organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-benzyl­sulfanyl-7-(2-chloro­phen­yl)-5-methyl-4,7-di­hydro-1,2,4-triazolo[1,5-a]pyrimidine-6-carboxyl­ate

aCollege of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and bKey Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
*Correspondence e-mail: qchen@mail.ccnu.edu.cn

(Received 22 November 2007; accepted 22 November 2007; online 6 December 2007)

In the title compound, C22H21ClN4O2S, the bicyclic triazolopyrimidine ring system is nearly planar, and oriented at dihedral angles of 89.45 (3)° with respect to the chlorobenzene ring and 87.03 (3)° with respect to the terminal phenyl ring. In the crystal structure, mol­ecules are linked by ππ stacking inter­actions between the triazolopyrimidine rings [centroid–centroid distances of 3.88 (1) and 3.63 (1) Å].

Related literature

For general background, see: Fedorova et al. (2003[Fedorova, O. V., Zhidovinova, M. S., Rusinov, G. L. & Ovchinnikova, I. G. (2003). Russ. Chem. Bull. Int. Ed. 52, 1768-1769.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H21ClN4O2S

  • Mr = 440.94

  • Triclinic, [P \overline 1]

  • a = 7.5884 (9) Å

  • b = 10.7303 (12) Å

  • c = 14.8825 (16) Å

  • α = 70.655 (2)°

  • β = 86.097 (2)°

  • γ = 70.032 (2)°

  • V = 1073.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 292 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 4K CCD area-detector diffractometer

  • Absorption correction: none

  • 7183 measured reflections

  • 4374 independent reflections

  • 3305 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.143

  • S = 1.07

  • 4374 reflections

  • 277 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SHELXTL (Version 6.12), SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SHELXTL (Version 6.12), SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Bruker, 2001[Bruker (2001). SHELXTL (Version 6.12), SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

In recent years, growing attention has been paid to analogues of purines and nucleosides, including azolopyrimidines containing the bridge head nitrogen atom and their dihydro derivatives, among which promising biologically active compounds were found (Fedorova et al., 2003). We synthesized a novel class of ethyl 7-alkylthio-4,7-dihydro-1,2,4-triazolo[1,5-a]pyrimidine-6- carboxylate derivatives by three component condensation of 3-amino-5-alkyl- thio-1,2,4-triazoles with aromatic aldehydes and β-keto ester. We report herein the crystal structure of one such analogue, a triazolopyrimidine derivative, the title compound, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A (C1—C6), B (N1—N3/C8/C9), C (N3/N4/C9/C10/C12/C13) and D (C14—C19) are, of course, planar. The bicyclic triazolopyrimidine ring system (N1—N4/C8—C10/C12/C13) is nearly planar with a maximum deviation of 0.034 (2) Å (for atom C8), and it is oriented with respect to rings A and D at dihedral angles of 87.03 (3)° and 89.45 (3)°, respectively.

In the crystal structure (Fig. 2), molecules are linked by π···π stacking interactions involving B and C rings of the adjacent molecules with a centroid-centroid distance of 3.88 (1) Å (symmetry code: 1 - x, -y, 1 - z). The adjacent B rings have a centroid-centroid distance of 3.63 (1) %A (symmetry code: 1 - x, -y, 1 - z).

Related literature top

For general background, see: Fedorova et al. (2003). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, a mixture of acetylacetic ester (1 mmol), 2-chloro benzaldehyde (1 mmol) and 3-amino-5-benzyllthio-1,2,4 -triazole (1 mmol) in EtOH (3 ml) was added into a microwave tube. The sealed tube was placed in a Smith synthesizer and irradiated at 323 K for 30 min. The reaction mixture was cooled to room temperature, and the precipitate was filtered and recrystallized from ethanol to give the title compound, (I). Single crystals of (I), suitable for X-ray analysis were grown from an acetone solution at 293 K. 1H NMR (CDCl3, 400 MHz): σ 10.89(s, 1 H), 7.14–7.41(m, 9 H), 6.84(s, 1H), 4.25(d, 1H), 4.11(d, 1H), 4.02(q,2 H), 2.59(s, 3H),1.08(t, 3H).

Refinement top

H atom (for NH) was located in a difference sythesis and refined isotropically [N—H = 0.857 (10) Å and Uiso(H) = 0.060 (7) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

In recent years, growing attention has been paid to analogues of purines and nucleosides, including azolopyrimidines containing the bridge head nitrogen atom and their dihydro derivatives, among which promising biologically active compounds were found (Fedorova et al., 2003). We synthesized a novel class of ethyl 7-alkylthio-4,7-dihydro-1,2,4-triazolo[1,5-a]pyrimidine-6- carboxylate derivatives by three component condensation of 3-amino-5-alkyl- thio-1,2,4-triazoles with aromatic aldehydes and β-keto ester. We report herein the crystal structure of one such analogue, a triazolopyrimidine derivative, the title compound, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A (C1—C6), B (N1—N3/C8/C9), C (N3/N4/C9/C10/C12/C13) and D (C14—C19) are, of course, planar. The bicyclic triazolopyrimidine ring system (N1—N4/C8—C10/C12/C13) is nearly planar with a maximum deviation of 0.034 (2) Å (for atom C8), and it is oriented with respect to rings A and D at dihedral angles of 87.03 (3)° and 89.45 (3)°, respectively.

In the crystal structure (Fig. 2), molecules are linked by π···π stacking interactions involving B and C rings of the adjacent molecules with a centroid-centroid distance of 3.88 (1) Å (symmetry code: 1 - x, -y, 1 - z). The adjacent B rings have a centroid-centroid distance of 3.63 (1) %A (symmetry code: 1 - x, -y, 1 - z).

For general background, see: Fedorova et al. (2003). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
Ethyl 2-benzylsulfanyl-7-(2-chlorophenyl)-5-methyl-4,7-dihydro-1,2,4-τriazolo[1,5-a]pyrimidine-6-carboxylate top
Crystal data top
C22H21ClN4O2SZ = 2
Mr = 440.94F(000) = 460
Triclinic, P1Dx = 1.364 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5884 (9) ÅCell parameters from 2807 reflections
b = 10.7303 (12) Åθ = 2.9–27.5°
c = 14.8825 (16) ŵ = 0.30 mm1
α = 70.655 (2)°T = 292 K
β = 86.097 (2)°Block, colorless
γ = 70.032 (2)°0.30 × 0.20 × 0.20 mm
V = 1073.3 (2) Å3
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3305 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 26.5°, θmin = 2.1°
φ and ω scansh = 99
7183 measured reflectionsk = 139
4374 independent reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0766P)2 + 0.0197P]
where P = (Fo2 + 2Fc2)/3
4374 reflections(Δ/σ)max = 0.004
277 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
C22H21ClN4O2Sγ = 70.032 (2)°
Mr = 440.94V = 1073.3 (2) Å3
Triclinic, P1Z = 2
a = 7.5884 (9) ÅMo Kα radiation
b = 10.7303 (12) ŵ = 0.30 mm1
c = 14.8825 (16) ÅT = 292 K
α = 70.655 (2)°0.30 × 0.20 × 0.20 mm
β = 86.097 (2)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
3305 reflections with I > 2σ(I)
7183 measured reflectionsRint = 0.042
4374 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.27 e Å3
4374 reflectionsΔρmin = 0.25 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.00615 (8)0.74321 (8)0.62526 (6)0.0777 (3)
S10.56904 (7)0.74334 (6)0.26984 (4)0.04454 (19)
O10.3353 (2)0.58296 (17)0.80362 (10)0.0535 (4)
O20.6149 (3)0.4999 (3)0.87766 (13)0.1116 (10)
N10.4468 (2)0.69605 (17)0.45014 (11)0.0355 (4)
N20.7612 (2)0.59780 (17)0.43894 (11)0.0348 (4)
N30.5383 (2)0.62604 (17)0.53959 (11)0.0341 (4)
N40.8411 (2)0.4984 (2)0.60747 (12)0.0427 (5)
H4A0.9574 (16)0.473 (2)0.5949 (17)0.060 (7)*
C10.3133 (4)1.0947 (3)0.1521 (2)0.0676 (7)
H10.33801.10770.20810.081*
C20.2929 (4)1.2023 (3)0.0662 (2)0.0850 (10)
H20.30461.28650.06460.102*
C30.2559 (4)1.1840 (4)0.0153 (2)0.0835 (10)
H30.24311.25590.07320.100*
C40.2374 (4)1.0625 (4)0.0136 (2)0.0831 (10)
H40.21191.05070.06990.100*
C50.2567 (4)0.9554 (3)0.07242 (19)0.0660 (7)
H50.24170.87230.07370.079*
C60.2977 (3)0.9705 (3)0.15594 (15)0.0495 (6)
C70.3236 (3)0.8548 (3)0.24988 (18)0.0621 (7)
H7A0.24580.79960.24950.075*
H7B0.28590.89440.30090.075*
C80.5887 (3)0.6745 (2)0.39400 (13)0.0341 (4)
C90.7215 (2)0.5707 (2)0.52975 (13)0.0317 (4)
C100.7745 (3)0.4899 (2)0.69732 (14)0.0383 (5)
C110.9306 (3)0.4099 (3)0.77410 (16)0.0550 (6)
H11A0.99490.47100.77830.082*
H11B1.01750.33180.75850.082*
H11C0.87850.37620.83420.082*
C120.5919 (3)0.5486 (2)0.70996 (14)0.0386 (5)
C130.4428 (3)0.6291 (2)0.62811 (13)0.0319 (4)
H130.35010.58180.63580.038*
C140.3429 (3)0.7812 (2)0.62213 (13)0.0350 (4)
C150.4487 (3)0.8657 (2)0.61846 (16)0.0492 (6)
H150.57890.82800.61980.059*
C160.3652 (5)1.0036 (3)0.6129 (2)0.0687 (8)
H160.43851.05840.61100.082*
C170.1726 (5)1.0605 (3)0.6103 (2)0.0786 (9)
H170.11581.15370.60700.094*
C180.0637 (4)0.9802 (3)0.61266 (19)0.0689 (8)
H180.06651.01930.60980.083*
C190.1489 (3)0.8412 (2)0.61929 (16)0.0466 (5)
C200.5222 (3)0.5380 (3)0.80635 (16)0.0561 (7)
C210.2431 (4)0.6005 (3)0.88953 (18)0.0694 (8)
H21A0.31700.52830.94510.083*
H21B0.12070.59060.88970.083*
C220.2210 (4)0.7414 (4)0.8942 (2)0.0875 (10)
H22A0.34250.74800.89980.131*
H22B0.15140.75470.94860.131*
H22C0.15470.81260.83720.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0371 (3)0.0746 (5)0.1093 (6)0.0209 (3)0.0024 (3)0.0116 (4)
S10.0428 (3)0.0496 (4)0.0296 (3)0.0035 (2)0.0003 (2)0.0104 (2)
O10.0514 (9)0.0655 (11)0.0360 (8)0.0116 (8)0.0119 (7)0.0175 (8)
O20.0598 (12)0.191 (3)0.0364 (11)0.0100 (14)0.0070 (9)0.0289 (13)
N10.0338 (8)0.0388 (10)0.0301 (8)0.0072 (7)0.0019 (6)0.0111 (7)
N20.0324 (8)0.0383 (10)0.0319 (9)0.0079 (7)0.0003 (6)0.0129 (7)
N30.0326 (8)0.0373 (9)0.0279 (8)0.0050 (7)0.0007 (6)0.0115 (7)
N40.0304 (9)0.0548 (12)0.0321 (9)0.0044 (8)0.0003 (7)0.0108 (8)
C10.0695 (17)0.0662 (18)0.0560 (16)0.0130 (14)0.0143 (13)0.0132 (14)
C20.081 (2)0.066 (2)0.081 (2)0.0156 (17)0.0161 (17)0.0031 (17)
C30.0563 (17)0.096 (3)0.0545 (18)0.0082 (17)0.0071 (13)0.0148 (18)
C40.0726 (19)0.110 (3)0.0423 (16)0.0028 (19)0.0116 (13)0.0199 (17)
C50.0603 (16)0.0753 (19)0.0547 (16)0.0098 (14)0.0082 (12)0.0232 (14)
C60.0347 (11)0.0571 (15)0.0402 (12)0.0010 (10)0.0045 (9)0.0087 (11)
C70.0415 (12)0.0680 (17)0.0490 (14)0.0026 (12)0.0010 (10)0.0002 (12)
C80.0394 (10)0.0297 (10)0.0310 (10)0.0069 (8)0.0003 (8)0.0118 (8)
C90.0294 (9)0.0324 (10)0.0337 (10)0.0097 (8)0.0005 (8)0.0120 (8)
C100.0410 (11)0.0388 (12)0.0308 (10)0.0102 (9)0.0009 (8)0.0087 (9)
C110.0398 (12)0.0708 (17)0.0410 (13)0.0093 (11)0.0071 (9)0.0094 (12)
C120.0404 (11)0.0395 (12)0.0312 (10)0.0084 (9)0.0010 (8)0.0104 (9)
C130.0311 (9)0.0358 (11)0.0295 (10)0.0119 (8)0.0045 (7)0.0118 (8)
C140.0390 (10)0.0359 (11)0.0291 (10)0.0116 (9)0.0036 (8)0.0111 (8)
C150.0508 (13)0.0477 (14)0.0553 (14)0.0207 (11)0.0022 (11)0.0205 (11)
C160.097 (2)0.0515 (16)0.0724 (19)0.0353 (16)0.0013 (16)0.0280 (14)
C170.114 (3)0.0395 (15)0.0695 (19)0.0033 (17)0.0066 (17)0.0253 (14)
C180.0657 (17)0.0520 (16)0.0658 (17)0.0071 (13)0.0101 (13)0.0194 (14)
C190.0425 (12)0.0437 (13)0.0452 (12)0.0071 (10)0.0046 (9)0.0123 (10)
C200.0497 (13)0.0652 (16)0.0344 (12)0.0010 (11)0.0008 (10)0.0109 (11)
C210.0662 (17)0.090 (2)0.0438 (14)0.0183 (15)0.0244 (12)0.0237 (14)
C220.080 (2)0.109 (3)0.082 (2)0.0193 (19)0.0220 (17)0.058 (2)
Geometric parameters (Å, º) top
Cl1—C191.729 (2)C10—C111.512 (3)
N1—C81.322 (2)C11—H11A0.9600
N1—N31.387 (2)C11—H11B0.9600
N2—C91.321 (2)C11—H11C0.9600
N2—C81.362 (2)C12—C201.477 (3)
N3—C91.332 (2)C12—C131.528 (3)
N3—C131.464 (2)C13—C141.521 (3)
N4—C91.353 (2)C13—H130.9800
N4—C101.382 (2)C14—C191.388 (3)
N4—H4A0.857 (10)C14—C151.388 (3)
C1—C61.360 (4)C15—C161.373 (3)
C1—C21.385 (4)C15—H150.9300
C1—H10.9300C16—C171.376 (4)
C2—C31.354 (4)C16—H160.9300
C2—H20.9300C17—C181.374 (4)
C3—C41.350 (4)C17—H170.9300
C3—H30.9300C18—C191.381 (3)
C4—C51.384 (4)C18—H180.9300
C4—H40.9300C20—O21.186 (3)
C5—C61.375 (3)C20—O11.331 (3)
C5—H50.9300C21—O11.452 (3)
C6—C71.502 (3)C21—C221.488 (4)
C7—S11.818 (2)C21—H21A0.9700
C7—H7A0.9700C21—H21B0.9700
C7—H7B0.9700C22—H22A0.9600
C8—S11.744 (2)C22—H22B0.9600
C10—C121.341 (3)C22—H22C0.9600
C8—N1—N3101.27 (15)H11B—C11—H11C109.5
C9—N2—C8102.11 (15)C10—C12—C20121.06 (19)
C9—N3—N1109.35 (15)C10—C12—C13123.50 (18)
C9—N3—C13127.46 (15)C20—C12—C13115.45 (17)
N1—N3—C13122.90 (14)N3—C13—C14108.91 (15)
C9—N4—C10119.78 (17)N3—C13—C12107.18 (15)
C9—N4—H4A114.4 (16)C14—C13—C12113.01 (16)
C10—N4—H4A125.0 (16)N3—C13—H13109.2
C6—C1—C2121.1 (3)C14—C13—H13109.2
C6—C1—H1119.4C12—C13—H13109.2
C2—C1—H1119.4C19—C14—C15117.7 (2)
C3—C2—C1119.5 (3)C19—C14—C13123.08 (19)
C3—C2—H2120.2C15—C14—C13119.19 (18)
C1—C2—H2120.2C16—C15—C14121.4 (2)
C4—C3—C2120.6 (3)C16—C15—H15119.3
C4—C3—H3119.7C14—C15—H15119.3
C2—C3—H3119.7C15—C16—C17119.7 (3)
C3—C4—C5119.8 (3)C15—C16—H16120.2
C3—C4—H4120.1C17—C16—H16120.2
C5—C4—H4120.1C18—C17—C16120.4 (2)
C6—C5—C4120.6 (3)C18—C17—H17119.8
C6—C5—H5119.7C16—C17—H17119.8
C4—C5—H5119.7C17—C18—C19119.5 (3)
C1—C6—C5118.3 (2)C17—C18—H18120.2
C1—C6—C7120.0 (2)C19—C18—H18120.2
C5—C6—C7121.7 (3)C18—C19—C14121.2 (2)
C6—C7—S1109.29 (16)C18—C19—Cl1117.8 (2)
C6—C7—H7A109.8C14—C19—Cl1120.93 (17)
S1—C7—H7A109.8O2—C20—O1122.7 (2)
C6—C7—H7B109.8O2—C20—C12126.4 (2)
S1—C7—H7B109.8O1—C20—C12110.83 (19)
H7A—C7—H7B108.3O1—C21—C22110.2 (2)
N1—C8—N2115.88 (17)O1—C21—H21A109.6
N1—C8—S1124.52 (15)C22—C21—H21A109.6
N2—C8—S1119.54 (14)O1—C21—H21B109.6
N2—C9—N3111.39 (16)C22—C21—H21B109.6
N2—C9—N4128.22 (17)H21A—C21—H21B108.1
N3—C9—N4120.38 (17)C21—C22—H22A109.5
C12—C10—N4121.53 (18)C21—C22—H22B109.5
C12—C10—C11126.76 (19)H22A—C22—H22B109.5
N4—C10—C11111.71 (18)C21—C22—H22C109.5
C10—C11—H11A109.5H22A—C22—H22C109.5
C10—C11—H11B109.5H22B—C22—H22C109.5
H11A—C11—H11B109.5C20—O1—C21117.94 (19)
C10—C11—H11C109.5C8—S1—C7101.13 (10)
H11A—C11—H11C109.5
C8—N1—N3—C90.3 (2)C9—N3—C13—C123.3 (3)
C8—N1—N3—C13174.42 (17)N1—N3—C13—C12176.31 (16)
C6—C1—C2—C30.3 (5)C10—C12—C13—N30.6 (3)
C1—C2—C3—C40.5 (5)C20—C12—C13—N3179.11 (18)
C2—C3—C4—C50.1 (5)C10—C12—C13—C14119.4 (2)
C3—C4—C5—C61.1 (4)C20—C12—C13—C1460.9 (2)
C2—C1—C6—C51.5 (4)N3—C13—C14—C19113.7 (2)
C2—C1—C6—C7179.0 (2)C12—C13—C14—C19127.3 (2)
C4—C5—C6—C11.9 (4)N3—C13—C14—C1565.7 (2)
C4—C5—C6—C7178.6 (2)C12—C13—C14—C1553.3 (2)
C1—C6—C7—S191.0 (3)C19—C14—C15—C160.5 (3)
C5—C6—C7—S189.5 (3)C13—C14—C15—C16179.9 (2)
N3—N1—C8—N20.1 (2)C14—C15—C16—C170.4 (4)
N3—N1—C8—S1177.04 (14)C15—C16—C17—C180.4 (4)
C9—N2—C8—N10.2 (2)C16—C17—C18—C191.1 (4)
C9—N2—C8—S1176.97 (14)C17—C18—C19—C141.0 (4)
C8—N2—C9—N30.3 (2)C17—C18—C19—Cl1178.3 (2)
C8—N2—C9—N4179.2 (2)C15—C14—C19—C180.3 (3)
N1—N3—C9—N20.4 (2)C13—C14—C19—C18179.2 (2)
C13—N3—C9—N2174.21 (17)C15—C14—C19—Cl1179.04 (16)
N1—N3—C9—N4179.18 (18)C13—C14—C19—Cl11.5 (3)
C13—N3—C9—N45.4 (3)C10—C12—C20—O212.7 (4)
C10—N4—C9—N2175.17 (19)C13—C12—C20—O2167.6 (3)
C10—N4—C9—N34.3 (3)C10—C12—C20—O1169.8 (2)
C9—N4—C10—C121.9 (3)C13—C12—C20—O19.9 (3)
C9—N4—C10—C11177.66 (19)O2—C20—O1—C217.1 (4)
N4—C10—C12—C20179.6 (2)C12—C20—O1—C21170.5 (2)
C11—C10—C12—C201.0 (4)C22—C21—O1—C2085.4 (3)
N4—C10—C12—C130.1 (3)N1—C8—S1—C75.3 (2)
C11—C10—C12—C13179.4 (2)N2—C8—S1—C7171.56 (17)
C9—N3—C13—C14119.3 (2)C6—C7—S1—C8154.37 (19)
N1—N3—C13—C1453.7 (2)

Experimental details

Crystal data
Chemical formulaC22H21ClN4O2S
Mr440.94
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)7.5884 (9), 10.7303 (12), 14.8825 (16)
α, β, γ (°)70.655 (2), 86.097 (2), 70.032 (2)
V3)1073.3 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7183, 4374, 3305
Rint0.042
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.143, 1.07
No. of reflections4374
No. of parameters277
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2001).

 

Acknowledgements

This work was supported by NNSFC grants (Nos. 20572030, 20432010 and 20528201), the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (grant No. 705039), and the Programme for Excellent Research Groups of Hubei Province (grant No. 2004ABC002).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2001). SHELXTL (Version 6.12), SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFedorova, O. V., Zhidovinova, M. S., Rusinov, G. L. & Ovchinnikova, I. G. (2003). Russ. Chem. Bull. Int. Ed. 52, 1768–1769.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds