organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Butyl-2-propyl­amino-1-benzo­thieno[3,2-d]pyrimidin-4(3H)-one

aCollege of Basic Science, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
*Correspondence e-mail: xsz1976@yahoo.com.cn

(Received 22 November 2007; accepted 23 November 2007; online 6 December 2007)

In the title compound, C17H21N3OS, the propyl and butyl groups are disordered over two positions; site occupation factors are 0.304 (10) and 0.696 (10). The three fused rings are coplanar. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules. Further stability is provided by offset ππ stacking inter­actions. Adjacent thienophene–pyrimidine and pyrimidine–benzene rings have centroid–centroid distances of 3.96 (1) and 3.55 (2) Å, respectively.

Related literature

For general background, see: Chambhare et al. (2003[Chambhare, R. V., Khadse, B. G., Bobde, A. S. & Bahekar, R. H. (2003). Eur. J. Med. Chem. 38, 89-100.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]). For related literature, see: Ding et al. (2004[Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366-8371.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21N3OS

  • Mr = 315.43

  • Monoclinic, P 21 /c

  • a = 11.4322 (6) Å

  • b = 14.2791 (8) Å

  • c = 11.6704 (6) Å

  • β = 116.606 (1)°

  • V = 1703.36 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 298 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: none

  • 15640 measured reflections

  • 3712 independent reflections

  • 2599 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.175

  • S = 1.04

  • 3712 reflections

  • 279 parameters

  • 23 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯O1i 0.97 2.52 3.478 (9) 171
N3—H3A⋯O1i 0.86 2.46 3.140 (6) 137
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SHELXTL (Version 6.12), SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SHELXTL (Version 6.12), SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Thienopyrimidine derivatives are of interest as possible antiviral agents, and because of their other biological properties, including antibacterial, antifungal, antiallergic and anti inflammatory activities (Chambhare et al., 2003). We have recently focused on the synthesis of the fused heterocyclic systems containing thienopyrimidine via aza-Wittig reactions at room temperature (Ding et al., 2004). We report herein the structure of one such thienopyrimidine derivative, the title compound, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen et al., 1987). When the crystal structure was solved, propyl and butyl groups were found to be disordered.

Rings A (C1—C6), B (S1/C1/C6—C8) and C (N1/N2/C7—C10) are, of course, planar. The three fused rings A, B and C are also co-planar. The maximum deviation from the benzo[4,5]thieno[3,2-e]-pyrimidinone mean plane is 0.027 (3) Å (for atom C7).

In the crystal structure, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. Further stability is provided by offset π-π stacking interactions (Janiak, 2000). The adjacent B, C and A, C rings have centroid-centroid distances of 3.96 (1) %A and 3.55 (2) %A, respectively, [symmetry code: -x, -y, 2 - z].

Related literature top

For general background, see: Chambhare et al. (2003); Janiak (2000). For related literature, see: Ding et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized according to a literature method (Ding et al., 2004). The product was recrystallized from ethanol/dichloromethane (1:2 v/v) at room temperature to give crystals suitable for single-crystal X-ray analysis.

Refinement top

When the crystal structure was solved, propyl and butyl groups were found to be disordered. During refinement with isotropic thermal parameters, the occupancies of disordered H atoms were refined as H3A, H11, H12A, H12B, H12C, H13A, H13B, H13C = 0.696 (10) and H3', H11', H12D, H12E, H12F, H13D, H13E, H13F = 0.304 (10), while the remaining site occupancy factors were also refined as N3, C11, C12,, C13 = 0.696 (10) and N3', C11', C12', C13' = 0.304 (10), during anisotropic refinement, for propyl group. On the other hand, for butyl group the occupancies of disordered H and non-H atoms were also refined in a similar way as H14A, H14B, H15A, H15B, H16A, H16B, H17A, H17B, H17C = 0.622 (11) and H14C, H14D, H15C, H15D, H16C, H16D, H17D, H17E, H17F = 0.378 (11), while the remaining site occupancy factors were also refined as C14, C15, C16,, C17 = 0.622 (11) and C14', C15', C16', C17' = 0.378 (11). H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93, 0.98, 0.96 and 0.97 Å, for aromatic, methine, methyl and methylene H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

Thienopyrimidine derivatives are of interest as possible antiviral agents, and because of their other biological properties, including antibacterial, antifungal, antiallergic and anti inflammatory activities (Chambhare et al., 2003). We have recently focused on the synthesis of the fused heterocyclic systems containing thienopyrimidine via aza-Wittig reactions at room temperature (Ding et al., 2004). We report herein the structure of one such thienopyrimidine derivative, the title compound, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen et al., 1987). When the crystal structure was solved, propyl and butyl groups were found to be disordered.

Rings A (C1—C6), B (S1/C1/C6—C8) and C (N1/N2/C7—C10) are, of course, planar. The three fused rings A, B and C are also co-planar. The maximum deviation from the benzo[4,5]thieno[3,2-e]-pyrimidinone mean plane is 0.027 (3) Å (for atom C7).

In the crystal structure, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. Further stability is provided by offset π-π stacking interactions (Janiak, 2000). The adjacent B, C and A, C rings have centroid-centroid distances of 3.96 (1) %A and 3.55 (2) %A, respectively, [symmetry code: -x, -y, 2 - z].

For general background, see: Chambhare et al. (2003); Janiak (2000). For related literature, see: Ding et al. (2004). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
3-Butyl-2-propylamino-1-benzothieno[2,3-d]pyrimidin-4(3H)-one top
Crystal data top
C17H21N3OSF(000) = 672
Mr = 315.43Dx = 1.230 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4476 reflections
a = 11.4322 (6) Åθ = 2.4–24.2°
b = 14.2791 (8) ŵ = 0.20 mm1
c = 11.6704 (6) ÅT = 298 K
β = 116.606 (1)°Block, colorless
V = 1703.36 (16) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2599 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 27.0°, θmin = 2.0°
φ and ω scansh = 1414
15640 measured reflectionsk = 1718
3712 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.107P)2]
where P = (Fo2 + 2Fc2)/3
3712 reflections(Δ/σ)max = 0.004
279 parametersΔρmax = 0.35 e Å3
23 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H21N3OSV = 1703.36 (16) Å3
Mr = 315.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.4322 (6) ŵ = 0.20 mm1
b = 14.2791 (8) ÅT = 298 K
c = 11.6704 (6) Å0.30 × 0.20 × 0.20 mm
β = 116.606 (1)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2599 reflections with I > 2σ(I)
15640 measured reflectionsRint = 0.054
3712 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05823 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
3712 reflectionsΔρmin = 0.16 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.13711 (6)0.04643 (4)1.26890 (6)0.0767 (3)
O10.22957 (17)0.23409 (10)1.18589 (13)0.0782 (5)
N10.21439 (19)0.00118 (12)0.97855 (15)0.0679 (5)
N20.25553 (18)0.16172 (11)1.02369 (15)0.0646 (5)
N30.2992 (7)0.0903 (4)0.8663 (6)0.0835 (17)0.696 (10)
H3A0.32150.14500.85240.100*0.696 (10)
N3'0.2371 (11)0.0885 (9)0.8333 (9)0.057 (2)0.304 (10)
H3'0.22570.14270.79770.068*0.304 (10)
C10.14037 (18)0.08829 (14)1.11773 (18)0.0588 (5)
C20.1241 (2)0.17839 (15)1.0674 (2)0.0775 (6)
H20.14330.19130.99950.093*
C30.0795 (3)0.24799 (17)1.1191 (3)0.0921 (8)
H30.06830.30821.08550.110*
C40.0510 (3)0.2299 (2)1.2203 (3)0.0969 (8)
H40.02070.27801.25390.116*
C50.0668 (3)0.14217 (19)1.2713 (3)0.0897 (7)
H50.04790.13031.33960.108*
C60.1117 (2)0.07033 (16)1.2202 (2)0.0663 (5)
C70.18358 (19)0.00435 (13)1.07820 (16)0.0550 (5)
C80.1850 (2)0.07176 (14)1.15013 (17)0.0569 (5)
C90.2227 (2)0.16126 (14)1.12618 (17)0.0585 (5)
C100.2479 (2)0.08120 (15)0.95393 (19)0.0708 (6)
C110.3166 (9)0.0091 (5)0.7964 (8)0.115 (3)0.696 (10)
H110.32610.04900.84460.138*0.696 (10)
C11'0.2443 (15)0.0099 (9)0.7669 (9)0.085 (5)0.304 (10)
H11'0.17950.03190.77330.102*0.304 (10)
C120.4388 (5)0.0288 (5)0.7817 (5)0.118 (2)0.696 (10)
H12A0.42920.08730.73770.177*0.696 (10)
H12B0.45250.02060.73320.177*0.696 (10)
H12C0.51250.03240.86480.177*0.696 (10)
C12'0.3646 (15)0.0512 (13)0.8141 (10)0.149 (9)0.304 (10)
H12D0.42290.02770.78200.223*0.304 (10)
H12E0.33950.11420.78430.223*0.304 (10)
H12F0.40800.05070.90610.223*0.304 (10)
C130.1988 (6)0.0047 (7)0.6697 (10)0.139 (4)0.696 (10)
H13A0.12330.01010.68210.208*0.696 (10)
H13B0.21090.04290.61790.208*0.696 (10)
H13C0.18620.06410.62740.208*0.696 (10)
C13'0.1899 (19)0.0248 (14)0.6251 (10)0.128 (8)0.304 (10)
H13D0.10810.05740.59450.193*0.304 (10)
H13E0.17640.03480.58290.193*0.304 (10)
H13F0.25040.06110.60720.193*0.304 (10)
C140.3278 (9)0.2503 (6)1.0136 (9)0.079 (3)0.622 (11)
H14A0.30950.25840.92470.095*0.622 (11)
H14B0.29140.30401.03740.095*0.622 (11)
C14'0.2809 (11)0.2515 (8)0.9807 (12)0.055 (2)0.378 (11)
H14C0.25380.30281.01790.066*0.378 (11)
H14D0.23560.25640.88810.066*0.378 (11)
C150.4741 (8)0.2515 (6)1.0939 (8)0.128 (3)0.622 (11)
H15A0.51200.19761.07250.154*0.622 (11)
H15B0.49410.24681.18380.154*0.622 (11)
C15'0.4291 (10)0.2516 (6)1.0287 (12)0.082 (3)0.378 (11)
H15C0.45550.19830.99410.099*0.378 (11)
H15D0.47330.24791.12150.099*0.378 (11)
C160.5353 (10)0.3408 (6)1.0727 (9)0.174 (4)0.622 (11)
H16A0.47670.39311.06030.209*0.622 (11)
H16B0.61660.35351.14830.209*0.622 (11)
C16'0.4644 (9)0.3432 (6)0.9833 (10)0.100 (3)0.378 (11)
H16C0.42880.34310.89070.120*0.378 (11)
H16D0.42740.39591.00830.120*0.378 (11)
C170.5612 (12)0.3325 (9)0.9614 (9)0.179 (4)0.622 (11)
H17A0.61540.27880.97140.269*0.622 (11)
H17B0.60530.38780.95430.269*0.622 (11)
H17C0.48000.32550.88540.269*0.622 (11)
C17'0.6098 (10)0.3518 (14)1.0427 (18)0.194 (9)0.378 (11)
H17D0.64840.30931.11360.291*0.378 (11)
H17E0.63470.41481.07250.291*0.378 (11)
H17F0.63990.33700.98010.291*0.378 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1169 (5)0.0600 (4)0.0808 (4)0.0027 (3)0.0688 (4)0.0042 (3)
O10.1334 (13)0.0518 (9)0.0645 (8)0.0032 (8)0.0578 (9)0.0075 (7)
N10.1108 (14)0.0461 (10)0.0552 (9)0.0177 (9)0.0447 (9)0.0053 (7)
N20.1050 (12)0.0456 (9)0.0533 (9)0.0107 (8)0.0445 (9)0.0074 (7)
N30.142 (5)0.057 (2)0.080 (3)0.027 (3)0.075 (4)0.017 (2)
N3'0.087 (6)0.043 (3)0.047 (4)0.017 (4)0.035 (4)0.007 (3)
C10.0655 (11)0.0501 (11)0.0567 (10)0.0086 (9)0.0237 (9)0.0051 (8)
C20.1061 (17)0.0522 (13)0.0719 (13)0.0070 (11)0.0378 (12)0.0010 (10)
C30.1158 (19)0.0537 (14)0.0965 (18)0.0102 (13)0.0384 (16)0.0010 (13)
C40.112 (2)0.0737 (18)0.109 (2)0.0186 (15)0.0540 (17)0.0101 (15)
C50.1149 (19)0.0739 (17)0.1055 (19)0.0128 (14)0.0718 (16)0.0048 (14)
C60.0756 (13)0.0568 (12)0.0731 (12)0.0011 (9)0.0393 (11)0.0019 (10)
C70.0678 (11)0.0480 (11)0.0457 (9)0.0132 (8)0.0222 (8)0.0056 (8)
C80.0749 (12)0.0507 (11)0.0504 (10)0.0084 (9)0.0329 (9)0.0028 (8)
C90.0841 (13)0.0485 (11)0.0482 (10)0.0082 (9)0.0343 (9)0.0024 (8)
C100.1190 (17)0.0495 (12)0.0595 (11)0.0226 (11)0.0538 (12)0.0090 (9)
C110.212 (8)0.070 (3)0.125 (5)0.050 (5)0.132 (6)0.024 (3)
C11'0.175 (13)0.053 (6)0.055 (6)0.052 (8)0.078 (8)0.018 (4)
C120.126 (4)0.135 (5)0.105 (3)0.038 (3)0.063 (3)0.008 (3)
C12'0.204 (15)0.134 (14)0.103 (8)0.106 (12)0.065 (8)0.010 (7)
C130.131 (6)0.111 (6)0.210 (11)0.033 (4)0.109 (7)0.089 (7)
C13'0.221 (19)0.089 (10)0.040 (5)0.019 (10)0.028 (6)0.016 (5)
C140.126 (7)0.059 (3)0.053 (4)0.006 (4)0.041 (5)0.013 (2)
C14'0.088 (6)0.038 (3)0.049 (6)0.004 (4)0.039 (5)0.002 (3)
C150.113 (5)0.155 (6)0.090 (5)0.047 (4)0.022 (4)0.025 (4)
C15'0.078 (6)0.084 (5)0.080 (6)0.012 (4)0.032 (5)0.014 (4)
C160.145 (7)0.237 (10)0.135 (8)0.084 (6)0.058 (6)0.015 (6)
C16'0.112 (6)0.109 (6)0.073 (5)0.034 (5)0.034 (5)0.001 (4)
C170.162 (9)0.259 (12)0.140 (7)0.051 (8)0.088 (7)0.006 (8)
C17'0.157 (12)0.262 (19)0.145 (14)0.116 (13)0.052 (10)0.013 (14)
Geometric parameters (Å, º) top
N3—C111.482 (9)C12'—H12D0.9600
N3—H3A0.8600C12'—H12E0.9600
N3'—C11'1.387 (16)C12'—H12F0.9600
N3'—H3'0.8600C13—H13A0.9600
C1—C21.392 (3)C13—H13B0.9600
C1—C61.397 (3)C13—H13C0.9600
C1—C71.448 (3)C13'—H13D0.9600
C2—C31.374 (3)C13'—H13E0.9600
C2—H20.9300C13'—H13F0.9600
C3—C41.384 (4)C14—C151.507 (7)
C3—H30.9300C14—N21.544 (7)
C4—C51.364 (4)C14—H14A0.9700
C4—H40.9300C14—H14B0.9700
C5—C61.395 (3)C14'—N21.452 (9)
C5—H50.9300C14'—C15'1.528 (9)
C6—S11.743 (2)C14'—H14C0.9700
C7—N11.359 (3)C14'—H14D0.9700
C7—C81.369 (3)C15—C161.528 (7)
C8—C91.416 (3)C15—H15A0.9700
C8—S11.741 (2)C15—H15B0.9700
C9—O11.235 (2)C15'—C16'1.531 (8)
C9—N21.405 (2)C15'—H15C0.9700
C10—N11.308 (3)C15'—H15D0.9700
C10—N3'1.361 (10)C16—C171.461 (8)
C10—N21.389 (3)C16—H16A0.9700
C10—N31.394 (5)C16—H16B0.9700
C11—C131.490 (7)C16'—C17'1.493 (9)
C11—C121.508 (7)C16'—H16C0.9700
C11—H110.9800C16'—H16D0.9700
C11'—C13'1.499 (9)C17—H17A0.9600
C11'—C12'1.510 (9)C17—H17B0.9600
C11'—H11'0.9800C17—H17C0.9600
C12—H12A0.9600C17'—H17D0.9600
C12—H12B0.9600C17'—H17E0.9600
C12—H12C0.9600C17'—H17F0.9600
C8—S1—C690.27 (10)C12'—C11'—H11'102.4
C10—N1—C7115.57 (16)C11'—C12'—H12D109.5
C10—N2—C9121.65 (17)C11'—C12'—H12E109.5
C10—N2—C14'119.9 (6)H12D—C12'—H12E109.5
C9—N2—C14'118.0 (6)C11'—C12'—H12F109.5
C10—N2—C14121.9 (4)H12D—C12'—H12F109.5
C9—N2—C14115.1 (4)H12E—C12'—H12F109.5
C10—N3—C11122.4 (6)C11'—C13'—H13D109.5
C10—N3—H3A118.8C11'—C13'—H13E109.5
C11—N3—H3A118.8H13D—C13'—H13E109.5
C10—N3'—C11'121.0 (10)C11'—C13'—H13F109.5
C10—N3'—H3'119.5H13D—C13'—H13F109.5
C11'—N3'—H3'119.5H13E—C13'—H13F109.5
C2—C1—C6119.5 (2)C15—C14—N2116.4 (6)
C2—C1—C7129.1 (2)C15—C14—H14A108.2
C6—C1—C7111.39 (18)N2—C14—H14A108.2
C3—C2—C1119.2 (2)C15—C14—H14B108.2
C3—C2—H2120.4N2—C14—H14B108.2
C1—C2—H2120.4H14A—C14—H14B107.3
C2—C3—C4121.1 (2)N2—C14'—C15'103.6 (7)
C2—C3—H3119.5N2—C14'—H14C111.0
C4—C3—H3119.5C15'—C14'—H14C111.0
C5—C4—C3120.5 (2)N2—C14'—H14D111.0
C5—C4—H4119.7C15'—C14'—H14D111.0
C3—C4—H4119.7H14C—C14'—H14D109.0
C4—C5—C6119.4 (3)C14—C15—C16111.7 (6)
C4—C5—H5120.3C14—C15—H15A109.3
C6—C5—H5120.3C16—C15—H15A109.3
C5—C6—C1120.2 (2)C14—C15—H15B109.3
C5—C6—S1127.07 (19)C16—C15—H15B109.3
C1—C6—S1112.71 (16)H15A—C15—H15B107.9
N1—C7—C8124.20 (18)C14'—C15'—C16'107.1 (7)
N1—C7—C1123.82 (17)C14'—C15'—H15C110.3
C8—C7—C1111.94 (18)C16'—C15'—H15C110.3
C7—C8—C9121.09 (18)C14'—C15'—H15D110.3
C7—C8—S1113.69 (15)C16'—C15'—H15D110.3
C9—C8—S1125.23 (15)H15C—C15'—H15D108.5
O1—C9—N2120.20 (18)C17—C16—C15111.5 (7)
O1—C9—C8126.63 (18)C17—C16—H16A109.3
N2—C9—C8113.17 (16)C15—C16—H16A109.3
N1—C10—N3'113.4 (6)C17—C16—H16B109.3
N1—C10—N2124.28 (18)C15—C16—H16B109.3
N3'—C10—N2119.7 (5)H16A—C16—H16B108.0
N1—C10—N3120.3 (3)C17'—C16'—C15'108.7 (7)
N2—C10—N3114.6 (3)C17'—C16'—H16C109.9
N3—C11—C13107.2 (6)C15'—C16'—H16C109.9
N3—C11—C12106.0 (6)C17'—C16'—H16D109.9
C13—C11—C12111.5 (5)C15'—C16'—H16D109.9
N3—C11—H11110.7H16C—C16'—H16D108.3
C13—C11—H11110.7C16'—C17'—H17D109.5
C12—C11—H11110.7C16'—C17'—H17E109.5
N3'—C11'—C13'113.8 (11)H17D—C17'—H17E109.5
N3'—C11'—C12'122.5 (11)C16'—C17'—H17F109.5
C13'—C11'—C12'110.1 (8)H17D—C17'—H17F109.5
N3'—C11'—H11'102.4H17E—C17'—H17F109.5
C13'—C11'—H11'102.4
C6—C1—C2—C30.3 (3)C14—C15—C16—C1784.7 (12)
C7—C1—C2—C3178.9 (2)N2—C14'—C15'—C16'178.1 (8)
C1—C2—C3—C40.2 (4)C14'—C15'—C16'—C17'172.6 (15)
C2—C3—C4—C50.1 (4)N3'—C10—N1—C7160.1 (5)
C3—C4—C5—C60.3 (4)N2—C10—N1—C71.3 (3)
C4—C5—C6—C10.1 (4)N3—C10—N1—C7170.8 (4)
C4—C5—C6—S1179.2 (2)C8—C7—N1—C100.5 (3)
C2—C1—C6—C50.2 (3)C1—C7—N1—C10178.05 (18)
C7—C1—C6—C5179.2 (2)N1—C10—N2—C92.2 (3)
C2—C1—C6—S1179.60 (17)N3'—C10—N2—C9158.1 (6)
C7—C1—C6—S10.2 (2)N3—C10—N2—C9172.3 (4)
C2—C1—C7—N11.2 (3)N1—C10—N2—C14'173.8 (6)
C6—C1—C7—N1178.14 (17)N3'—C10—N2—C14'13.5 (8)
C2—C1—C7—C8178.9 (2)N3—C10—N2—C14'16.1 (7)
C6—C1—C7—C80.4 (2)N1—C10—N2—C14164.2 (4)
N1—C7—C8—C91.5 (3)N3'—C10—N2—C1435.5 (7)
C1—C7—C8—C9179.22 (17)N3—C10—N2—C145.9 (6)
N1—C7—C8—S1178.56 (15)O1—C9—N2—C10179.5 (2)
C1—C7—C8—S10.8 (2)C8—C9—N2—C101.1 (3)
C7—C8—C9—O1178.78 (19)O1—C9—N2—C14'7.7 (6)
S1—C8—C9—O11.2 (3)C8—C9—N2—C14'172.9 (5)
C7—C8—C9—N20.5 (3)O1—C9—N2—C1413.3 (4)
S1—C8—C9—N2179.48 (14)C8—C9—N2—C14166.1 (4)
N1—C10—N3—C110.8 (8)C15'—C14'—N2—C1080.9 (8)
N3'—C10—N3—C1181.1 (18)C15'—C14'—N2—C9107.1 (8)
N2—C10—N3—C11171.4 (5)C15'—C14'—N2—C1421 (2)
C10—N3—C11—C1395.4 (8)C15—C14—N2—C1082.4 (8)
C10—N3—C11—C12145.4 (7)C15—C14—N2—C984.8 (8)
N1—C10—N3'—C11'25.1 (12)C15—C14—N2—C14'172 (3)
N2—C10—N3'—C11'172.6 (9)C7—C8—S1—C60.77 (16)
N3—C10—N3'—C11'86.3 (17)C9—C8—S1—C6179.24 (19)
C10—N3'—C11'—C13'161.8 (14)C5—C6—S1—C8178.8 (2)
C10—N3'—C11'—C12'61.6 (18)C1—C6—S1—C80.55 (16)
N2—C14—C15—C16178.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.972.523.478 (9)171
N3—H3A···O1i0.862.463.140 (6)137
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H21N3OS
Mr315.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.4322 (6), 14.2791 (8), 11.6704 (6)
β (°) 116.606 (1)
V3)1703.36 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15640, 3712, 2599
Rint0.054
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.175, 1.04
No. of reflections3712
No. of parameters279
No. of restraints23
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.972.523.478 (9)171.1
N3—H3A···O1i0.862.463.140 (6)136.9
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The author acknowledges the National Basic Research Program of China (grant No. 2004CCA00100) and the National Natural Science Foundation of China (grant No. 20102001).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SHELXTL (Version 6.12), SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChambhare, R. V., Khadse, B. G., Bobde, A. S. & Bahekar, R. H. (2003). Eur. J. Med. Chem. 38, 89–100.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDing, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem. 69, 8366–8371.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds