organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­hydro-1,4-benzo­thia­zepin-5(2H)-one

aInstitute of Biological Sciences and Biotechnology, Donghua University, Shanghai 201620, People's Republic of China, and bDepartment of Chemistry, Donghua University, Shanghai 201620, People's Republic of China
*Correspondence e-mail: syzhao8@dhu.edu.cn

(Received 21 November 2007; accepted 22 November 2007; online 6 December 2007)

In the mol­ecule of the title compound, C9H9NOS, the seven-membered ring has a twist conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For general background, see: Arya et al. (1977[Arya, V. P., Kaul, C. L., Grewal, R. S., David, J., Talwalker, P. K. & Shenoy, S. J. (1977). Indian J. Chem. B, 15, 720-726.]). For related literature, see: Ishibashi et al. (2001[Ishibashi, H., Uegaki, M., Sakai, M. & Takeda, Y. (2001). Tetrahedron, 57, 2115-2120.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9NOS

  • Mr = 179.23

  • Orthorhombic, P b c a

  • a = 8.0510 (16) Å

  • b = 8.9580 (18) Å

  • c = 24.220 (5) Å

  • V = 1746.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 294 (2) K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.939, Tmax = 0.969

  • 1704 measured reflections

  • 1704 independent reflections

  • 1089 reflections with I > 2σ(I)

  • Rint = 0.022

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.166

  • S = 1.02

  • 1704 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H0A⋯Oi 0.86 2.05 2.824 (4) 149
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius,1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Siemens,1996[Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), is an important intermediate used in the synthesis of dipeptidyl peptidase-IV inhibitors, cysteine proteases inhibitors and antihypertensive agent (Arya et al., 1977). As part of our ongoing studies in this area, we report herein its synthesis and crystal structure.

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). Ring A (C3—C8) is, of course, planar, while ring B (S/N/C1—C3/C8/C9) is not planar and has a twisted conformation.

In the crystal structure, intermolecular N—H0A···Oi hydrogen bonds [H0A···O 2.05 Å, N···O 2.824 (3) Å and N—H0A···O 149.4°] [symmetry code: (i) x + 1/2, 1/2 - y, -z] link the molecules into centrosymmetric dimers (Fig. 2), in which they seem to be effective in the stabilization of the structure.

Related literature top

For general background, see: Arya et al. (1977). For related literature, see: Ishibashi et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I), was prepared by the literature method with a minor change (Ishibashi et al., 2001). 2-Mercaptobenzoic acid methyl ester (3.3 g, 19.6 mmol) was added to the solution of sodium (0.5 g, 22.0 mmol) in ethanol (20 ml). The mixture was stirred at room temperature for 10 min, and then 2-oxazolidinone (1.7 g, 19.8 mmol) was added. The mixture was heated under reflux for 6 h. The solvent was evaporated off, water (15 ml) was added to the residue, and the whole mixture was extracted with ethyl acetate (15 ml×3). The combined ester layer was dried with sodium sulfate and evaporated. The residue was recrystallized from ethanol and dried in vacuum at 323 K to give the title compound as a white solid (yield; 60%, m.p. 466–468 K) (Ishibashi et al., 2001, m.p. 465–466 K). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Structure description top

The title compound, (I), is an important intermediate used in the synthesis of dipeptidyl peptidase-IV inhibitors, cysteine proteases inhibitors and antihypertensive agent (Arya et al., 1977). As part of our ongoing studies in this area, we report herein its synthesis and crystal structure.

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). Ring A (C3—C8) is, of course, planar, while ring B (S/N/C1—C3/C8/C9) is not planar and has a twisted conformation.

In the crystal structure, intermolecular N—H0A···Oi hydrogen bonds [H0A···O 2.05 Å, N···O 2.824 (3) Å and N—H0A···O 149.4°] [symmetry code: (i) x + 1/2, 1/2 - y, -z] link the molecules into centrosymmetric dimers (Fig. 2), in which they seem to be effective in the stabilization of the structure.

For general background, see: Arya et al. (1977). For related literature, see: Ishibashi et al. (2001). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius,1989); cell refinement: CAD-4 Software (Enraf–Nonius,1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens,1996); software used to prepare material for publication: SHELXL (Siemens,1996).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
3,4-Dihydro-1,4-benzothiazepin-5(2H)-one top
Crystal data top
C9H9NOSF(000) = 752
Mr = 179.23Dx = 1.363 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 8.0510 (16) Åθ = 9–13°
b = 8.9580 (18) ŵ = 0.32 mm1
c = 24.220 (5) ÅT = 294 K
V = 1746.8 (6) Å3Block, colorless
Z = 80.20 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1089 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.939, Tmax = 0.969l = 029
1704 measured reflections3 standard reflections every 120 min
1704 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.060P)2 + 2.7P]
where P = (Fo2 + 2Fc2)/3
1704 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C9H9NOSV = 1746.8 (6) Å3
Mr = 179.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.0510 (16) ŵ = 0.32 mm1
b = 8.9580 (18) ÅT = 294 K
c = 24.220 (5) Å0.20 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1089 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.022
Tmin = 0.939, Tmax = 0.9693 standard reflections every 120 min
1704 measured reflections intensity decay: none
1704 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
1704 reflectionsΔρmin = 0.22 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.20239 (14)0.28682 (12)0.17431 (4)0.0620 (4)
O0.0306 (4)0.2669 (4)0.02305 (13)0.0753 (10)
N0.2218 (4)0.3438 (3)0.04867 (12)0.0452 (8)
H0A0.26510.29180.02250.054*
C10.3328 (4)0.4320 (4)0.08290 (17)0.0507 (10)
H1A0.28010.52690.09110.061*
H1B0.43360.45250.06230.061*
C20.3779 (5)0.3569 (5)0.1361 (2)0.0674 (13)
H2A0.43760.42750.15910.081*
H2B0.45240.27460.12820.081*
C30.0396 (4)0.4103 (4)0.15575 (16)0.0439 (9)
C40.0452 (5)0.4849 (5)0.19751 (19)0.0633 (12)
H4A0.00850.47680.23380.076*
C50.1832 (6)0.5708 (5)0.1857 (2)0.0695 (13)
H5A0.23750.62120.21400.083*
C60.2398 (5)0.5822 (5)0.1333 (2)0.0710 (14)
H6A0.33270.64020.12550.085*
C70.1587 (4)0.5068 (4)0.09133 (18)0.0518 (10)
H7A0.19880.51410.05540.062*
C80.0196 (4)0.4211 (4)0.10152 (14)0.0377 (8)
C90.0579 (4)0.3377 (4)0.05503 (16)0.0449 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0642 (7)0.0529 (7)0.0691 (7)0.0009 (6)0.0161 (5)0.0134 (5)
O0.0568 (18)0.088 (2)0.081 (2)0.0102 (17)0.0143 (16)0.0395 (18)
N0.0378 (18)0.0425 (17)0.0553 (17)0.0002 (15)0.0038 (14)0.0121 (14)
C10.0335 (19)0.040 (2)0.079 (3)0.0057 (18)0.0068 (18)0.014 (2)
C20.038 (2)0.059 (3)0.106 (4)0.001 (2)0.013 (2)0.000 (3)
C30.0356 (19)0.0351 (19)0.061 (2)0.0092 (17)0.0057 (17)0.0101 (17)
C40.061 (3)0.062 (3)0.067 (3)0.024 (2)0.010 (2)0.012 (2)
C50.052 (3)0.060 (3)0.097 (4)0.008 (2)0.030 (3)0.024 (3)
C60.037 (2)0.041 (2)0.135 (4)0.007 (2)0.012 (3)0.007 (3)
C70.038 (2)0.047 (2)0.071 (2)0.0017 (19)0.0021 (19)0.010 (2)
C80.0312 (17)0.0319 (18)0.050 (2)0.0033 (16)0.0032 (15)0.0037 (15)
C90.040 (2)0.040 (2)0.055 (2)0.0005 (18)0.0045 (17)0.0031 (17)
Geometric parameters (Å, º) top
S—C31.773 (4)C3—C41.391 (6)
S—C21.802 (5)C3—C81.401 (5)
N—C91.330 (4)C4—C51.382 (6)
N—C11.453 (4)C4—H4A0.9300
N—H0A0.8600C5—C61.354 (7)
O—C91.229 (4)C5—H5A0.9300
C1—C21.499 (6)C6—C71.384 (6)
C1—H1A0.9700C6—H6A0.9300
C1—H1B0.9700C7—C81.380 (5)
C2—H2A0.9700C7—H7A0.9300
C2—H2B0.9700C8—C91.488 (5)
C3—S—C2103.42 (19)C5—C4—C3120.8 (4)
C9—N—C1124.5 (3)C5—C4—H4A119.6
C9—N—H0A117.8C3—C4—H4A119.6
C1—N—H0A117.8C6—C5—C4120.5 (4)
N—C1—C2113.3 (3)C6—C5—H5A119.8
N—C1—H1A108.9C4—C5—H5A119.8
C2—C1—H1A108.9C5—C6—C7119.5 (4)
N—C1—H1B108.9C5—C6—H6A120.2
C2—C1—H1B108.9C7—C6—H6A120.2
H1A—C1—H1B107.7C8—C7—C6121.6 (4)
C1—C2—S114.1 (3)C8—C7—H7A119.2
C1—C2—H2A108.7C6—C7—H7A119.2
S—C2—H2A108.7C7—C8—C3118.8 (3)
C1—C2—H2B108.7C7—C8—C9119.0 (3)
S—C2—H2B108.7C3—C8—C9122.2 (3)
H2A—C2—H2B107.6O—C9—N121.5 (4)
C4—C3—C8118.8 (4)O—C9—C8119.5 (3)
C4—C3—S118.6 (3)N—C9—C8118.9 (3)
C8—C3—S122.1 (3)
C9—N—C1—C282.3 (5)C6—C7—C8—C9177.5 (4)
N—C1—C2—S49.9 (4)C4—C3—C8—C70.8 (5)
C3—S—C2—C129.6 (4)S—C3—C8—C7172.7 (3)
C2—S—C3—C4124.1 (3)C4—C3—C8—C9176.4 (3)
C2—S—C3—C863.9 (3)S—C3—C8—C94.4 (5)
C8—C3—C4—C51.4 (6)C1—N—C9—O176.3 (4)
S—C3—C4—C5173.6 (3)C1—N—C9—C82.7 (6)
C3—C4—C5—C61.0 (6)C7—C8—C9—O45.4 (5)
C4—C5—C6—C70.1 (7)C3—C8—C9—O131.8 (4)
C5—C6—C7—C80.7 (6)C7—C8—C9—N133.6 (4)
C6—C7—C8—C30.3 (6)C3—C8—C9—N49.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.862.052.824 (4)149
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9NOS
Mr179.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)8.0510 (16), 8.9580 (18), 24.220 (5)
V3)1746.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.939, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
1704, 1704, 1089
Rint0.022
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.166, 1.02
No. of reflections1704
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: CAD-4 Software (Enraf–Nonius,1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Siemens,1996), SHELXL (Siemens,1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H0A···Oi0.86002.05002.824 (4)149.00
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CSD CrossRef Web of Science Google Scholar
First citationArya, V. P., Kaul, C. L., Grewal, R. S., David, J., Talwalker, P. K. & Shenoy, S. J. (1977). Indian J. Chem. B, 15, 720–726.  CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationIshibashi, H., Uegaki, M., Sakai, M. & Takeda, Y. (2001). Tetrahedron, 57, 2115–2120.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds