organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3aRS,9bSR)-3-(4-Chloro­phen­yl)-1-methyl-1,2,3,3a,4,9b-hexa­hydro­chromeno[4,3-b]pyrrole-3a-carbo­nitrile

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India.
*Correspondence e-mail: sudhasuraj@rediffmail.com

(Received 21 November 2007; accepted 22 November 2007; online 6 December 2007)

In the mol­ecule of the title compound, C19H17ClN2O, the heterocyclic six-membered ring adopts a half-chair conformation, while the pyrrolidine ring has an envelope conformation. In the crystal structure, C—Cl⋯π [Cl⋯centroid = 3.680 (2) Å] inter­actions and van der Waals forces are present.

Related literature

For general background, see: Caine (1993[Caine, B. (1993). Science, 260, 1814.]); Tidey (1992[Tidey, J. W. (1992). Behav. Pharm. 3, 553.]); Carlson (1993[Carlson, J. (1993). Neur. Transm. 94, 11.]); Sokoloff et al. (1990[Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147.]); Wilner (1985[Wilner, P. (1985). Clin. Neuropharm. 18 Suppl. 1, 549-556.]); Biava et al. (2005[Biava, M., Porretta, G. C., Poce, G., Deidda, D., Pompei, R., Tafi, A. & Manetti, F. (2005). Bioorg. Med. Chem. 13, 1221-1230.]); Fernandes et al. (2004[Fernandes, E., Costa, D., Toste, S. A., Lima, J. L. & Reis, S. (2004). Free Radical Biol. Med. 37, 1895-1905.]); Borthwick et al. (2000[Borthwick, A. D., Angier, S. J., Crame, A. J., Exall, A. M., Haley, T. M., Hart, G. J., Mason, A. M., Pennell, A. M. K. & Weingarten, G. G. (2000). J. Med. Chem. 43, 4452-4464.]); Jiang et al. (2004[Jiang, S., Lu, H., Liu, S., Zhao, Q., He, Y. & Debnath, A. K. (2004). Antimicrob. Agents Chemother. 48, 4349-4359.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17ClN2O

  • Mr = 324.80

  • Monoclinic, P 21 /c

  • a = 8.8659 (4) Å

  • b = 7.6009 (3) Å

  • c = 24.2026 (10) Å

  • β = 97.701 (1)°

  • V = 1616.27 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 294 (2) K

  • 0.28 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEX2 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.935, Tmax = 0.953

  • 21338 measured reflections

  • 5199 independent reflections

  • 3858 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.138

  • S = 1.03

  • 5199 reflections

  • 208 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993), aggressiveness (Tidey, 1992), parkinson's disease (Carlson, 1993), psychoses, memory disorders (Sokoloff et al., 1990), anxiety and depression (Wilner, 1985). Pyrrole derivatives have good invitro against mycobacteria and candidae (Biava et al., 2005). These derivatives also possess anti-inflammatory (Fernandes et al., 2004) and antiviral (Borthwick et al., 2000) activities. It has also been shown that N-substituted pyrrole derivatives inhibit human immuno deficiency virus type-I (HIV-I) (Jiang et al., 2004). In view of its medicinal importance, the crystal structure determination of the title compound, (I), was carried out.

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). The sum of bond angles around atom N1 [330.9 (4)°] indicates sp3 hybridization. Rings A (C6—C11) and D (C13—C18) are, of course, planar and they are oriented at a dihedral angle of 46.7 (5)°. The heterocyclic ring B (O1/C4—C6/C11/C12) adopts a half-chair conformation with asymmetry parameters of ΔC2(C4) = 0.028 (1) (Nardelli, 1995) and puckering parameters of q2 = 0.778 (3) Å, q3 = 0.054 (2) Å and φ = - 26.5 (2)° (Cremer & Pople, 1975). Atom C5 displaced by -0.645 (2) Å from the plane of the other five ring atoms. The pyrrolidine ring C (N1/C2—C4/C12) has an envelope conformation with asymmetry parameters of ΔCs(N1) = 0.030 (1) (Nardelli, 1995) and puckering parameters of q2 = 0.470 (1) Å and φ =175.3 (2)° (Cremer & Pople, 1975). Atom N1 displaced by -0.691 (2) Å from the plane of the other four ring atoms.

In the crystal structure, no significant intermolecular ππ interactions are observed between two chlorophenyl rings as their centroids are seperated by 4.1049 (9) Å. Weak intermolecular C—Cl···π interactions (Spek, 2003), with C16···Cg4 = 3.680 (2) Å and Cl1···Cg4 = 3.858 (8) Å [Cg4 denotes centroid of ring D] and van der Waals forces stabilize the crystal structure (Fig. 2).

Related literature top

For general background, see: Caine (1993); Tidey (1992); Carlson (1993); Sokoloff et al. (1990); Wilner (1985); Biava et al. (2005); Fernandes et al. (2004); Borthwick et al. (2000); Jiang et al. (2004). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1995).

Experimental top

For the preparation of the title compound, a solution of (Z)-2-((2-formyl- phenoxy)methyl)-3-(4-chlorophenyl)acrylonitrile (1 mmol) and sarcosine (1 mmol) in anhydrous methanol (10 ml) was refluxed. Completion of the reaction was evidenced by thin layer chromatography analysis. The solvent was removed in vacuum. The crude product was subjected to column chromatography on silica gel (100–200 mesh) using petroleum ether-ethylacetate (7:3) as the eluent. Compound was recrystallized from methanol.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

Chromenopyrrole compounds are used in the treatment of impulsive disorders (Caine, 1993), aggressiveness (Tidey, 1992), parkinson's disease (Carlson, 1993), psychoses, memory disorders (Sokoloff et al., 1990), anxiety and depression (Wilner, 1985). Pyrrole derivatives have good invitro against mycobacteria and candidae (Biava et al., 2005). These derivatives also possess anti-inflammatory (Fernandes et al., 2004) and antiviral (Borthwick et al., 2000) activities. It has also been shown that N-substituted pyrrole derivatives inhibit human immuno deficiency virus type-I (HIV-I) (Jiang et al., 2004). In view of its medicinal importance, the crystal structure determination of the title compound, (I), was carried out.

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). The sum of bond angles around atom N1 [330.9 (4)°] indicates sp3 hybridization. Rings A (C6—C11) and D (C13—C18) are, of course, planar and they are oriented at a dihedral angle of 46.7 (5)°. The heterocyclic ring B (O1/C4—C6/C11/C12) adopts a half-chair conformation with asymmetry parameters of ΔC2(C4) = 0.028 (1) (Nardelli, 1995) and puckering parameters of q2 = 0.778 (3) Å, q3 = 0.054 (2) Å and φ = - 26.5 (2)° (Cremer & Pople, 1975). Atom C5 displaced by -0.645 (2) Å from the plane of the other five ring atoms. The pyrrolidine ring C (N1/C2—C4/C12) has an envelope conformation with asymmetry parameters of ΔCs(N1) = 0.030 (1) (Nardelli, 1995) and puckering parameters of q2 = 0.470 (1) Å and φ =175.3 (2)° (Cremer & Pople, 1975). Atom N1 displaced by -0.691 (2) Å from the plane of the other four ring atoms.

In the crystal structure, no significant intermolecular ππ interactions are observed between two chlorophenyl rings as their centroids are seperated by 4.1049 (9) Å. Weak intermolecular C—Cl···π interactions (Spek, 2003), with C16···Cg4 = 3.680 (2) Å and Cl1···Cg4 = 3.858 (8) Å [Cg4 denotes centroid of ring D] and van der Waals forces stabilize the crystal structure (Fig. 2).

For general background, see: Caine (1993); Tidey (1992); Carlson (1993); Sokoloff et al. (1990); Wilner (1985); Biava et al. (2005); Fernandes et al. (2004); Borthwick et al. (2000); Jiang et al. (2004). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen atoms are omited for clarity.
(3aR,9 bS)-3-(4-Chlorophenyl)-1-methyl-1,2,3,3a,4,9 b- hexahydrochromeno[4,3-b]pyrrole-3a-carbonitrile top
Crystal data top
C19H17ClN2OF(000) = 680
Mr = 324.80Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7082 reflections
a = 8.8659 (4) Åθ = 1.7–25.0°
b = 7.6009 (3) ŵ = 0.24 mm1
c = 24.2026 (10) ÅT = 294 K
β = 97.701 (1)°Prism, colourless
V = 1616.27 (12) Å30.28 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEX2 kappa
diffractometer
5199 independent reflections
Radiation source: fine-focus sealed tube3858 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 31.2°, θmin = 1.7°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1211
Tmin = 0.935, Tmax = 0.953k = 1011
21338 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.427P]
where P = (Fo2 + 2Fc2)/3
5199 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.29 e Å3
2 restraintsΔρmin = 0.29 e Å3
Crystal data top
C19H17ClN2OV = 1616.27 (12) Å3
Mr = 324.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8659 (4) ŵ = 0.24 mm1
b = 7.6009 (3) ÅT = 294 K
c = 24.2026 (10) Å0.28 × 0.20 × 0.20 mm
β = 97.701 (1)°
Data collection top
Bruker APEX2 kappa
diffractometer
5199 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3858 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.953Rint = 0.020
21338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0462 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
5199 reflectionsΔρmin = 0.29 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.81942 (5)0.45073 (7)0.00516 (2)0.06969 (17)
O10.33531 (13)0.11121 (15)0.24679 (4)0.0509 (3)
N10.07255 (13)0.04341 (16)0.12043 (5)0.0419 (3)
N20.57906 (16)0.1425 (2)0.13922 (7)0.0626 (4)
C20.14526 (17)0.1758 (2)0.08910 (6)0.0484 (3)
H2A0.15470.13430.05180.058*
H2B0.08760.28460.08640.058*
C30.30137 (16)0.20196 (17)0.12296 (5)0.0388 (3)
H30.28940.29090.15140.047*
C40.32937 (14)0.02060 (16)0.15421 (5)0.0336 (2)
C50.32588 (18)0.04940 (19)0.21657 (5)0.0434 (3)
H5A0.23230.10940.22190.052*
H5B0.41030.12450.23120.052*
C60.23237 (16)0.23694 (18)0.22598 (5)0.0399 (3)
C70.20691 (19)0.3728 (2)0.26234 (6)0.0511 (4)
H70.25630.37240.29880.061*
C80.1087 (2)0.5073 (2)0.24431 (8)0.0579 (4)
H80.09080.59700.26880.069*
C90.0368 (2)0.5099 (2)0.19038 (8)0.0577 (4)
H90.02940.60110.17830.069*
C100.06331 (17)0.3757 (2)0.15411 (6)0.0468 (3)
H100.01610.37950.11740.056*
C110.15891 (14)0.23538 (17)0.17135 (5)0.0352 (3)
C120.19023 (14)0.09239 (17)0.13132 (5)0.0335 (2)
H120.20810.14580.09590.040*
C130.42773 (15)0.26473 (16)0.09160 (5)0.0366 (3)
C140.44773 (19)0.2015 (2)0.03930 (6)0.0487 (3)
H140.37990.11880.02200.058*
C150.56716 (19)0.2597 (2)0.01243 (6)0.0502 (4)
H150.57930.21680.02270.060*
C160.66710 (16)0.3812 (2)0.03828 (6)0.0443 (3)
C170.64861 (19)0.4491 (2)0.08934 (7)0.0525 (4)
H170.71590.53320.10610.063*
C180.52856 (18)0.3910 (2)0.11562 (6)0.0469 (3)
H180.51530.43770.15020.056*
C190.47093 (15)0.06885 (18)0.14530 (6)0.0405 (3)
C200.07204 (18)0.0173 (3)0.09117 (8)0.0615 (5)
H20A0.11490.10380.11340.092*
H20B0.14070.08040.08460.092*
H20C0.05600.06850.05620.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0478 (2)0.0821 (3)0.0832 (3)0.0010 (2)0.0237 (2)0.0308 (2)
O10.0589 (6)0.0565 (6)0.0342 (5)0.0075 (5)0.0052 (4)0.0084 (4)
N10.0318 (5)0.0495 (7)0.0443 (6)0.0025 (5)0.0050 (4)0.0124 (5)
N20.0406 (7)0.0581 (8)0.0890 (11)0.0015 (6)0.0083 (7)0.0112 (8)
C20.0416 (7)0.0525 (8)0.0515 (8)0.0031 (6)0.0073 (6)0.0189 (7)
C30.0421 (7)0.0355 (6)0.0402 (6)0.0001 (5)0.0110 (5)0.0038 (5)
C40.0324 (6)0.0360 (6)0.0325 (5)0.0017 (5)0.0049 (4)0.0006 (4)
C50.0511 (8)0.0443 (7)0.0341 (6)0.0052 (6)0.0028 (5)0.0021 (5)
C60.0395 (7)0.0438 (7)0.0371 (6)0.0040 (5)0.0083 (5)0.0069 (5)
C70.0539 (9)0.0562 (9)0.0450 (7)0.0103 (7)0.0130 (6)0.0184 (6)
C80.0607 (10)0.0504 (8)0.0675 (10)0.0045 (7)0.0269 (8)0.0207 (8)
C90.0559 (10)0.0471 (8)0.0736 (11)0.0119 (7)0.0217 (8)0.0053 (7)
C100.0446 (7)0.0477 (8)0.0490 (7)0.0076 (6)0.0096 (6)0.0002 (6)
C110.0326 (6)0.0383 (6)0.0357 (6)0.0011 (5)0.0088 (5)0.0031 (5)
C120.0316 (5)0.0396 (6)0.0294 (5)0.0025 (5)0.0043 (4)0.0021 (4)
C130.0407 (7)0.0325 (6)0.0372 (6)0.0011 (5)0.0073 (5)0.0031 (5)
C140.0540 (8)0.0475 (8)0.0468 (7)0.0123 (7)0.0146 (6)0.0108 (6)
C150.0550 (9)0.0543 (8)0.0442 (7)0.0015 (7)0.0177 (6)0.0032 (6)
C160.0371 (7)0.0453 (7)0.0517 (7)0.0033 (6)0.0100 (6)0.0168 (6)
C170.0453 (8)0.0535 (9)0.0573 (9)0.0148 (7)0.0016 (6)0.0003 (7)
C180.0507 (8)0.0507 (8)0.0388 (6)0.0079 (6)0.0043 (6)0.0037 (6)
C190.0346 (6)0.0396 (7)0.0467 (7)0.0047 (5)0.0031 (5)0.0015 (5)
C200.0334 (7)0.0812 (12)0.0671 (10)0.0026 (7)0.0031 (7)0.0231 (9)
Geometric parameters (Å, º) top
C2—N11.4610 (18)C10—C111.3909 (19)
C2—C31.524 (2)C10—H100.9300
C2—H2A0.9700C11—C121.5063 (17)
C2—H2B0.9700C12—N11.4662 (17)
C3—C131.5122 (18)C12—H120.9800
C3—C41.5760 (18)C13—C181.3852 (19)
C3—H30.9800C13—C141.3873 (18)
C4—C191.4684 (18)C14—C151.387 (2)
C4—C51.5296 (17)C14—H140.9300
C4—C121.5438 (17)C15—C161.372 (2)
C5—O11.4197 (17)C15—H150.9300
C5—H5A0.9700C16—C171.369 (2)
C5—H5B0.9700C16—Cl11.7423 (14)
C6—O11.3700 (18)C17—C181.384 (2)
C6—C111.3935 (18)C17—H170.9300
C6—C71.3945 (19)C18—H180.9300
C7—C81.376 (3)C19—N21.1368 (19)
C7—H70.9300C20—N11.454 (2)
C8—C91.374 (3)C20—H20A0.9600
C8—H80.9300C20—H20B0.9600
C9—C101.386 (2)C20—H20C0.9600
C9—H90.9300
C6—O1—C5114.84 (10)C8—C9—H9120.2
C20—N1—C2112.77 (11)C10—C9—H9120.2
C20—N1—C12115.08 (13)C9—C10—C11121.50 (14)
C2—N1—C12103.02 (10)C11—C10—H10119.2
N1—C2—C3104.05 (11)C10—C11—C6117.81 (12)
N1—C2—H2A110.9C10—C11—C12121.18 (12)
C3—C2—H2A110.9C6—C11—C12120.89 (11)
N1—C2—H2B110.9N1—C12—C11115.81 (10)
C3—C2—H2B110.9N1—C12—C4100.84 (10)
H2A—C2—H2B109.0C11—C12—C4112.20 (10)
C13—C3—C2116.85 (11)N1—C12—H12109.2
C13—C3—C4115.92 (11)C11—C12—H12109.2
C2—C3—C4102.55 (11)C4—C12—H12109.2
C13—C3—H3107.0C18—C13—C14117.95 (13)
C2—C3—H3107.0C18—C13—C3119.19 (12)
C4—C3—H3107.0C14—C13—C3122.86 (12)
C19—C4—C5109.99 (11)C15—C14—C13121.09 (14)
C19—C4—C12110.32 (10)C15—C14—H14119.5
C5—C4—C12108.23 (10)C13—C14—H14119.5
C19—C4—C3114.67 (11)C16—C15—C14119.20 (13)
C5—C4—C3109.00 (10)C16—C15—H15120.4
C12—C4—C3104.33 (10)C14—C15—H15120.4
O1—C5—C4112.18 (11)C17—C16—C15121.16 (13)
O1—C5—H5A109.2C17—C16—Cl1119.66 (12)
C4—C5—H5A109.2C15—C16—Cl1119.18 (12)
O1—C5—H5B109.2C16—C17—C18119.15 (14)
C4—C5—H5B109.2C16—C17—H17120.4
H5A—C5—H5B107.9C18—C17—H17120.4
O1—C6—C11123.13 (11)C17—C18—C13121.41 (14)
O1—C6—C7116.14 (12)C17—C18—H18119.3
C11—C6—C7120.70 (14)C13—C18—H18119.3
C8—C7—C6119.94 (14)N2—C19—C4177.88 (17)
C8—C7—H7120.0N1—C20—H20A109.5
C6—C7—H7120.0N1—C20—H20B109.5
C9—C8—C7120.36 (14)H20A—C20—H20B109.5
C9—C8—H8119.8N1—C20—H20C109.5
C7—C8—H8119.8H20A—C20—H20C109.5
C8—C9—C10119.64 (16)H20B—C20—H20C109.5
N1—C2—C3—C13153.76 (12)C3—C4—C12—N131.53 (11)
N1—C2—C3—C425.83 (14)C19—C4—C12—C1180.99 (13)
C13—C3—C4—C194.02 (16)C5—C4—C12—C1139.40 (14)
C2—C3—C4—C19124.49 (12)C3—C4—C12—C11155.38 (10)
C13—C3—C4—C5119.76 (12)C2—C3—C13—C18138.60 (14)
C2—C3—C4—C5111.72 (12)C4—C3—C13—C18100.27 (15)
C13—C3—C4—C12124.80 (12)C2—C3—C13—C1441.3 (2)
C2—C3—C4—C123.72 (13)C4—C3—C13—C1479.83 (17)
C19—C4—C5—O159.31 (15)C18—C13—C14—C151.5 (2)
C12—C4—C5—O161.28 (15)C3—C13—C14—C15178.56 (14)
C3—C4—C5—O1174.18 (11)C13—C14—C15—C160.2 (3)
O1—C6—C7—C8178.08 (14)C14—C15—C16—C171.7 (2)
C11—C6—C7—C80.2 (2)C14—C15—C16—Cl1178.65 (13)
C6—C7—C8—C90.8 (2)C15—C16—C17—C181.3 (2)
C7—C8—C9—C100.2 (3)Cl1—C16—C17—C18179.04 (12)
C8—C9—C10—C111.5 (3)C16—C17—C18—C130.5 (2)
C9—C10—C11—C62.4 (2)C14—C13—C18—C171.9 (2)
C9—C10—C11—C12178.46 (14)C3—C13—C18—C17178.16 (14)
O1—C6—C11—C10176.39 (13)C3—C2—N1—C20172.67 (14)
C7—C6—C11—C101.7 (2)C3—C2—N1—C1247.99 (14)
O1—C6—C11—C120.3 (2)C11—C12—N1—C2066.39 (15)
C7—C6—C11—C12177.82 (12)C4—C12—N1—C20172.28 (11)
C10—C11—C12—N180.29 (16)C11—C12—N1—C2170.45 (11)
C6—C11—C12—N1103.76 (14)C4—C12—N1—C249.13 (12)
C10—C11—C12—C4164.69 (12)C11—C6—O1—C520.14 (19)
C6—C11—C12—C411.26 (17)C7—C6—O1—C5161.65 (13)
C19—C4—C12—N1155.17 (10)C4—C5—O1—C651.71 (16)
C5—C4—C12—N184.44 (12)

Experimental details

Crystal data
Chemical formulaC19H17ClN2O
Mr324.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)8.8659 (4), 7.6009 (3), 24.2026 (10)
β (°) 97.701 (1)
V3)1616.27 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.28 × 0.20 × 0.20
Data collection
DiffractometerBruker APEX2 kappa
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.935, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
21338, 5199, 3858
Rint0.020
(sin θ/λ)max1)0.728
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.138, 1.04
No. of reflections5199
No. of parameters208
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.29

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
C2—N11.4610 (18)C16—Cl11.7423 (14)
C5—O11.4197 (17)C19—N21.1368 (19)
C6—O11.3700 (18)C20—N11.454 (2)
C12—N11.4662 (17)
C6—O1—C5114.84 (10)O1—C6—C7116.14 (12)
C20—N1—C2112.77 (11)N1—C12—C11115.81 (10)
C20—N1—C12115.08 (13)N1—C12—C4100.84 (10)
C2—N1—C12103.02 (10)C17—C16—Cl1119.66 (12)
N1—C2—C3104.05 (11)C15—C16—Cl1119.18 (12)
O1—C5—C4112.18 (11)N2—C19—C4177.88 (17)
O1—C6—C11123.13 (11)
 

Acknowledgements

SN thanks Professor M. N. Ponnuswamy, Department of Crystallography and Biophysics, University of Madras, India, for his guidance and valuable suggestions. SN thanks SRM management, India, for their support.

References

First citationAllen, F. H., Kennard, O., Watson, D., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBiava, M., Porretta, G. C., Poce, G., Deidda, D., Pompei, R., Tafi, A. & Manetti, F. (2005). Bioorg. Med. Chem. 13, 1221–1230.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBorthwick, A. D., Angier, S. J., Crame, A. J., Exall, A. M., Haley, T. M., Hart, G. J., Mason, A. M., Pennell, A. M. K. & Weingarten, G. G. (2000). J. Med. Chem. 43, 4452–4464.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCaine, B. (1993). Science, 260, 1814.  CrossRef PubMed Web of Science Google Scholar
First citationCarlson, J. (1993). Neur. Transm. 94, 11.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFernandes, E., Costa, D., Toste, S. A., Lima, J. L. & Reis, S. (2004). Free Radical Biol. Med. 37, 1895-1905.  Web of Science CrossRef CAS Google Scholar
First citationJiang, S., Lu, H., Liu, S., Zhao, Q., He, Y. & Debnath, A. K. (2004). Antimicrob. Agents Chemother. 48, 4349–4359.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L. & Schwartz, J. C. (1990). Nature (London), 347, 147.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTidey, J. W. (1992). Behav. Pharm. 3, 553.  CrossRef Google Scholar
First citationWilner, P. (1985). Clin. Neuropharm. 18 Suppl. 1, 549–556.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds