metal-organic compounds
Retracted: Bis(4-chloro-2-formylphenolato)nickel(II)
aDepartment of Chemistry, Baoji University of Arts and Science, Baoji, Shaanxi 721007, People's Republic of China
*Correspondence e-mail: mingtian8001@163.com
The 7H4ClO2)2], contains one half-molecule. The NiII ion, lying on an inversion centre, is four-coordinated by O atoms of 5-chlorosalicylaldehydate ligands in a square-planar geometry.
of the title compound, [Ni(CRelated literature
For general background, see: Gavrilova & Bosnich (2004); Boudalis et al. (2004); Veauthier et al. (2004). For related structures, see: Erxleben et al. (2001). For bond-length data, see: Allen et al. 1987.
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536807056309/hk2368sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807056309/hk2368Isup2.hkl
For the preparation of the title compound, (I), 5-chlorosalicylaldehyde (15.7 mg, 0.1 mmol) and Ni(NO3)2.6(H2O) (29.0 mg, 0.1 mmol) were dissolved in methanol (10 ml). The mixture was stirred for 30 min at room temperature to give a clear brown solution. After allowing the resulting solution to stand in air for 11 d, brown block-shaped crystals of (I) were formed by slow evaporation of the solvent. The crystals were collected, washed with methanol and dried in a vacuum desiccator using anhydrous CaCl2 (yield; 54%). Elemental analysis; found C 45.42%, H2.16%; calc. for C14H8Cl2Ni O4: C 45.44, H 2.61%.
H atoms were positioned geometrically, with C—H = 0.93 Å, for aromatic H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
The design of multidentate ligands and their metallosupramolecular chemistry are of great interest in the last few years (Gavrilova & Bosnich, 2004; Boudalis et al., 2004; Veauthier et al., 2004). As an extension of our ongoing studies on the structural characterization of Schiff base compounds, we report herein the
of the title compound, (I).The
of (I) contains one-half molecule (Fig. 1), in which the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). It is a mononuclear NiII complex being structurally similar to the Co(II) and Zn(II) complexes derived from other Schiff base ligands (Erxleben et al., 2001). The NiII ion is four-coordinated by symmetry-related O atoms of 5-chlorosalicylaldehydato ligands.For general background, see: Gavrilova & Bosnich (2004); Boudalis et al. (2004); Veauthier et al. (2004). For related structures, see: Erxleben et al. (2001). For bond-length data, see: Allen et al. 1987.
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1995); software used to prepare material for publication: SHELXTL (Sheldrick, 1995).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. |
[Ni(C7H4ClO2)2] | F(000) = 372 |
Mr = 369.81 | Dx = 1.739 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1788 reflections |
a = 15.765 (3) Å | θ = 2.6–27.2° |
b = 5.6921 (14) Å | µ = 1.76 mm−1 |
c = 7.8869 (14) Å | T = 298 K |
β = 93.896 (2)° | Block, brown |
V = 706.1 (3) Å3 | 0.20 × 0.17 × 0.12 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 1250 independent reflections |
Radiation source: fine-focus sealed tube | 1056 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.019 |
φ and ω scans | θmax = 25.0°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −18→15 |
Tmin = 0.720, Tmax = 0.816 | k = −6→6 |
3455 measured reflections | l = −7→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0455P)2 + 0.5565P] where P = (Fo2 + 2Fc2)/3 |
1250 reflections | (Δ/σ)max < 0.001 |
97 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
[Ni(C7H4ClO2)2] | V = 706.1 (3) Å3 |
Mr = 369.81 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.765 (3) Å | µ = 1.76 mm−1 |
b = 5.6921 (14) Å | T = 298 K |
c = 7.8869 (14) Å | 0.20 × 0.17 × 0.12 mm |
β = 93.896 (2)° |
Bruker SMART CCD area-detector diffractometer | 1250 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1056 reflections with I > 2σ(I) |
Tmin = 0.720, Tmax = 0.816 | Rint = 0.019 |
3455 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.093 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.55 e Å−3 |
1250 reflections | Δρmin = −0.43 e Å−3 |
97 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.0000 | 0.0000 | 0.0368 (2) | |
Cl1 | 0.06478 (6) | 0.1508 (2) | 0.19360 (16) | 0.0813 (4) | |
O1 | 0.45925 (17) | 0.2599 (5) | 0.1098 (3) | 0.0634 (7) | |
O2 | 0.39686 (13) | −0.1524 (3) | −0.0165 (3) | 0.0434 (5) | |
C1 | 0.3822 (2) | 0.3016 (5) | 0.1485 (4) | 0.0425 (7) | |
H1 | 0.3714 | 0.4431 | 0.2018 | 0.051* | |
C2 | 0.3126 (2) | 0.1431 (5) | 0.1141 (4) | 0.0398 (7) | |
C3 | 0.32369 (19) | −0.0744 (6) | 0.0312 (4) | 0.0389 (7) | |
C4 | 0.2507 (2) | −0.2141 (6) | −0.0042 (4) | 0.0465 (8) | |
H4 | 0.2557 | −0.3559 | −0.0613 | 0.056* | |
C5 | 0.1722 (2) | −0.1449 (6) | 0.0438 (5) | 0.0528 (9) | |
H5 | 0.1250 | −0.2402 | 0.0197 | 0.063* | |
C6 | 0.1633 (2) | 0.0666 (7) | 0.1281 (4) | 0.0497 (8) | |
C7 | 0.2316 (2) | 0.2091 (6) | 0.1627 (4) | 0.0460 (8) | |
H7 | 0.2248 | 0.3508 | 0.2189 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0449 (3) | 0.0309 (3) | 0.0342 (3) | −0.0012 (2) | 0.0001 (2) | −0.0031 (2) |
Cl1 | 0.0502 (6) | 0.0935 (9) | 0.1021 (9) | 0.0018 (5) | 0.0186 (5) | −0.0168 (7) |
O1 | 0.0725 (18) | 0.0565 (15) | 0.0609 (16) | −0.0023 (13) | 0.0037 (13) | −0.0085 (13) |
O2 | 0.0464 (12) | 0.0340 (11) | 0.0499 (13) | −0.0011 (9) | 0.0035 (10) | −0.0066 (10) |
C1 | 0.0490 (19) | 0.0354 (16) | 0.0433 (18) | 0.0045 (14) | 0.0057 (14) | −0.0065 (14) |
C2 | 0.0469 (17) | 0.0353 (17) | 0.0369 (16) | 0.0006 (13) | 0.0008 (13) | 0.0006 (13) |
C3 | 0.0461 (18) | 0.0350 (15) | 0.0351 (16) | −0.0009 (13) | −0.0004 (13) | 0.0037 (13) |
C4 | 0.054 (2) | 0.0388 (17) | 0.0462 (19) | −0.0042 (14) | 0.0003 (15) | −0.0023 (14) |
C5 | 0.0481 (19) | 0.053 (2) | 0.056 (2) | −0.0091 (16) | 0.0002 (16) | 0.0002 (17) |
C6 | 0.0443 (18) | 0.055 (2) | 0.050 (2) | 0.0024 (15) | 0.0048 (15) | 0.0025 (16) |
C7 | 0.0518 (19) | 0.0422 (18) | 0.0441 (19) | 0.0056 (15) | 0.0046 (15) | −0.0015 (14) |
Ni1—O2i | 1.840 (2) | C2—C7 | 1.408 (4) |
Ni1—O2 | 1.840 (2) | C2—C3 | 1.417 (4) |
Ni1—O1 | 1.851 (3) | C3—C4 | 1.411 (4) |
Ni1—O1i | 1.851 (3) | C4—C5 | 1.376 (5) |
Cl1—C6 | 1.738 (3) | C4—H4 | 0.9300 |
O1—C1 | 1.294 (4) | C5—C6 | 1.387 (5) |
O2—C3 | 1.315 (4) | C5—H5 | 0.9300 |
C1—C2 | 1.433 (4) | C6—C7 | 1.361 (5) |
C1—H1 | 0.9300 | C7—H7 | 0.9300 |
O2i—Ni1—O2 | 180 | O2—C3—C2 | 124.5 (3) |
O2i—Ni1—O1 | 85.60 (10) | C4—C3—C2 | 117.3 (3) |
O2—Ni1—O1 | 94.40 (10) | C5—C4—C3 | 121.4 (3) |
O2i—Ni1—O1i | 94.40 (10) | C5—C4—H4 | 119.3 |
O2—Ni1—O1i | 85.60 (10) | C3—C4—H4 | 119.3 |
O1—Ni1—O1i | 180 | C4—C5—C6 | 120.2 (3) |
C1—O1—Ni1 | 128.2 (2) | C4—C5—H5 | 119.9 |
C3—O2—Ni1 | 127.52 (19) | C6—C5—H5 | 119.9 |
O1—C1—C2 | 124.0 (3) | C7—C6—C5 | 120.6 (3) |
O1—C1—H1 | 118.0 | C7—C6—Cl1 | 119.1 (3) |
C2—C1—H1 | 118.0 | C5—C6—Cl1 | 120.2 (3) |
C7—C2—C3 | 120.1 (3) | C6—C7—C2 | 120.4 (3) |
C7—C2—C1 | 118.5 (3) | C6—C7—H7 | 119.8 |
C3—C2—C1 | 121.3 (3) | C2—C7—H7 | 119.8 |
O2—C3—C4 | 118.2 (3) | ||
O2i—Ni1—O1—C1 | 177.8 (3) | C7—C2—C3—C4 | 2.0 (4) |
O2—Ni1—O1—C1 | −2.2 (3) | C1—C2—C3—C4 | −177.2 (3) |
O1—Ni1—O2—C3 | 3.1 (3) | O2—C3—C4—C5 | 179.2 (3) |
O1i—Ni1—O2—C3 | −176.9 (3) | C2—C3—C4—C5 | −1.7 (5) |
Ni1—O1—C1—C2 | 1.5 (5) | C3—C4—C5—C6 | 0.4 (5) |
O1—C1—C2—C7 | 179.9 (3) | C4—C5—C6—C7 | 0.6 (5) |
O1—C1—C2—C3 | −0.8 (5) | C4—C5—C6—Cl1 | −178.4 (3) |
Ni1—O2—C3—C4 | 175.5 (2) | C5—C6—C7—C2 | −0.3 (5) |
Ni1—O2—C3—C2 | −3.5 (4) | Cl1—C6—C7—C2 | 178.7 (2) |
C7—C2—C3—O2 | −178.9 (3) | C3—C2—C7—C6 | −1.1 (5) |
C1—C2—C3—O2 | 1.9 (5) | C1—C2—C7—C6 | 178.1 (3) |
Symmetry code: (i) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C7H4ClO2)2] |
Mr | 369.81 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 15.765 (3), 5.6921 (14), 7.8869 (14) |
β (°) | 93.896 (2) |
V (Å3) | 706.1 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.76 |
Crystal size (mm) | 0.20 × 0.17 × 0.12 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.720, 0.816 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3455, 1250, 1056 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.093, 1.10 |
No. of reflections | 1250 |
No. of parameters | 97 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.43 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 1995).
Ni1—O2 | 1.840 (2) | Ni1—O1 | 1.851 (3) |
O2i—Ni1—O2 | 180 | O2—Ni1—O1 | 94.40 (10) |
O2i—Ni1—O1 | 85.60 (10) | O1—Ni1—O1i | 180 |
Symmetry code: (i) −x+1, −y, −z. |
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Boudalis, A. K., Clemente-Juan, J.-M., Dahan, F. & Tuchagues, J.-P. (2004). Inorg. Chem. 43, 1574–1586. Web of Science CSD CrossRef PubMed CAS Google Scholar
Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Erxleben, A. & Schumacher, D. (2001). Eur. J. Inorg. Chem. pp. 3039–3046. CrossRef Google Scholar
Gavrilova, A. L. & Bosnich, B. (2004). Chem. Rev. 104, 349–383. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1995). SHELXTL. Version 5.0. Siemens Analytical Instruments Inc, Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Veauthier, J. M., Cho, W.-S., Lynch, V. M. & Sessler, J. L. (2004). Inorg. Chem. 43, 1220–1228. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design of multidentate ligands and their metallosupramolecular chemistry are of great interest in the last few years (Gavrilova & Bosnich, 2004; Boudalis et al., 2004; Veauthier et al., 2004). As an extension of our ongoing studies on the structural characterization of Schiff base compounds, we report herein the crystal structure of the title compound, (I).
The asymmetric unit of (I) contains one-half molecule (Fig. 1), in which the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). It is a mononuclear NiII complex being structurally similar to the Co(II) and Zn(II) complexes derived from other Schiff base ligands (Erxleben et al., 2001). The NiII ion is four-coordinated by symmetry-related O atoms of 5-chlorosalicylaldehydato ligands.