organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Chloro­phen­yl)-2-(diiso­propyl­amino)-1-benzofuro[3,2-d]pyrimidin-4(3H)-one

aCollege of Chemistry and Life Sciences, China Three Gorges University, Yichang 443002, People's Republic of China, bDepartment of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China, and cDepartment of Medicine, Xiangfan Vocational and Technical College, Xiangfan 441021, People's Republic of China
*Correspondence e-mail: mgliu0427@yahoo.com.cn

(Received 12 November 2007; accepted 18 November 2007; online 6 December 2007)

In the mol­ecule of the title compound, C22H22ClN3O2, the three fused rings of the benzofuro[3,2-d]pyrimidine system are almost coplanar. This ring system is oriented with respect to the substituted benzene ring at a dihedral angle of 79.05 (3)°. Intra­molecular C—H⋯N hydrogen bonding results in the formation of a six-membered ring. In the crystal structure, ππ stacking inter­actions involving the furan, pyrimidinone and benzene rings are present [centroid-to-centroid distances in the range 3.258 (1)–3.870 (1) Å].

Related literature

For general background, see: Bodke & Sangapure (2003[Bodke, Y. & Sangapure, S. S. (2003). J. Indian Chem. Soc. 80, 187-189.]); Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For a related structure, see: Liu et al. (2006[Liu, M.-G., Yuan, J.-Z., Hu, Y.-G. & Xu, S.-Z. (2006). Acta Cryst. E62, o147-o149.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22ClN3O2

  • Mr = 395.88

  • Monoclinic, C c

  • a = 11.3713 (7) Å

  • b = 23.2686 (10) Å

  • c = 7.8405 (5) Å

  • β = 105.994 (1)°

  • V = 1994.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.]) Tmin = 0.958, Tmax = 0.979

  • 6825 measured reflections

  • 3919 independent reflections

  • 3221 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.139

  • S = 1.14

  • 3919 reflections

  • 257 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1735 Friedel pairs

  • Flack parameter: −0.01 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯N2 0.96 2.44 2.946 (5) 113

Data collection: SMART (Bruker, 2001[Bruker (2001). SHELXTL (Version 5.0), SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SHELXTL (Version 5.0), SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL (Version 5.0), SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

The derivatives of benzofuropyrimidines are of great importance because of their remarkable biological properties (Bodke & Sangapure, 2003). In recent years, we have been engaged in the preparation of derivatives of heterocycles using an aza-Wittig reaction (Ding et al., 2004). The heterocyclic title compound, (I), may be used as a new precursor for obtaining bioactive molecules, and we report herein its crystal structure.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). They are also in agreement with the corresponding values in a reported similar compound (Liu et al., 2006). The three fused rings, A (N1/N2/C7–C10), B (O2/C8/C9/C17/C22) and C (C17–C22), of the benzofuro[3,2-d]pyrimidine system are almost co-planar, with a maximum deviation of 0.029 (3) Å (for C17). The co-planar ring system is oriented with respect to the substituted benzene ring D (C1–C6) at a dihedral angle of 79.05 (3)°. The intramolecular C—H···O hydrogen bond (Table 1) results in the formation of a six-membered ring.

Intermolecular ππ stacking interactions (Janiak, 2000) involving the furan, pyrimidinone and benzene rings seem to be effective in stabilizing the crystal structure (Fig. 2). The furan:furan and furan:pyrimidinone interplanar distances are 3.728 (1) Å and 3.510 (1) Å, while the distances between the adjacent ring centroids are 3.870 (1) Å and 3.744 (1) Å [symmetry code: x, 1 - y, -1/2 + z], respectively. A further interaction occurs between the two adjacent furan and benzene rings [symmetry code: x, 1 - y, 1/2 + z] with an interplanar distance of 3.258 (1) Å and a centroid-to-centroid distance of 3.870 (1) Å.

Related literature top

For general background, see: Bodke & Sangapure (2003); Ding et al. (2004); Janiak (2000). For a related structure, see: Liu et al. (2006). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, diisopropylamine (3 mmol) was added to a solution of ethyl 3-((4-chlorophenylimino)methyleneamino)-benzofuran-2-carboxylate (3 mmol) in dichloromethane (5 ml). After stirring the reaction mixture for 1 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 2 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound (yield; 82%). Single crystals suitable for X-ray analysis were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:1 v/v) at room temperature.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.98 and 0.96 Å, for aromatic, methine and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.6 for methyl H, and x = 1.5 for all other H atoms.

Structure description top

The derivatives of benzofuropyrimidines are of great importance because of their remarkable biological properties (Bodke & Sangapure, 2003). In recent years, we have been engaged in the preparation of derivatives of heterocycles using an aza-Wittig reaction (Ding et al., 2004). The heterocyclic title compound, (I), may be used as a new precursor for obtaining bioactive molecules, and we report herein its crystal structure.

In the molecule of the title compound, (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). They are also in agreement with the corresponding values in a reported similar compound (Liu et al., 2006). The three fused rings, A (N1/N2/C7–C10), B (O2/C8/C9/C17/C22) and C (C17–C22), of the benzofuro[3,2-d]pyrimidine system are almost co-planar, with a maximum deviation of 0.029 (3) Å (for C17). The co-planar ring system is oriented with respect to the substituted benzene ring D (C1–C6) at a dihedral angle of 79.05 (3)°. The intramolecular C—H···O hydrogen bond (Table 1) results in the formation of a six-membered ring.

Intermolecular ππ stacking interactions (Janiak, 2000) involving the furan, pyrimidinone and benzene rings seem to be effective in stabilizing the crystal structure (Fig. 2). The furan:furan and furan:pyrimidinone interplanar distances are 3.728 (1) Å and 3.510 (1) Å, while the distances between the adjacent ring centroids are 3.870 (1) Å and 3.744 (1) Å [symmetry code: x, 1 - y, -1/2 + z], respectively. A further interaction occurs between the two adjacent furan and benzene rings [symmetry code: x, 1 - y, 1/2 + z] with an interplanar distance of 3.258 (1) Å and a centroid-to-centroid distance of 3.870 (1) Å.

For general background, see: Bodke & Sangapure (2003); Ding et al. (2004); Janiak (2000). For a related structure, see: Liu et al. (2006). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level
[Figure 2] Fig. 2. A packing diagram of (I).
3-(4-chlorophenyl)-2-(diisopropylamino)-1-benzofuro[3,2-d]pyrimidin-4(3H)-one top
Crystal data top
C22H22ClN3O2F(000) = 832
Mr = 395.88Dx = 1.319 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 3139 reflections
a = 11.3713 (7) Åθ = 2.7–26.0°
b = 23.2686 (10) ŵ = 0.21 mm1
c = 7.8405 (5) ÅT = 295 K
β = 105.994 (1)°Block, blue
V = 1994.2 (2) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3919 independent reflections
Radiation source: fine-focus sealed tube3221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
φ and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1414
Tmin = 0.958, Tmax = 0.979k = 2629
6825 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.059P)2 + 1.0112P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
3919 reflectionsΔρmax = 0.27 e Å3
257 parametersΔρmin = 0.32 e Å3
2 restraintsAbsolute structure: Flack (1983), with 1735 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (9)
Crystal data top
C22H22ClN3O2V = 1994.2 (2) Å3
Mr = 395.88Z = 4
Monoclinic, CcMo Kα radiation
a = 11.3713 (7) ŵ = 0.21 mm1
b = 23.2686 (10) ÅT = 295 K
c = 7.8405 (5) Å0.20 × 0.10 × 0.10 mm
β = 105.994 (1)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3919 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3221 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.979Rint = 0.043
6825 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.27 e Å3
S = 1.14Δρmin = 0.32 e Å3
3919 reflectionsAbsolute structure: Flack (1983), with 1735 Friedel pairs
257 parametersAbsolute structure parameter: 0.01 (9)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.25733 (9)0.34136 (4)0.47013 (15)0.0711 (3)
O10.6847 (2)0.52195 (10)0.5144 (4)0.0575 (6)
O20.9123 (2)0.56254 (9)0.4447 (3)0.0529 (6)
N10.7409 (2)0.43085 (11)0.4491 (4)0.0413 (6)
N20.9243 (2)0.41095 (11)0.3704 (3)0.0431 (6)
N30.7909 (2)0.33618 (10)0.3863 (3)0.0409 (6)
C10.6217 (3)0.41096 (13)0.4567 (4)0.0400 (7)
C20.5982 (3)0.40193 (15)0.6176 (4)0.0505 (8)
H20.65820.40990.72240.061*
C30.4858 (3)0.38108 (16)0.6236 (5)0.0541 (8)
H30.46940.37440.73170.065*
C40.3987 (3)0.37038 (14)0.4665 (5)0.0498 (8)
C50.4187 (3)0.38198 (15)0.3056 (5)0.0524 (8)
H50.35710.37590.20110.063*
C60.5316 (3)0.40281 (15)0.3004 (5)0.0487 (8)
H60.54650.41120.19230.058*
C70.8236 (3)0.39358 (12)0.4014 (4)0.0383 (6)
C80.9451 (3)0.46920 (13)0.3863 (4)0.0435 (7)
C90.8700 (3)0.50707 (13)0.4357 (4)0.0436 (7)
C100.7588 (3)0.49109 (13)0.4729 (4)0.0440 (7)
C110.7984 (3)0.30526 (14)0.5543 (4)0.0488 (8)
H110.79110.33430.64140.059*
C120.9206 (4)0.2748 (2)0.6309 (7)0.0820 (14)
H12A0.92710.24290.55630.123*
H12B0.92520.26110.74800.123*
H12C0.98640.30120.63650.123*
C130.6927 (4)0.26389 (17)0.5353 (6)0.0696 (11)
H13A0.61690.28380.48710.104*
H13B0.69440.24850.64960.104*
H13C0.69970.23310.45720.104*
C140.8065 (3)0.30269 (14)0.2347 (4)0.0490 (8)
H140.77850.26370.24980.059*
C150.9372 (4)0.2964 (2)0.2164 (7)0.0784 (13)
H15A0.96550.33300.18720.118*
H15B0.93720.26930.12420.118*
H15C0.99050.28300.32660.118*
C160.7213 (5)0.32524 (17)0.0659 (5)0.0676 (11)
H16A0.63840.32220.07210.101*
H16B0.73090.30310.03280.101*
H16C0.74010.36480.05040.101*
C171.0477 (3)0.50223 (14)0.3637 (4)0.0451 (7)
C181.1556 (3)0.49026 (17)0.3222 (5)0.0557 (9)
H181.17520.45290.29840.067*
C191.2333 (4)0.53513 (19)0.3170 (6)0.0678 (11)
H191.30520.52810.28590.081*
C201.2061 (4)0.59093 (19)0.3576 (6)0.0714 (12)
H201.26150.62020.35640.086*
C211.0995 (4)0.60384 (17)0.3995 (5)0.0634 (10)
H211.08070.64120.42520.076*
C221.0216 (3)0.55846 (14)0.4014 (4)0.0494 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0476 (4)0.0739 (6)0.0964 (7)0.0115 (5)0.0277 (5)0.0074 (6)
O10.0599 (15)0.0418 (13)0.0756 (17)0.0038 (11)0.0269 (13)0.0060 (12)
O20.0596 (14)0.0342 (11)0.0651 (15)0.0081 (10)0.0176 (12)0.0037 (10)
N10.0410 (14)0.0345 (12)0.0480 (14)0.0007 (11)0.0119 (11)0.0010 (11)
N20.0395 (13)0.0377 (13)0.0508 (16)0.0042 (11)0.0102 (12)0.0008 (11)
N30.0441 (13)0.0328 (12)0.0461 (14)0.0028 (11)0.0131 (11)0.0016 (11)
C10.0376 (15)0.0366 (15)0.0456 (17)0.0016 (13)0.0109 (13)0.0016 (12)
C20.0508 (19)0.0566 (19)0.0427 (18)0.0042 (15)0.0105 (15)0.0022 (15)
C30.053 (2)0.065 (2)0.0477 (18)0.0045 (17)0.0206 (16)0.0007 (16)
C40.0385 (16)0.0467 (18)0.064 (2)0.0016 (14)0.0128 (15)0.0021 (16)
C50.0418 (17)0.062 (2)0.0478 (19)0.0003 (16)0.0028 (14)0.0029 (16)
C60.0452 (17)0.059 (2)0.0419 (17)0.0010 (15)0.0120 (14)0.0016 (14)
C70.0386 (15)0.0362 (14)0.0397 (15)0.0001 (12)0.0099 (12)0.0020 (12)
C80.0438 (16)0.0359 (15)0.0469 (17)0.0072 (13)0.0058 (14)0.0006 (13)
C90.0461 (16)0.0356 (15)0.0463 (17)0.0039 (13)0.0078 (14)0.0018 (13)
C100.0466 (15)0.0378 (15)0.0456 (17)0.0034 (15)0.0091 (13)0.0001 (14)
C110.0548 (18)0.0403 (17)0.0467 (17)0.0010 (14)0.0063 (15)0.0053 (13)
C120.079 (3)0.071 (3)0.080 (3)0.011 (2)0.005 (2)0.013 (2)
C130.083 (3)0.055 (2)0.075 (3)0.021 (2)0.029 (2)0.009 (2)
C140.0580 (19)0.0370 (16)0.0559 (19)0.0073 (15)0.0220 (16)0.0062 (14)
C150.076 (3)0.064 (3)0.111 (4)0.004 (2)0.053 (3)0.026 (2)
C160.097 (3)0.060 (2)0.044 (2)0.003 (2)0.016 (2)0.0090 (16)
C170.0502 (17)0.0444 (18)0.0378 (16)0.0101 (14)0.0075 (13)0.0009 (13)
C180.053 (2)0.061 (2)0.054 (2)0.0102 (17)0.0156 (16)0.0016 (16)
C190.062 (2)0.079 (3)0.068 (3)0.026 (2)0.027 (2)0.005 (2)
C200.085 (3)0.070 (3)0.061 (2)0.038 (2)0.023 (2)0.004 (2)
C210.084 (3)0.051 (2)0.054 (2)0.023 (2)0.016 (2)0.0026 (16)
C220.064 (2)0.0402 (17)0.0408 (17)0.0136 (16)0.0095 (16)0.0018 (13)
Geometric parameters (Å, º) top
C1—C21.375 (5)C12—H12B0.9600
C1—C61.377 (4)C12—H12C0.9600
C1—N11.449 (4)C13—H13A0.9600
C2—C31.380 (5)C13—H13B0.9600
C2—H20.9300C13—H13C0.9600
C3—C41.374 (5)C14—N31.472 (4)
C3—H30.9300C14—C161.504 (5)
C4—C51.369 (5)C14—C151.539 (5)
C4—Cl11.751 (3)C14—H140.9800
C5—C61.383 (5)C15—H15A0.9600
C5—H50.9300C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C7—N21.299 (4)C16—H16A0.9600
C7—N31.383 (4)C16—H16B0.9600
C7—N11.404 (4)C16—H16C0.9600
C8—C91.356 (5)C17—C181.381 (5)
C8—N21.376 (4)C17—C221.391 (5)
C8—C171.448 (5)C18—C191.376 (5)
C9—O21.373 (4)C18—H180.9300
C9—C101.423 (5)C19—C201.392 (6)
C10—O11.218 (4)C19—H190.9300
C10—N11.421 (4)C20—C211.374 (6)
C11—N31.483 (4)C20—H200.9300
C11—C131.515 (5)C21—C221.380 (5)
C11—C121.528 (5)C21—H210.9300
C11—H110.9800C22—O21.379 (4)
C12—H12A0.9600
C2—C1—C6120.7 (3)H13A—C13—H13C109.5
C2—C1—N1120.4 (3)H13B—C13—H13C109.5
C6—C1—N1118.9 (3)N3—C14—C16109.5 (3)
C1—C2—C3120.0 (3)N3—C14—C15117.4 (3)
C1—C2—H2120.0C16—C14—C15110.9 (3)
C3—C2—H2120.0N3—C14—H14106.1
C4—C3—C2118.6 (3)C16—C14—H14106.1
C4—C3—H3120.7C15—C14—H14106.1
C2—C3—H3120.7C14—C15—H15A109.5
C5—C4—C3121.9 (3)C14—C15—H15B109.5
C5—C4—Cl1118.5 (3)H15A—C15—H15B109.5
C3—C4—Cl1119.6 (3)C14—C15—H15C109.5
C4—C5—C6119.1 (3)H15A—C15—H15C109.5
C4—C5—H5120.4H15B—C15—H15C109.5
C6—C5—H5120.4C14—C16—H16A109.5
C1—C6—C5119.4 (3)C14—C16—H16B109.5
C1—C6—H6120.3H16A—C16—H16B109.5
C5—C6—H6120.3C14—C16—H16C109.5
N2—C7—N3121.0 (3)H16A—C16—H16C109.5
N2—C7—N1123.2 (3)H16B—C16—H16C109.5
N3—C7—N1115.8 (3)C18—C17—C22119.6 (3)
C9—C8—N2124.1 (3)C18—C17—C8136.0 (3)
C9—C8—C17106.4 (3)C22—C17—C8104.3 (3)
N2—C8—C17129.5 (3)C19—C18—C17118.3 (4)
C8—C9—O2112.7 (3)C19—C18—H18120.9
C8—C9—C10123.6 (3)C17—C18—H18120.9
O2—C9—C10123.6 (3)C18—C19—C20121.1 (4)
O1—C10—N1122.1 (3)C18—C19—H19119.5
O1—C10—C9128.3 (3)C20—C19—H19119.5
N1—C10—C9109.5 (3)C21—C20—C19121.7 (4)
N3—C11—C13111.7 (3)C21—C20—H20119.2
N3—C11—C12113.5 (4)C19—C20—H20119.2
C13—C11—C12110.8 (3)C20—C21—C22116.5 (4)
N3—C11—H11106.8C20—C21—H21121.8
C13—C11—H11106.8C22—C21—H21121.8
C12—C11—H11106.8O2—C22—C21125.0 (3)
C11—C12—H12A109.5O2—C22—C17112.1 (3)
C11—C12—H12B109.5C21—C22—C17122.9 (4)
H12A—C12—H12B109.5C7—N1—C10124.2 (3)
C11—C12—H12C109.5C7—N1—C1121.1 (2)
H12A—C12—H12C109.5C10—N1—C1114.3 (3)
H12B—C12—H12C109.5C7—N2—C8115.4 (3)
C11—C13—H13A109.5C7—N3—C14119.4 (3)
C11—C13—H13B109.5C7—N3—C11116.4 (2)
H13A—C13—H13B109.5C14—N3—C11118.0 (2)
C11—C13—H13C109.5C9—O2—C22104.5 (3)
C6—C1—C2—C34.1 (5)N2—C7—N1—C101.5 (5)
N1—C1—C2—C3177.7 (3)N3—C7—N1—C10179.4 (3)
C1—C2—C3—C40.7 (5)N2—C7—N1—C1170.8 (3)
C2—C3—C4—C52.7 (5)N3—C7—N1—C18.4 (4)
C2—C3—C4—Cl1177.6 (3)O1—C10—N1—C7180.0 (3)
C3—C4—C5—C62.8 (5)C9—C10—N1—C71.8 (4)
Cl1—C4—C5—C6177.5 (3)O1—C10—N1—C17.2 (4)
C2—C1—C6—C54.0 (5)C9—C10—N1—C1171.0 (3)
N1—C1—C6—C5177.8 (3)C2—C1—N1—C7105.9 (4)
C4—C5—C6—C10.6 (5)C6—C1—N1—C775.9 (4)
N2—C8—C9—O2178.8 (3)C2—C1—N1—C1081.1 (4)
C17—C8—C9—O21.2 (4)C6—C1—N1—C1097.1 (3)
N2—C8—C9—C101.6 (5)N3—C7—N2—C8178.6 (3)
C17—C8—C9—C10179.3 (3)N1—C7—N2—C80.4 (4)
C8—C9—C10—O1178.4 (3)C9—C8—N2—C72.0 (5)
O2—C9—C10—O11.1 (5)C17—C8—N2—C7179.0 (3)
C8—C9—C10—N10.3 (4)N2—C7—N3—C1442.8 (4)
O2—C9—C10—N1179.2 (3)N1—C7—N3—C14136.3 (3)
C9—C8—C17—C18177.2 (4)N2—C7—N3—C11109.0 (3)
N2—C8—C17—C180.3 (6)N1—C7—N3—C1171.9 (4)
C9—C8—C17—C220.7 (3)C16—C14—N3—C766.1 (4)
N2—C8—C17—C22178.1 (3)C15—C14—N3—C761.4 (4)
C22—C17—C18—C191.0 (5)C16—C14—N3—C11142.5 (3)
C8—C17—C18—C19178.6 (4)C15—C14—N3—C1189.9 (4)
C17—C18—C19—C201.9 (6)C13—C11—N3—C7140.8 (3)
C18—C19—C20—C211.9 (7)C12—C11—N3—C793.0 (4)
C19—C20—C21—C220.8 (6)C13—C11—N3—C1467.0 (4)
C20—C21—C22—O2178.2 (3)C12—C11—N3—C1459.2 (4)
C20—C21—C22—C170.1 (5)C8—C9—O2—C221.2 (3)
C18—C17—C22—O2178.3 (3)C10—C9—O2—C22179.3 (3)
C8—C17—C22—O20.0 (3)C21—C22—O2—C9177.5 (3)
C18—C17—C22—C210.0 (5)C17—C22—O2—C90.7 (3)
C8—C17—C22—C21178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N20.962.442.946 (5)113

Experimental details

Crystal data
Chemical formulaC22H22ClN3O2
Mr395.88
Crystal system, space groupMonoclinic, Cc
Temperature (K)295
a, b, c (Å)11.3713 (7), 23.2686 (10), 7.8405 (5)
β (°) 105.994 (1)
V3)1994.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.958, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
6825, 3919, 3221
Rint0.043
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.139, 1.14
No. of reflections3919
No. of parameters257
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.32
Absolute structureFlack (1983), with 1735 Friedel pairs
Absolute structure parameter0.01 (9)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···N20.962.442.946 (5)112.8
 

Acknowledgements

The authors gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (grant No. 20102001).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBodke, Y. & Sangapure, S. S. (2003). J. Indian Chem. Soc. 80, 187–189.  CAS Google Scholar
First citationBruker (2001). SHELXTL (Version 5.0), SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationLiu, M.-G., Yuan, J.-Z., Hu, Y.-G. & Xu, S.-Z. (2006). Acta Cryst. E62, o147–o149.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds