organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Di-p-tolyl­ethyl­enedi­amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wjt@njut.edu.cn

(Received 20 November 2007; accepted 21 November 2007; online 6 December 2007)

The asymmetric unit of the title compound, C16H20N2, contains two independent mol­ecules. The rings in each mol­ecule are oriented at dihedral angles of 78.94 (3) and 77.76 (3)°.

Related literature

For general background, see: Yang et al. (2004[Yang, D., Chen, Y.-C. & Zhu, N.-Y. (2004). Org. Lett. 6, 1577-1580.]); Garcia-Marco et al. (2006[Garcia-Marco, S., Torreblanca, A. & Lucena, J. J. (2006). J. Agric. Food. Chem. 54, 1380-1386.]). For related literature, see: Türkmen & Çetinkaya (2006[Türkmen, H. & Çetinkaya, B. (2006). J. Organomet. Chem. 691, 3749-3759.]); Grasa et al. (2001[Grasa, G. A., Viciu, M. S., Huang, J. & Nolan, S. P. (2001). J. Org. Chem. 66, 7729-7737.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N2

  • Mr = 240.34

  • Monoclinic, P 21 /n

  • a = 8.9070 (18) Å

  • b = 25.252 (5) Å

  • c = 12.287 (3) Å

  • β = 90.30 (3)°

  • V = 2763.5 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.963, Tmax = 0.987

  • 5764 measured reflections

  • 5408 independent reflections

  • 2777 reflections with I > 2σ(I)

  • Rint = 0.073

  • 3 standard reflections every 120 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.090

  • wR(F2) = 0.205

  • S = 1.00

  • 5408 reflections

  • 325 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N,N-Disubstituted ethylenediamine compounds are important subunits present in a number of naturally occurring compounds and have found numerous applications as active catalysts (Yang et al., 2004) and intermediates (Garcia-Marco et al., 2006). We report herein the crystal structure of the title compound, (I).

The asymmetric unit of (I) (Fig. 1) contains two independent molecules, in which the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A (C2—C7), B (C10—C15), C (C18—C23) and D(C26—C31) are, of course, planar and the dihedral angles between them are A/B = 78.94 (3)° and C/D = 77.76 (3)°.

As can be seen from the packing diagram (Fig. 2), the molecules of (I) are elongated along the b axis and stacked along the a axis.

Related literature top

For general background, see: Yang et al. (2004); Garcia-Marco et al. (2006). For related literature, see: Türkmen & Çetinkaya (2006); Grasa et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

N,N'-di-p-tolyl-ethylenediimine, (II), was firstly synthesized, according to a literature method (Türkmen & Çetinkaya, 2006). For the preparation of the title compound, (I), compound (II) (2.4 g, 10 mmol) was dissolved in methanol/furanidine (40/60 ml) and mixed with NaBH4 (3.8 g, 100 mmol) (Grasa et al., 2001). The mixture was kept at 298 K and stirred for 30 min, and then deionized water (200 ml) was used to quench the reaction. The mixture was extracted 3 times with ether (50 ml). Ether extracts were dried over MgSO4 and evaporated under reduced pressure to afford (I). The product was purified by repeated crystallization. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of ethanol (yield; 2.0 g, m.p. 366 K).

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

N,N-Disubstituted ethylenediamine compounds are important subunits present in a number of naturally occurring compounds and have found numerous applications as active catalysts (Yang et al., 2004) and intermediates (Garcia-Marco et al., 2006). We report herein the crystal structure of the title compound, (I).

The asymmetric unit of (I) (Fig. 1) contains two independent molecules, in which the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A (C2—C7), B (C10—C15), C (C18—C23) and D(C26—C31) are, of course, planar and the dihedral angles between them are A/B = 78.94 (3)° and C/D = 77.76 (3)°.

As can be seen from the packing diagram (Fig. 2), the molecules of (I) are elongated along the b axis and stacked along the a axis.

For general background, see: Yang et al. (2004); Garcia-Marco et al. (2006). For related literature, see: Türkmen & Çetinkaya (2006); Grasa et al. (2001). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
N,N'-Di-p-tolylethylenediamine top
Crystal data top
C16H20N2F(000) = 1040
Mr = 240.34Dx = 1.155 Mg m3
Monoclinic, P21/nMelting point: 366 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.9070 (18) ÅCell parameters from 25 reflections
b = 25.252 (5) Åθ = 10–13°
c = 12.287 (3) ŵ = 0.07 mm1
β = 90.30 (3)°T = 298 K
V = 2763.5 (10) Å3Block, yellow
Z = 80.40 × 0.30 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2777 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
Graphite monochromatorθmax = 26.1°, θmin = 1.6°
ω/2θ scansh = 1010
Absorption correction: ψ scan
(North et al., 1968)
k = 031
Tmin = 0.963, Tmax = 0.987l = 015
5764 measured reflections3 standard reflections every 120 reflections
5408 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.090Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.205H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.030P)2 + 5.P]
where P = (Fo2 + 2Fc2)/3
5408 reflections(Δ/σ)max < 0.001
325 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H20N2V = 2763.5 (10) Å3
Mr = 240.34Z = 8
Monoclinic, P21/nMo Kα radiation
a = 8.9070 (18) ŵ = 0.07 mm1
b = 25.252 (5) ÅT = 298 K
c = 12.287 (3) Å0.40 × 0.30 × 0.20 mm
β = 90.30 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2777 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.073
Tmin = 0.963, Tmax = 0.9873 standard reflections every 120 reflections
5764 measured reflections intensity decay: none
5408 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0900 restraints
wR(F2) = 0.205H-atom parameters constrained
S = 1.01Δρmax = 0.24 e Å3
5408 reflectionsΔρmin = 0.23 e Å3
325 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6890 (4)0.29404 (14)0.1934 (3)0.0578 (10)
H1A0.74050.27590.23960.069*
N20.7171 (4)0.18725 (14)0.1110 (3)0.0583 (9)
H2A0.73860.17880.17700.070*
N30.1908 (4)0.29364 (15)0.0572 (3)0.0604 (10)
H3B0.24020.27550.01020.072*
N40.2184 (4)0.18680 (14)0.1392 (3)0.0589 (10)
H4B0.23980.17860.07320.071*
C10.2841 (5)0.4526 (2)0.3496 (4)0.0787 (15)
H1B0.26370.47810.29360.118*
H1C0.32710.47010.41170.118*
H1D0.19220.43550.37030.118*
C20.3925 (4)0.41180 (17)0.3077 (3)0.0505 (10)
C30.4474 (5)0.41291 (17)0.2034 (3)0.0546 (11)
H3A0.41760.44030.15760.065*
C40.5447 (5)0.37524 (17)0.1638 (3)0.0519 (10)
H4A0.58000.37780.09290.062*
C50.5898 (4)0.33369 (16)0.2295 (3)0.0438 (9)
C60.5381 (5)0.33210 (17)0.3359 (3)0.0524 (10)
H6A0.56950.30520.38240.063*
C70.4398 (5)0.37049 (18)0.3731 (3)0.0547 (11)
H7A0.40470.36840.44420.066*
C80.7036 (5)0.28406 (17)0.0793 (3)0.0539 (11)
H8A0.75530.31340.04490.065*
H8B0.60490.28080.04620.065*
C90.7923 (5)0.23291 (18)0.0624 (4)0.0621 (12)
H9A0.80480.22680.01490.075*
H9B0.89130.23670.09470.075*
C100.6120 (4)0.15681 (16)0.0544 (3)0.0472 (10)
C110.5711 (4)0.10780 (17)0.0971 (3)0.0505 (10)
H11A0.61380.09640.16230.061*
C120.4682 (5)0.07583 (18)0.0440 (3)0.0552 (11)
H12A0.44200.04360.07510.066*
C130.4026 (4)0.09042 (17)0.0545 (3)0.0491 (10)
C140.4421 (5)0.13987 (17)0.0947 (3)0.0541 (11)
H14A0.39870.15160.15930.065*
C150.5450 (5)0.17251 (17)0.0407 (3)0.0534 (11)
H15A0.56840.20540.07000.064*
C160.3006 (5)0.05418 (19)0.1158 (4)0.0711 (13)
H16A0.28690.02210.07510.107*
H16B0.34400.04600.18520.107*
H16C0.20520.07110.12670.107*
C170.2095 (6)0.4545 (2)0.0923 (4)0.0838 (16)
H17A0.23770.44740.16640.126*
H17B0.16200.48860.08810.126*
H17C0.29740.45430.04750.126*
C180.1028 (5)0.41301 (19)0.0536 (4)0.0593 (12)
C190.0466 (5)0.41364 (19)0.0526 (4)0.0604 (12)
H19A0.07370.44100.09910.073*
C200.0485 (5)0.37439 (18)0.0901 (3)0.0581 (11)
H20A0.08290.37560.16170.070*
C210.0935 (4)0.33335 (18)0.0231 (3)0.0496 (10)
C220.0385 (5)0.33360 (18)0.0840 (3)0.0530 (11)
H22A0.06760.30700.13180.064*
C230.0559 (5)0.37197 (19)0.1190 (3)0.0582 (11)
H23A0.09090.37060.19040.070*
C240.2085 (5)0.28304 (18)0.1726 (3)0.0576 (11)
H24A0.11060.28070.20650.069*
H24B0.26360.31170.20680.069*
C250.2919 (5)0.23195 (18)0.1878 (4)0.0612 (12)
H25A0.39110.23550.15650.073*
H25B0.30440.22550.26520.073*
C260.1144 (4)0.15593 (17)0.1944 (3)0.0494 (10)
C270.0724 (5)0.10681 (17)0.1522 (3)0.0554 (11)
H27A0.11300.09570.08640.067*
C280.0276 (4)0.07439 (19)0.2054 (3)0.0563 (11)
H28A0.05220.04170.17540.068*
C290.0921 (4)0.08947 (18)0.3025 (4)0.0528 (11)
C300.0557 (4)0.13840 (18)0.3422 (3)0.0543 (11)
H30A0.10020.15000.40620.065*
C310.0463 (5)0.17143 (17)0.2895 (3)0.0532 (11)
H31A0.06860.20440.31900.064*
C320.1948 (5)0.0527 (2)0.3631 (4)0.0749 (14)
H32A0.20450.02010.32360.112*
H32B0.29180.06890.37040.112*
H32C0.15360.04560.43400.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.061 (2)0.063 (2)0.049 (2)0.0077 (19)0.0055 (17)0.0029 (18)
N20.060 (2)0.058 (2)0.057 (2)0.0088 (19)0.0006 (17)0.0001 (18)
N30.062 (2)0.067 (3)0.053 (2)0.006 (2)0.0096 (18)0.0017 (18)
N40.056 (2)0.063 (2)0.058 (2)0.0058 (19)0.0077 (17)0.0012 (19)
C10.068 (3)0.073 (4)0.096 (4)0.001 (3)0.024 (3)0.004 (3)
C20.044 (2)0.050 (3)0.057 (3)0.008 (2)0.0098 (19)0.000 (2)
C30.055 (3)0.050 (3)0.058 (3)0.007 (2)0.002 (2)0.011 (2)
C40.055 (3)0.055 (3)0.045 (2)0.002 (2)0.0029 (19)0.006 (2)
C50.037 (2)0.047 (2)0.047 (2)0.0055 (18)0.0002 (16)0.0055 (19)
C60.056 (3)0.055 (3)0.047 (2)0.005 (2)0.0011 (19)0.006 (2)
C70.057 (3)0.061 (3)0.046 (2)0.013 (2)0.014 (2)0.001 (2)
C80.054 (3)0.054 (3)0.054 (3)0.003 (2)0.013 (2)0.001 (2)
C90.047 (3)0.070 (3)0.069 (3)0.004 (2)0.012 (2)0.008 (2)
C100.043 (2)0.050 (3)0.048 (2)0.0009 (19)0.0076 (18)0.0017 (19)
C110.051 (3)0.053 (3)0.047 (2)0.005 (2)0.0049 (19)0.007 (2)
C120.051 (3)0.053 (3)0.061 (3)0.002 (2)0.004 (2)0.007 (2)
C130.039 (2)0.048 (3)0.061 (3)0.0031 (19)0.0045 (19)0.005 (2)
C140.057 (3)0.057 (3)0.048 (2)0.009 (2)0.003 (2)0.000 (2)
C150.060 (3)0.046 (3)0.055 (3)0.003 (2)0.008 (2)0.007 (2)
C160.065 (3)0.066 (3)0.083 (3)0.002 (3)0.008 (3)0.006 (3)
C170.082 (4)0.068 (3)0.101 (4)0.012 (3)0.029 (3)0.003 (3)
C180.062 (3)0.058 (3)0.058 (3)0.007 (2)0.003 (2)0.001 (2)
C190.059 (3)0.058 (3)0.064 (3)0.003 (2)0.002 (2)0.013 (2)
C200.067 (3)0.064 (3)0.043 (2)0.002 (2)0.005 (2)0.006 (2)
C210.041 (2)0.057 (3)0.051 (2)0.002 (2)0.0087 (18)0.002 (2)
C220.053 (3)0.059 (3)0.047 (2)0.008 (2)0.0018 (19)0.007 (2)
C230.058 (3)0.068 (3)0.048 (2)0.011 (2)0.003 (2)0.001 (2)
C240.052 (3)0.064 (3)0.057 (3)0.010 (2)0.006 (2)0.003 (2)
C250.037 (2)0.071 (3)0.075 (3)0.001 (2)0.001 (2)0.005 (3)
C260.037 (2)0.060 (3)0.052 (2)0.004 (2)0.0011 (18)0.003 (2)
C270.053 (3)0.059 (3)0.054 (3)0.006 (2)0.007 (2)0.010 (2)
C280.044 (2)0.064 (3)0.061 (3)0.002 (2)0.001 (2)0.006 (2)
C290.037 (2)0.057 (3)0.064 (3)0.006 (2)0.0062 (19)0.005 (2)
C300.044 (2)0.069 (3)0.050 (2)0.008 (2)0.0035 (19)0.005 (2)
C310.054 (3)0.051 (3)0.054 (2)0.003 (2)0.001 (2)0.008 (2)
C320.055 (3)0.078 (4)0.092 (4)0.004 (3)0.011 (3)0.012 (3)
Geometric parameters (Å, º) top
N1—C51.409 (5)N3—C211.389 (5)
N1—C81.430 (5)N3—C241.451 (5)
N1—H1A0.8600N3—H3B0.8600
N2—C101.394 (5)N4—C261.389 (5)
N2—C91.462 (5)N4—C251.443 (5)
N2—H2A0.8600N4—H4B0.8600
C1—C21.504 (6)C17—C181.491 (6)
C1—H1B0.9600C17—H17A0.9600
C1—H1C0.9600C17—H17B0.9600
C1—H1D0.9600C17—H17C0.9600
C2—C31.374 (5)C18—C231.377 (6)
C2—C71.381 (6)C18—C191.396 (6)
C3—C41.378 (6)C19—C201.381 (6)
C3—H3A0.9300C19—H19A0.9300
C4—C51.383 (5)C20—C211.384 (6)
C4—H4A0.9300C20—H20A0.9300
C5—C61.389 (5)C21—C221.402 (5)
C6—C71.385 (6)C22—C231.352 (6)
C6—H6A0.9300C22—H22A0.9300
C7—H7A0.9300C23—H23A0.9300
C8—C91.529 (6)C24—C251.500 (6)
C8—H8A0.9700C24—H24A0.9700
C8—H8B0.9700C24—H24B0.9700
C9—H9A0.9700C25—H25A0.9700
C9—H9B0.9700C25—H25B0.9700
C10—C151.368 (5)C26—C311.376 (5)
C10—C111.393 (5)C26—C271.395 (6)
C11—C121.383 (6)C27—C281.378 (6)
C11—H11A0.9300C27—H27A0.9300
C12—C131.391 (6)C28—C291.380 (6)
C12—H12A0.9300C28—H28A0.9300
C13—C141.389 (6)C29—C301.367 (6)
C13—C161.491 (6)C29—C321.504 (6)
C14—C151.398 (6)C30—C311.396 (6)
C14—H14A0.9300C30—H30A0.9300
C15—H15A0.9300C31—H31A0.9300
C16—H16A0.9600C32—H32A0.9600
C16—H16B0.9600C32—H32B0.9600
C16—H16C0.9600C32—H32C0.9600
C5—N1—C8119.7 (3)C21—N3—C24119.5 (4)
C5—N1—H1A120.2C21—N3—H3B120.3
C8—N1—H1A120.2C24—N3—H3B120.3
C10—N2—C9122.6 (4)C26—N4—C25122.9 (4)
C10—N2—H2A118.7C26—N4—H4B118.5
C9—N2—H2A118.7C25—N4—H4B118.5
C2—C1—H1B109.5C18—C17—H17A109.5
C2—C1—H1C109.5C18—C17—H17B109.5
H1B—C1—H1C109.5H17A—C17—H17B109.5
C2—C1—H1D109.5C18—C17—H17C109.5
H1B—C1—H1D109.5H17A—C17—H17C109.5
H1C—C1—H1D109.5H17B—C17—H17C109.5
C3—C2—C7116.7 (4)C23—C18—C19116.4 (4)
C3—C2—C1122.5 (4)C23—C18—C17122.6 (4)
C7—C2—C1120.8 (4)C19—C18—C17121.0 (4)
C2—C3—C4122.9 (4)C20—C19—C18121.4 (4)
C2—C3—H3A118.5C20—C19—H19A119.3
C4—C3—H3A118.5C18—C19—H19A119.3
C3—C4—C5119.9 (4)C19—C20—C21121.2 (4)
C3—C4—H4A120.1C19—C20—H20A119.4
C5—C4—H4A120.1C21—C20—H20A119.4
C4—C5—C6118.4 (4)C20—C21—N3122.9 (4)
C4—C5—N1122.4 (4)C20—C21—C22117.0 (4)
C6—C5—N1119.2 (4)N3—C21—C22120.0 (4)
C7—C6—C5120.2 (4)C23—C22—C21121.0 (4)
C7—C6—H6A119.9C23—C22—H22A119.5
C5—C6—H6A119.9C21—C22—H22A119.5
C2—C7—C6121.8 (4)C22—C23—C18123.0 (4)
C2—C7—H7A119.1C22—C23—H23A118.5
C6—C7—H7A119.1C18—C23—H23A118.5
N1—C8—C9109.4 (4)N3—C24—C25109.4 (4)
N1—C8—H8A109.8N3—C24—H24A109.8
C9—C8—H8A109.8C25—C24—H24A109.8
N1—C8—H8B109.8N3—C24—H24B109.8
C9—C8—H8B109.8C25—C24—H24B109.8
H8A—C8—H8B108.2H24A—C24—H24B108.2
N2—C9—C8111.9 (3)N4—C25—C24113.9 (3)
N2—C9—H9A109.2N4—C25—H25A108.8
C8—C9—H9A109.2C24—C25—H25A108.8
N2—C9—H9B109.2N4—C25—H25B108.8
C8—C9—H9B109.2C24—C25—H25B108.8
H9A—C9—H9B107.9H25A—C25—H25B107.7
C15—C10—C11117.8 (4)C31—C26—N4123.5 (4)
C15—C10—N2123.7 (4)C31—C26—C27116.8 (4)
C11—C10—N2118.5 (4)N4—C26—C27119.7 (4)
C12—C11—C10121.0 (4)C28—C27—C26121.6 (4)
C12—C11—H11A119.5C28—C27—H27A119.2
C10—C11—H11A119.5C26—C27—H27A119.2
C11—C12—C13122.0 (4)C27—C28—C29121.3 (4)
C11—C12—H12A119.0C27—C28—H28A119.3
C13—C12—H12A119.0C29—C28—H28A119.3
C14—C13—C12116.2 (4)C30—C29—C28117.3 (4)
C14—C13—C16121.8 (4)C30—C29—C32121.7 (4)
C12—C13—C16122.0 (4)C28—C29—C32121.0 (4)
C13—C14—C15121.9 (4)C29—C30—C31121.9 (4)
C13—C14—H14A119.1C29—C30—H30A119.0
C15—C14—H14A119.1C31—C30—H30A119.0
C10—C15—C14121.1 (4)C26—C31—C30121.0 (4)
C10—C15—H15A119.5C26—C31—H31A119.5
C14—C15—H15A119.5C30—C31—H31A119.5
C13—C16—H16A109.5C29—C32—H32A109.5
C13—C16—H16B109.5C29—C32—H32B109.5
H16A—C16—H16B109.5H32A—C32—H32B109.5
C13—C16—H16C109.5C29—C32—H32C109.5
H16A—C16—H16C109.5H32A—C32—H32C109.5
H16B—C16—H16C109.5H32B—C32—H32C109.5
C7—C2—C3—C40.1 (6)C23—C18—C19—C201.3 (7)
C1—C2—C3—C4178.9 (4)C17—C18—C19—C20177.9 (5)
C2—C3—C4—C50.7 (6)C18—C19—C20—C211.0 (7)
C3—C4—C5—C61.8 (6)C19—C20—C21—N3178.9 (4)
C3—C4—C5—N1180.0 (4)C19—C20—C21—C220.2 (6)
C8—N1—C5—C422.9 (6)C24—N3—C21—C2021.4 (6)
C8—N1—C5—C6158.9 (4)C24—N3—C21—C22159.9 (4)
C4—C5—C6—C72.1 (6)C20—C21—C22—C231.0 (6)
N1—C5—C6—C7179.6 (4)N3—C21—C22—C23179.8 (4)
C3—C2—C7—C60.2 (6)C21—C22—C23—C180.7 (7)
C1—C2—C7—C6179.2 (4)C19—C18—C23—C220.4 (7)
C5—C6—C7—C21.3 (6)C17—C18—C23—C22178.7 (4)
C5—N1—C8—C9168.9 (3)C21—N3—C24—C25168.1 (4)
C10—N2—C9—C889.0 (5)C26—N4—C25—C2489.5 (5)
N1—C8—C9—N260.7 (5)N3—C24—C25—N459.3 (5)
C9—N2—C10—C1514.7 (6)C25—N4—C26—C3115.1 (6)
C9—N2—C10—C11165.9 (4)C25—N4—C26—C27166.1 (4)
C15—C10—C11—C121.0 (6)C31—C26—C27—C282.6 (6)
N2—C10—C11—C12179.5 (4)N4—C26—C27—C28178.5 (4)
C10—C11—C12—C131.0 (6)C26—C27—C28—C290.7 (6)
C11—C12—C13—C142.3 (6)C27—C28—C29—C301.7 (6)
C11—C12—C13—C16175.2 (4)C27—C28—C29—C32176.7 (4)
C12—C13—C14—C151.7 (6)C28—C29—C30—C312.2 (6)
C16—C13—C14—C15175.9 (4)C32—C29—C30—C31176.2 (4)
C11—C10—C15—C141.6 (6)N4—C26—C31—C30179.0 (4)
N2—C10—C15—C14179.0 (4)C27—C26—C31—C302.2 (6)
C13—C14—C15—C100.2 (6)C29—C30—C31—C260.2 (6)

Experimental details

Crystal data
Chemical formulaC16H20N2
Mr240.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.9070 (18), 25.252 (5), 12.287 (3)
β (°) 90.30 (3)
V3)2763.5 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.963, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
5764, 5408, 2777
Rint0.073
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.205, 1.01
No. of reflections5408
No. of parameters325
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

 

Acknowledgements

The authors thank the Analysis Centre, Nanjing University, for carrying out the X-ray crystallographic analysis.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGarcia-Marco, S., Torreblanca, A. & Lucena, J. J. (2006). J. Agric. Food. Chem. 54, 1380–1386.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGrasa, G. A., Viciu, M. S., Huang, J. & Nolan, S. P. (2001). J. Org. Chem. 66, 7729–7737.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTürkmen, H. & Çetinkaya, B. (2006). J. Organomet. Chem. 691, 3749–3759.  Google Scholar
First citationYang, D., Chen, Y.-C. & Zhu, N.-Y. (2004). Org. Lett. 6, 1577–1580.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds