mmol), 4-hydroxybenzaldehyde (1.38 g, 10 mmol) and thiourea (0.86 g, 10 mmol) in ethanol (5 ml) was heated under reflux in the presence of HCl (three drops) for 2.5 h. After being cooled to room temperature, the reaction mixture was poured onto crushed ice (30 g) and stirred for 5–10 min. The separated solid was filtered under suction (water aspirator), washed with ice-cold water (50 ml), and then recrystallized from hot ethanol to afford the pure product.

Refinement top

H atoms (for H2O and NH) were located in difference synthesis and refined isotropicaly [O—H = 0.864 (10) and 0.855 (10) Å, Uiso(H) = 0.088 (13) and 0.096 (14) Å2; N—H = 0.895 (10) and 0.892 (10) Å, Uiso(H) = 0.047 (8) and 0.061 (9) Å2]. The remaining H atoms were positioned geometrically, with O—H = 0.82 Å (for OH) and C—H = 0.93, 0.98, 0.97 and 0.96 Å, for aromatic, methine, methylene and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and methyl H, and x = 1.2 for all other H atoms.

Structure description top

The title compound, (I), is a kind of polyfunctionalized dihydropyrimidines (DHPMs), which represents a heterocyclic system of remarkable pharmacological efficiency and may exhibit antiviral, antitumor, antibacterial, and anti inflammatory properties (Atwal et al., 1991). It is the only cell-permeable molecule currently known to specifically inhibit mitotic kinesis Eg5 and is considered a lead for the development of new anticancer drugs (Mayer et al., 1999).

In the molecule of the title compound, (I), (Fig.1) the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A (N1/N2/C1—C4) and B (C9—C14) are, of course, planar and they are oriented at a dihedral angle of A/B = 84.31 (2)°.

In the crystal structure, intramolecular O—H···O and intermolecular O—H···O, N—H···O, O—H···S and N—H···S hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they seem to be effective in the stabilization of the structure.

For general background, see: Atwal et al. (1991); Mayer et al. (1999). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
Ethyl 4-(4-hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate monohydrate top
Crystal data top
C14H16N2O3S·H2OZ = 2
Mr = 310.36F(000) = 328
Triclinic, P1Dx = 1.362 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6702 (17) ÅCell parameters from 1137 reflections
b = 11.212 (3) Åθ = 3.3–25.0°
c = 12.343 (4) ŵ = 0.23 mm1
α = 90.406 (5)°T = 294 K
β = 95.251 (5)°Plate, colorless
γ = 104.393 (5)°0.22 × 0.16 × 0.16 mm
V = 756.5 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2655 independent reflections
Radiation source: fine-focus sealed tube1741 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.951, Tmax = 0.964k = 1013
3958 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.1375P]
where P = (Fo2 + 2Fc2)/3
2655 reflections(Δ/σ)max = 0.003
209 parametersΔρmax = 0.20 e Å3
5 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H16N2O3S·H2Oγ = 104.393 (5)°
Mr = 310.36V = 756.5 (4) Å3
Triclinic, P1Z = 2
a = 5.6702 (17) ÅMo Kα radiation
b = 11.212 (3) ŵ = 0.23 mm1
c = 12.343 (4) ÅT = 294 K
α = 90.406 (5)°0.22 × 0.16 × 0.16 mm
β = 95.251 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2655 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1741 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.964Rint = 0.025
3958 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0445 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.20 e Å3
2655 reflectionsΔρmin = 0.21 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30417 (14)0.38411 (6)0.11066 (6)0.0509 (3)
O10.1221 (4)0.95058 (17)0.15444 (17)0.0588 (6)
O20.2131 (3)0.83224 (15)0.21777 (15)0.0464 (5)
O30.1542 (4)0.70709 (18)0.67773 (14)0.0520 (5)
H30.29770.74380.69340.078*
O40.6317 (5)0.8288 (2)0.72788 (18)0.0688 (7)
H4A0.700 (6)0.7722 (19)0.753 (3)0.088 (13)*
H4B0.681 (6)0.8966 (17)0.765 (2)0.096 (14)*
N10.2842 (4)0.61232 (19)0.06966 (18)0.0417 (6)
H1A0.385 (4)0.602 (2)0.0205 (16)0.047 (8)*
N20.0298 (4)0.51470 (18)0.19204 (17)0.0376 (5)
H2A0.020 (5)0.4483 (17)0.231 (2)0.061 (9)*
C10.1972 (5)0.5103 (2)0.12598 (19)0.0343 (6)
C20.0549 (5)0.6237 (2)0.2218 (2)0.0351 (6)
H20.23270.60500.20440.042*
C30.0627 (4)0.7321 (2)0.1543 (2)0.0334 (6)
C40.2179 (5)0.7224 (2)0.0817 (2)0.0378 (6)
C50.3300 (6)0.8169 (2)0.0035 (2)0.0521 (8)
H5A0.24370.88050.00100.078*
H5B0.31970.77840.06710.078*
H5C0.49860.85210.02860.078*
C60.0012 (5)0.8494 (2)0.1737 (2)0.0401 (6)
C70.2762 (6)0.9417 (2)0.2582 (3)0.0563 (8)
H7A0.45270.92810.25320.068*
H7B0.21151.01120.21390.068*
C80.1728 (7)0.9697 (3)0.3736 (3)0.0710 (10)
H8A0.21400.89630.41470.106*
H8B0.23981.03180.40380.106*
H8C0.00180.99900.37660.106*
C90.0011 (4)0.6489 (2)0.34304 (19)0.0319 (6)
C100.2363 (5)0.7051 (2)0.3872 (2)0.0388 (6)
H100.35970.72940.34130.047*
C110.2911 (5)0.7258 (2)0.4978 (2)0.0410 (6)
H110.45010.76390.52590.049*
C120.1096 (5)0.6899 (2)0.5672 (2)0.0371 (6)
C130.1259 (5)0.6333 (2)0.5247 (2)0.0428 (7)
H130.24880.60880.57080.051*
C140.1787 (5)0.6130 (2)0.4140 (2)0.0392 (6)
H140.33770.57470.38620.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0668 (5)0.0371 (4)0.0559 (5)0.0198 (4)0.0232 (4)0.0093 (3)
O10.0698 (14)0.0296 (11)0.0781 (15)0.0097 (10)0.0198 (12)0.0033 (10)
O20.0440 (11)0.0348 (10)0.0620 (13)0.0132 (9)0.0048 (10)0.0021 (9)
O30.0695 (14)0.0479 (12)0.0334 (11)0.0024 (11)0.0112 (9)0.0031 (8)
O40.0863 (18)0.0457 (14)0.0663 (16)0.0087 (14)0.0142 (12)0.0029 (12)
N10.0536 (15)0.0357 (13)0.0396 (14)0.0141 (11)0.0160 (12)0.0062 (10)
N20.0493 (14)0.0279 (12)0.0361 (13)0.0082 (11)0.0112 (11)0.0007 (10)
C10.0404 (15)0.0317 (14)0.0288 (14)0.0062 (12)0.0006 (12)0.0015 (11)
C20.0342 (14)0.0324 (14)0.0376 (15)0.0064 (12)0.0038 (11)0.0005 (11)
C30.0369 (15)0.0274 (13)0.0339 (14)0.0062 (11)0.0022 (12)0.0007 (10)
C40.0474 (17)0.0305 (14)0.0332 (15)0.0077 (12)0.0014 (12)0.0015 (11)
C50.073 (2)0.0400 (16)0.0440 (17)0.0119 (15)0.0150 (15)0.0102 (13)
C60.0445 (17)0.0357 (16)0.0386 (16)0.0103 (13)0.0045 (13)0.0004 (12)
C70.058 (2)0.0427 (17)0.075 (2)0.0245 (15)0.0114 (16)0.0012 (15)
C80.090 (3)0.052 (2)0.072 (2)0.0149 (19)0.019 (2)0.0077 (16)
C90.0351 (15)0.0277 (13)0.0350 (14)0.0106 (11)0.0067 (11)0.0014 (10)
C100.0349 (15)0.0436 (16)0.0366 (15)0.0048 (13)0.0110 (12)0.0047 (12)
C110.0376 (15)0.0446 (16)0.0358 (16)0.0010 (13)0.0032 (12)0.0015 (12)
C120.0518 (18)0.0289 (14)0.0321 (15)0.0098 (13)0.0115 (13)0.0038 (11)
C130.0444 (17)0.0397 (15)0.0460 (17)0.0082 (13)0.0206 (13)0.0061 (12)
C140.0323 (15)0.0397 (15)0.0451 (17)0.0069 (12)0.0076 (12)0.0018 (12)
Geometric parameters (Å, º) top
S1—C11.688 (2)C5—H5A0.9600
O1—C61.213 (3)C5—H5B0.9600
O2—C61.335 (3)C5—H5C0.9600
O2—C71.458 (3)C7—C81.489 (4)
O3—C121.368 (3)C7—H7A0.9700
O3—H30.8200C7—H7B0.9700
O4—H4A0.87 (3)C8—H8A0.9600
O4—H4B0.855 (10)C8—H8B0.9600
N1—C11.353 (3)C8—H8C0.9600
N1—C41.387 (3)C9—C101.385 (3)
N1—H1A0.895 (10)C9—C141.390 (3)
N2—C11.316 (3)C10—C111.377 (3)
N2—C21.476 (3)C10—H100.9300
N2—H2A0.892 (10)C11—C121.384 (4)
C2—C91.510 (3)C11—H110.9300
C2—C31.526 (3)C12—C131.381 (4)
C2—H20.9800C13—C141.376 (4)
C3—C41.333 (3)C13—H130.9300
C3—C61.472 (3)C14—H140.9300
C4—C51.500 (4)
C6—O2—C7117.0 (2)O2—C7—C8110.0 (2)
C12—O3—H3109.5O2—C7—H7A109.7
C1—N1—C4124.1 (2)C8—C7—H7A109.7
C1—N1—H1A114.2 (17)O2—C7—H7B109.7
C4—N1—H1A121.6 (17)C8—C7—H7B109.7
C1—N2—C2127.1 (2)H7A—C7—H7B108.2
C1—N2—H2A116.3 (18)C7—C8—H8A109.5
C2—N2—H2A115.7 (18)C7—C8—H8B109.5
N2—C1—N1117.3 (2)H8A—C8—H8B109.5
N2—C1—S1122.54 (19)C7—C8—H8C109.5
N1—C1—S1120.1 (2)H8A—C8—H8C109.5
N2—C2—C9108.85 (18)H8B—C8—H8C109.5
N2—C2—C3109.3 (2)C10—C9—C14117.9 (2)
C9—C2—C3113.4 (2)C10—C9—C2120.7 (2)
N2—C2—H2108.4C14—C9—C2121.4 (2)
C9—C2—H2108.4C11—C10—C9121.3 (2)
C3—C2—H2108.4C11—C10—H10119.3
C4—C3—C6121.1 (2)C9—C10—H10119.3
C4—C3—C2122.1 (2)C10—C11—C12120.0 (2)
C6—C3—C2116.7 (2)C10—C11—H11120.0
C3—C4—N1119.6 (2)C12—C11—H11120.0
C3—C4—C5127.9 (2)O3—C12—C13118.0 (2)
N1—C4—C5112.4 (2)O3—C12—C11122.5 (2)
C4—C5—H5A109.5C13—C12—C11119.5 (2)
C4—C5—H5B109.5C14—C13—C12120.0 (2)
H5A—C5—H5B109.5C14—C13—H13120.0
C4—C5—H5C109.5C12—C13—H13120.0
H5A—C5—H5C109.5C13—C14—C9121.3 (2)
H5B—C5—H5C109.5C13—C14—H14119.4
O1—C6—O2122.9 (2)C9—C14—H14119.4
O1—C6—C3125.3 (3)H4A—O4—H4B112.8 (17)
O2—C6—C3111.7 (2)
C2—N2—C1—N17.7 (4)C2—C3—C6—O1156.6 (2)
C2—N2—C1—S1171.99 (18)C4—C3—C6—O2158.4 (2)
C4—N1—C1—N23.7 (4)C2—C3—C6—O222.3 (3)
C4—N1—C1—S1176.06 (19)C6—O2—C7—C888.3 (3)
C1—N2—C2—C9118.3 (3)N2—C2—C9—C1077.4 (3)
C1—N2—C2—C36.0 (3)C3—C2—C9—C1044.5 (3)
N2—C2—C3—C40.5 (3)N2—C2—C9—C14100.6 (3)
C9—C2—C3—C4121.1 (3)C3—C2—C9—C14137.5 (2)
N2—C2—C3—C6179.8 (2)C14—C9—C10—C110.4 (4)
C9—C2—C3—C658.2 (3)C2—C9—C10—C11178.4 (2)
C6—C3—C4—N1176.6 (2)C9—C10—C11—C120.2 (4)
C2—C3—C4—N12.8 (4)C10—C11—C12—O3179.4 (2)
C6—C3—C4—C56.3 (4)C10—C11—C12—C130.0 (4)
C2—C3—C4—C5174.4 (2)O3—C12—C13—C14179.4 (2)
C1—N1—C4—C31.4 (4)C11—C12—C13—C140.0 (4)
C1—N1—C4—C5176.2 (2)C12—C13—C14—C90.2 (4)
C7—O2—C6—O19.2 (4)C10—C9—C14—C130.4 (4)
C7—O2—C6—C3169.7 (2)C2—C9—C14—C13178.4 (2)
C4—C3—C6—O122.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O1i0.86 (1)2.00 (1)2.835 (3)166 (3)
O4—H4A···S1ii0.87 (3)2.44 (2)3.189 (2)145 (3)
N2—H2A···O3iii0.89 (1)2.10 (1)2.988 (3)177 (3)
N1—H1A···S1iv0.90 (1)2.48 (1)3.363 (2)170 (2)
O3—H3···O40.821.902.724 (3)179
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H16N2O3S·H2O
Mr310.36
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)5.6702 (17), 11.212 (3), 12.343 (4)
α, β, γ (°)90.406 (5), 95.251 (5), 104.393 (5)
V3)756.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.22 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.951, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
3958, 2655, 1741
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.01
No. of reflections2655
No. of parameters209
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O1i0.855 (10)1.999 (14)2.835 (3)166 (3)
O4—H4A···S1ii0.87 (3)2.44 (2)3.189 (2)145 (3)
N2—H2A···O3iii0.892 (10)2.097 (11)2.988 (3)177 (3)
N1—H1A···S1iv0.895 (10)2.479 (11)3.363 (2)170 (2)
O3—H3···O40.821.902.724 (3)179.3
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y+1, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAtwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A. & Reilly, B. C. (1991). J. Med. Chem. 34, 806–811.  CrossRef PubMed CAS Web of Science Google Scholar
First citationBruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMayer, T. M., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L. & Mitchison, T. J. (1999). Science, 286, 971–974.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds