organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 3-{3-[(4-bromo­phen­­oxy)­methyl]phen­yl}acrylate

aKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, Central China Normal University, Wuhan 430079, People's Republic of China.
*Correspondence e-mail: he1208@mail.ccnu.edu.cn

(Received 21 November 2007; accepted 21 November 2007; online 6 December 2007)

In the mol­ecule of the title compound, C17H15BrO3, the rings make a dihedral angle of 75.54 (17)°. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, and the π-stacked dimers inter­act with neighbouring dimers via C—H⋯π stacking inter­actions.

Related literature

For general background, see: de Fraine et al. (1991[Fraine, P. J. de & Martin, A. (1991). US Patent 5 055 471.]); Zhang & Ji (1992[Zhang, L. P. & Ji, Z. Z. (1992). Acta Pharm. Sinica, 27, 817-823.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For related literature, see: Ren et al. (2007[Ren, X.-L., Peng, H. & He, H.-W. (2007). Acta Cryst. E63, o2080-o2081.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15BrO3

  • Mr = 347.20

  • Orthorhombic, P b c a

  • a = 15.5226 (9) Å

  • b = 5.9390 (3) Å

  • c = 34.775 (2) Å

  • V = 3205.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.57 mm−1

  • T = 292 (2) K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001a[Sheldrick, G. M. (2001a). SADABS. University of Göttingen, Germany.]) Tmin = 0.627, Tmax = 0.783

  • 30716 measured reflections

  • 3147 independent reflections

  • 1604 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.162

  • S = 1.02

  • 3147 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the ring C1–C6.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.45 3.370 (6) 172
C12—H12⋯Cg2ii 0.93 2.99 3.677 (3) 132
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2001b[Sheldrick, G. M. (2001b). SHELXTL (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

Phenyl acrylate and its derivatives are important compounds because of their agrochemical and medical applications (de Fraine et al., 1991; Zhang & Ji, 1992). We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A (C1—C6) and B (C8—C13) are, of course, planar, and they are oriented at a dihedral angle of A/B = 75.54 (17)°.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2) and the π-stacked dimers interact with neighbouring dimers via C–H/π stacking interactions (Table 1) (Janiak, 2000), in which both of them seem to be effective in the stabilization of the structure.

Related literature top

For general background, see: de Fraine et al. (1991); Zhang & Ji (1992); Janiak (2000). For related literature, see: Ren et al. (2007). For bond-length data, see: Allen et al. (1987). Cg2 is the centroid of atoms C1–C6.

Experimental top

(E)-methyl 3-(3-(bromomethyl)phenyl)acrylate, (II), was firstly synthesized, (yield; 52.8%), according to a literature method (Ren et al., 2007). For the preparation of the title compound, (I), 4-bromophenol (2.0 mmol) and potassium carbonate (1.2 mmol) was added to a solution of compound (II) (2.0 mmol) in acetone (30 ml). The mixture was stirred at 329 K for 5 h, the solvent was removed under reduced pressure, and the residue was purified by chromatography (silica gel with 5% ethyl acetate in petroleum ether). Colorless crystals of (I) suitable for X-ray analysis were grown from methanol.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

Phenyl acrylate and its derivatives are important compounds because of their agrochemical and medical applications (de Fraine et al., 1991; Zhang & Ji, 1992). We report herein the crystal structure of the title compound, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A (C1—C6) and B (C8—C13) are, of course, planar, and they are oriented at a dihedral angle of A/B = 75.54 (17)°.

In the crystal structure, intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2) and the π-stacked dimers interact with neighbouring dimers via C–H/π stacking interactions (Table 1) (Janiak, 2000), in which both of them seem to be effective in the stabilization of the structure.

For general background, see: de Fraine et al. (1991); Zhang & Ji (1992); Janiak (2000). For related literature, see: Ren et al. (2007). For bond-length data, see: Allen et al. (1987). Cg2 is the centroid of atoms C1–C6.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The formation of the title compound.
(E)-Methyl 3-{3-[(4-bromophenoxy)methyl]phenyl}acrylate top
Crystal data top
C17H15BrO3F(000) = 1408
Mr = 347.20Dx = 1.439 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3230 reflections
a = 15.5226 (9) Åθ = 2.3–18.7°
b = 5.9390 (3) ŵ = 2.57 mm1
c = 34.775 (2) ÅT = 292 K
V = 3205.9 (3) Å3Block, colorless
Z = 80.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3147 independent reflections
Radiation source: fine-focus sealed tube1604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
φ and ω scansθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001a)
h = 1919
Tmin = 0.627, Tmax = 0.783k = 77
30716 measured reflectionsl = 3942
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.4215P]
where P = (Fo2 + 2Fc2)/3
3147 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C17H15BrO3V = 3205.9 (3) Å3
Mr = 347.20Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.5226 (9) ŵ = 2.57 mm1
b = 5.9390 (3) ÅT = 292 K
c = 34.775 (2) Å0.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3147 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001a)
1604 reflections with I > 2σ(I)
Tmin = 0.627, Tmax = 0.783Rint = 0.061
30716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
3147 reflectionsΔρmin = 0.37 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.40930 (5)0.23555 (10)0.518514 (16)0.1544 (4)
O10.36979 (14)0.7793 (4)0.66326 (7)0.0701 (7)
O20.3798 (2)0.5459 (6)0.87722 (9)0.1199 (11)
O30.3379 (2)0.8260 (5)0.91548 (8)0.1118 (10)
C10.3993 (3)0.4150 (7)0.56360 (11)0.0898 (12)
C20.3295 (3)0.3823 (7)0.58702 (11)0.0857 (11)
H20.28760.27650.58070.103*
C30.3223 (2)0.5087 (6)0.62015 (10)0.0757 (10)
H30.27490.48820.63620.091*
C40.3841 (2)0.6647 (6)0.62979 (10)0.0619 (8)
C50.4538 (3)0.6952 (7)0.60590 (11)0.0824 (11)
H50.49590.80080.61200.099*
C60.4606 (3)0.5678 (8)0.57284 (12)0.1048 (14)
H60.50790.58720.55670.126*
C70.4336 (2)0.9377 (6)0.67551 (10)0.0679 (9)
H7A0.44061.05510.65640.082*
H7B0.48860.86290.67900.082*
C80.40363 (19)1.0367 (5)0.71267 (10)0.0596 (8)
C90.41060 (19)0.9171 (5)0.74654 (10)0.0588 (8)
H90.43670.77610.74620.071*
C100.37953 (19)1.0021 (5)0.78124 (10)0.0573 (8)
C110.3427 (2)1.2169 (5)0.78140 (11)0.0649 (9)
H110.32271.27870.80430.078*
C120.3361 (2)1.3359 (6)0.74792 (11)0.0711 (9)
H120.31101.47810.74810.085*
C130.3661 (2)1.2477 (6)0.71394 (12)0.0702 (9)
H130.36121.33130.69140.084*
C140.3823 (2)0.8606 (6)0.81570 (10)0.0678 (9)
H140.40470.71680.81220.081*
C150.3574 (2)0.9096 (6)0.85094 (10)0.0782 (10)
H150.33781.05390.85660.094*
C160.3602 (2)0.7391 (8)0.88138 (12)0.0839 (11)
C170.3380 (4)0.6729 (10)0.94758 (13)0.1363 (19)
H17A0.29470.55980.94370.204*
H17B0.32590.75450.97080.204*
H17C0.39350.60240.94960.204*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.2067 (8)0.1611 (7)0.0952 (5)0.0426 (5)0.0403 (4)0.0565 (4)
O10.0677 (14)0.0822 (16)0.0602 (14)0.0103 (13)0.0043 (11)0.0070 (12)
O20.153 (3)0.111 (2)0.095 (2)0.054 (2)0.0227 (19)0.028 (2)
O30.146 (3)0.125 (2)0.0641 (18)0.019 (2)0.0085 (17)0.0156 (17)
C10.122 (3)0.083 (3)0.065 (2)0.012 (3)0.011 (2)0.012 (2)
C20.101 (3)0.086 (3)0.070 (2)0.020 (2)0.002 (2)0.003 (2)
C30.073 (2)0.093 (3)0.061 (2)0.012 (2)0.0019 (17)0.004 (2)
C40.068 (2)0.066 (2)0.051 (2)0.0013 (18)0.0010 (16)0.0095 (17)
C50.089 (3)0.091 (3)0.067 (2)0.016 (2)0.012 (2)0.002 (2)
C60.120 (3)0.117 (4)0.077 (3)0.024 (3)0.032 (2)0.014 (3)
C70.068 (2)0.071 (2)0.065 (2)0.0073 (18)0.0012 (16)0.0018 (18)
C80.0560 (19)0.058 (2)0.064 (2)0.0026 (16)0.0043 (15)0.0005 (17)
C90.0608 (19)0.0459 (18)0.070 (2)0.0039 (15)0.0045 (16)0.0035 (17)
C100.0540 (18)0.054 (2)0.064 (2)0.0023 (15)0.0053 (15)0.0004 (17)
C110.064 (2)0.056 (2)0.074 (2)0.0021 (16)0.0009 (17)0.0127 (18)
C120.075 (2)0.0505 (19)0.088 (3)0.0072 (17)0.002 (2)0.007 (2)
C130.074 (2)0.062 (2)0.075 (3)0.0012 (19)0.0049 (19)0.0131 (19)
C140.070 (2)0.070 (2)0.064 (2)0.0064 (18)0.0031 (17)0.0047 (19)
C150.090 (3)0.076 (2)0.068 (2)0.017 (2)0.001 (2)0.003 (2)
C160.080 (3)0.104 (3)0.067 (3)0.021 (2)0.003 (2)0.009 (2)
C170.165 (5)0.167 (5)0.077 (3)0.014 (4)0.009 (3)0.034 (3)
Geometric parameters (Å, º) top
Br1—C11.902 (4)C9—H90.9300
C1—C61.355 (6)C10—C111.398 (4)
C1—C21.369 (5)C10—C141.464 (5)
C2—C31.380 (5)C11—C121.366 (5)
C2—H20.9300C11—H110.9300
C3—C41.375 (5)C12—C131.374 (5)
C3—H30.9300C12—H120.9300
C4—O11.367 (4)C13—H130.9300
C4—C51.376 (5)C14—C151.317 (4)
C5—C61.380 (5)C14—H140.9300
C5—H50.9300C15—C161.466 (5)
C6—H60.9300C15—H150.9300
C7—O11.431 (4)C16—O21.196 (4)
C7—C81.494 (5)C16—O31.339 (5)
C7—H7A0.9700C17—O31.440 (5)
C7—H7B0.9700C17—H17A0.9600
C8—C91.380 (5)C17—H17B0.9600
C8—C131.382 (4)C17—H17C0.9600
C9—C101.394 (4)
C6—C1—C2120.7 (4)C9—C10—C11118.4 (3)
C6—C1—Br1120.9 (3)C9—C10—C14119.3 (3)
C2—C1—Br1118.4 (3)C11—C10—C14122.2 (3)
C1—C2—C3118.9 (4)C12—C11—C10120.0 (3)
C1—C2—H2120.5C12—C11—H11120.0
C3—C2—H2120.5C10—C11—H11120.0
C4—C3—C2120.9 (3)C11—C12—C13120.7 (3)
C4—C3—H3119.6C11—C12—H12119.7
C2—C3—H3119.6C13—C12—H12119.7
O1—C4—C3115.5 (3)C12—C13—C8121.0 (3)
O1—C4—C5125.2 (3)C12—C13—H13119.5
C3—C4—C5119.4 (3)C8—C13—H13119.5
C4—C5—C6119.4 (4)C15—C14—C10128.7 (3)
C4—C5—H5120.3C15—C14—H14115.6
C6—C5—H5120.3C10—C14—H14115.6
C1—C6—C5120.7 (4)C14—C15—C16120.7 (4)
C1—C6—H6119.7C14—C15—H15119.6
C5—C6—H6119.7C16—C15—H15119.6
O1—C7—C8107.5 (3)O2—C16—O3122.9 (4)
O1—C7—H7A110.2O2—C16—C15125.7 (4)
C8—C7—H7A110.2O3—C16—C15111.4 (4)
O1—C7—H7B110.2O3—C17—H17A109.5
C8—C7—H7B110.2O3—C17—H17B109.5
H7A—C7—H7B108.5H17A—C17—H17B109.5
C9—C8—C13118.2 (3)O3—C17—H17C109.5
C9—C8—C7120.7 (3)H17A—C17—H17C109.5
C13—C8—C7121.0 (3)H17B—C17—H17C109.5
C8—C9—C10121.7 (3)C4—O1—C7117.9 (2)
C8—C9—H9119.2C16—O3—C17116.3 (4)
C10—C9—H9119.2
C6—C1—C2—C30.4 (6)C9—C10—C11—C121.4 (5)
Br1—C1—C2—C3178.9 (3)C14—C10—C11—C12175.3 (3)
C1—C2—C3—C40.3 (6)C10—C11—C12—C130.6 (5)
C2—C3—C4—O1180.0 (3)C11—C12—C13—C80.1 (5)
C2—C3—C4—C50.3 (5)C9—C8—C13—C120.4 (5)
O1—C4—C5—C6179.9 (3)C7—C8—C13—C12178.0 (3)
C3—C4—C5—C60.4 (6)C9—C10—C14—C15179.2 (3)
C2—C1—C6—C50.5 (7)C11—C10—C14—C154.1 (5)
Br1—C1—C6—C5179.0 (3)C10—C14—C15—C16176.0 (3)
C4—C5—C6—C10.5 (6)C14—C15—C16—O24.0 (7)
O1—C7—C8—C977.1 (3)C14—C15—C16—O3175.8 (3)
O1—C7—C8—C13101.2 (3)C3—C4—O1—C7177.7 (3)
C13—C8—C9—C101.2 (4)C5—C4—O1—C72.7 (5)
C7—C8—C9—C10177.1 (3)C8—C7—O1—C4179.2 (3)
C8—C9—C10—C111.8 (4)O2—C16—O3—C170.5 (6)
C8—C9—C10—C14175.1 (3)C15—C16—O3—C17179.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.453.370 (6)172
C12—H12···Cg2ii0.932.993.677 (3)132
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H15BrO3
Mr347.20
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)292
a, b, c (Å)15.5226 (9), 5.9390 (3), 34.775 (2)
V3)3205.9 (3)
Z8
Radiation typeMo Kα
µ (mm1)2.57
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001a)
Tmin, Tmax0.627, 0.783
No. of measured, independent and
observed [I > 2σ(I)] reflections
30716, 3147, 1604
Rint0.061
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.162, 1.02
No. of reflections3147
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.37

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2001b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.453.370 (6)172.1
C12—H12···Cg2ii0.932.993.677 (3)132
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y1/2, z1/2.
 

Acknowledgements

We gratefully acknowledge the financial support of this work by the National Basic Research Program of China (grant No. 2003CB114400) and the National Natural Science Foundation of China (grant No. 20372023).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFraine, P. J. de & Martin, A. (1991). US Patent 5 055 471.  Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationRen, X.-L., Peng, H. & He, H.-W. (2007). Acta Cryst. E63, o2080–o2081.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2001b). SHELXTL (Version 5.0). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L. P. & Ji, Z. Z. (1992). Acta Pharm. Sinica, 27, 817–823.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds