organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5-Phenyl-N′-(1-phenyl­ethyl­­idene)-1H-pyrazole-3-carbohydrazide

aNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net

(Received 22 November 2007; accepted 22 November 2007; online 21 December 2007)

In the mol­ecule of the title compound, C18H16N4O, the intra­molecular N—H⋯N hydrogen bond results in the formation of a planar five-membered ring, which is also co-planar with the adjacent five-membered ring, being oriented at a dihedral angle of 1.23 (3)°. The dihedral angles formed by the planar pyrazole ring with the adjacent phenyl ring and the other phenyl ring are 7.29 and 11.21°, respectively. The dihedral angle between the two phenyl rings is 18.07°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Ogretir et al. (2006[Ogretir, C., Dal, H., Berber, H. & Taktak, F. F. (2006). J. Chem. Eng. Data, 51, 46-50.]); Tarafder et al. (2000[Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456-460.]); Deschamps et al. (2003[Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366-7368.]); Wu et al. (2006[Wu, L.-B., Hu, Z.-Q. & Lai, G.-Q. (2006). Chin. J. Struct. Chem. 25, 567-571.]). For related literature, see: Yang & Raptis (2003[Yang, G. & Raptis, R. G. (2003). J. Heterocycl. Chem. 32, 659-664.]); Ali et al. (2005[Ali, H. M., Puvaneswary, S. & Ng, S. W. (2005). Acta Cryst. E61, o3464-o3465.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H16N4O

  • Mr = 304.35

  • Tetragonal, P 43

  • a = 8.0190 (11) Å

  • c = 24.147 (5) Å

  • V = 1552.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 294 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3737 measured reflections

  • 1686 independent reflections

  • 1017 reflections with I > 2σ(I)

  • Rint = 0.081

  • 3 standard reflections every 100 reflections intensity decay: 4.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.143

  • S = 1.04

  • 1686 reflections

  • 209 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N3 0.86 2.34 2.714 (2) 107
N4—H4A⋯O1i 0.86 1.98 2.788 (2) 157
Symmetry code: (i) [-x+1, -y, z-{\script{1\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL/PC (Siemens, 1990[Siemens (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Ogretir et al., 2006). As dinegatively charged ligands, Schiff bases show potential as antimicrobial and anticancer agents (Tarafder et al., 2000; Deschamps et al., 2003) and so have biochemical and pharmacological applications. In addition, the chemical behavior of metal complexes with Schiff base ligands has attracted much attention because of their catalytic activity in some industrial and biochemical processes (Wu et al., 2006). The title compound, (I), was synthesized as part of our study of these ligands and we report herein its crystal structure.

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). They are in good agreement with the corresponding values reported (Yang & Raptis, 2003). The C7—N1 [1.285 (6) Å] bond has a double-bond character (Ali et al., 2005). The intramolecular N—H···N hydrogen bond (Table 1) results in the formation of a planar five-membered ring B (N2/H2A/N3/C9/C1). Rings A (C1—C6), C (N3/N4/C10—C11) and D (C13—C18) are, of course, planar and the dihedral angles between them are A/B = 11.06 (3)°, A/C = 11.10 (3)°, A/D = 17.82 (2)°, B/C = 1.23 (3)°, B/D = 7.85 (3)° and C/D = 7.15 (3)°. So, rings B and C are also co-planar.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Ogretir et al. (2006); Tarafder et al. (2000); Deschamps et al. (2003); Wu et al. (2006). For related literature, see: Yang & Raptis (2003); Ali et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 5-phenyl-1H-pyrazole-3-carbohydrazide (10 mmol) with acetophenone (10 mmol) was stirred in refluxing ethanol (30 ml) for 5 h to afford the title compound, (I), (yield; 81%). Single crystals suitable for X-ray analysis were obtained by recrystallization from dimethylformamide (DMF) at 309 K.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

Schiff bases have been used extensively as ligands in the field of coordination chemistry (Ogretir et al., 2006). As dinegatively charged ligands, Schiff bases show potential as antimicrobial and anticancer agents (Tarafder et al., 2000; Deschamps et al., 2003) and so have biochemical and pharmacological applications. In addition, the chemical behavior of metal complexes with Schiff base ligands has attracted much attention because of their catalytic activity in some industrial and biochemical processes (Wu et al., 2006). The title compound, (I), was synthesized as part of our study of these ligands and we report herein its crystal structure.

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). They are in good agreement with the corresponding values reported (Yang & Raptis, 2003). The C7—N1 [1.285 (6) Å] bond has a double-bond character (Ali et al., 2005). The intramolecular N—H···N hydrogen bond (Table 1) results in the formation of a planar five-membered ring B (N2/H2A/N3/C9/C1). Rings A (C1—C6), C (N3/N4/C10—C11) and D (C13—C18) are, of course, planar and the dihedral angles between them are A/B = 11.06 (3)°, A/C = 11.10 (3)°, A/D = 17.82 (2)°, B/C = 1.23 (3)°, B/D = 7.85 (3)° and C/D = 7.15 (3)°. So, rings B and C are also co-planar.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.

For general background, see: Ogretir et al. (2006); Tarafder et al. (2000); Deschamps et al. (2003); Wu et al. (2006). For related literature, see: Yang & Raptis (2003); Ali et al. (2005). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Siemens, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
(E)-5-Phenyl-N'-(1-phenylethylidene)-1H-pyrazole-3-carbohydrazide top
Crystal data top
C18H16N4ODx = 1.302 Mg m3
Mr = 304.35Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 25 reflections
Hall symbol: P 4cwθ = 1–25°
a = 8.0190 (11) ŵ = 0.08 mm1
c = 24.147 (5) ÅT = 294 K
V = 1552.8 (4) Å3Block, yellow
Z = 40.25 × 0.20 × 0.18 mm
F(000) = 640
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.081
Radiation source: fine-focus sealed tubeθmax = 26.9°, θmin = 2.5°
Graphite monochromatorh = 09
ω scansk = 09
3737 measured reflectionsl = 2828
1686 independent reflections3 standard reflections every 100 reflections
1017 reflections with I > 2σ(I) intensity decay: 4.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0792P)2]
where P = (Fo2 + 2Fc2)/3
1686 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
C18H16N4OZ = 4
Mr = 304.35Mo Kα radiation
Tetragonal, P43µ = 0.08 mm1
a = 8.0190 (11) ÅT = 294 K
c = 24.147 (5) Å0.25 × 0.20 × 0.18 mm
V = 1552.8 (4) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.081
3737 measured reflections3 standard reflections every 100 reflections
1686 independent reflections intensity decay: 4.1%
1017 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.143H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
1686 reflectionsΔρmin = 0.32 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6526 (4)0.7885 (4)0.19156 (14)0.0530 (9)
N10.8996 (5)0.5984 (5)0.14452 (17)0.0484 (9)
N20.7574 (4)0.6473 (5)0.11695 (18)0.0495 (10)
H2A0.74230.61860.08300.059*
N30.4872 (4)0.7339 (5)0.05571 (16)0.0477 (10)
N40.3421 (5)0.7929 (5)0.03787 (17)0.0467 (9)
H4A0.30600.77770.00470.056*
C11.2768 (6)0.3604 (6)0.1231 (3)0.0600 (14)
H1B1.25460.31290.08880.072*
C21.4206 (7)0.3174 (7)0.1507 (3)0.0700 (16)
H2B1.49180.23810.13550.084*
C31.4605 (6)0.3911 (7)0.2008 (3)0.0615 (14)
H3B1.56000.36580.21870.074*
C41.3495 (7)0.5025 (7)0.2236 (2)0.0624 (14)
H4B1.37370.55050.25780.075*
C51.2040 (6)0.5445 (6)0.1972 (2)0.0547 (13)
H5A1.13140.62030.21350.066*
C61.1639 (5)0.4735 (6)0.1456 (2)0.0445 (11)
C71.0116 (6)0.5222 (5)0.1161 (2)0.0427 (10)
C80.9950 (7)0.4862 (7)0.0543 (2)0.0612 (14)
H8A0.96200.58610.03540.092*
H8B0.91230.40130.04870.092*
H8C1.10020.44850.04010.092*
C90.6421 (6)0.7398 (5)0.1432 (2)0.0445 (11)
C100.4972 (5)0.7848 (5)0.10870 (19)0.0401 (9)
C110.3586 (5)0.8767 (5)0.12334 (19)0.0424 (10)
H11A0.33780.92670.15740.051*
C120.2562 (5)0.8794 (5)0.07682 (19)0.0403 (10)
C130.0915 (5)0.9501 (5)0.06862 (18)0.0384 (10)
C140.0112 (6)0.9482 (7)0.0169 (2)0.0552 (13)
H14A0.06580.90530.01400.066*
C150.1487 (7)1.0101 (7)0.0119 (3)0.0645 (15)
H15A0.20251.00520.02210.077*
C160.2297 (6)1.0789 (7)0.0566 (2)0.0594 (14)
H16A0.33611.12330.05250.071*
C170.1517 (6)1.0818 (7)0.1080 (2)0.0581 (13)
H17A0.20591.12640.13860.070*
C180.0066 (6)1.0182 (6)0.1129 (2)0.0514 (12)
H18A0.05841.02110.14740.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.064 (2)0.071 (2)0.024 (2)0.0045 (16)0.0093 (14)0.0017 (15)
N10.052 (2)0.058 (2)0.035 (3)0.0014 (18)0.0090 (18)0.0042 (18)
N20.052 (2)0.066 (2)0.030 (2)0.0052 (19)0.0083 (18)0.0035 (19)
N30.048 (2)0.062 (2)0.033 (2)0.0054 (18)0.0069 (17)0.0105 (17)
N40.050 (2)0.061 (2)0.029 (2)0.0088 (18)0.0065 (17)0.0093 (17)
C10.056 (3)0.071 (3)0.053 (4)0.002 (3)0.003 (3)0.012 (3)
C20.056 (3)0.072 (4)0.082 (5)0.005 (3)0.000 (3)0.011 (3)
C30.055 (3)0.075 (3)0.054 (4)0.003 (3)0.010 (3)0.009 (3)
C40.067 (3)0.075 (3)0.044 (4)0.008 (3)0.008 (3)0.004 (3)
C50.060 (3)0.056 (3)0.048 (4)0.002 (2)0.007 (2)0.002 (2)
C60.045 (2)0.045 (2)0.043 (3)0.005 (2)0.004 (2)0.005 (2)
C70.047 (2)0.052 (2)0.029 (3)0.004 (2)0.0008 (19)0.001 (2)
C80.067 (3)0.076 (3)0.041 (4)0.004 (3)0.001 (2)0.004 (2)
C90.053 (3)0.050 (3)0.031 (3)0.009 (2)0.004 (2)0.003 (2)
C100.049 (2)0.050 (2)0.022 (2)0.003 (2)0.0065 (18)0.0004 (18)
C110.055 (3)0.046 (2)0.027 (3)0.001 (2)0.003 (2)0.0047 (18)
C120.049 (2)0.047 (2)0.024 (3)0.0011 (19)0.0063 (18)0.0003 (19)
C130.047 (2)0.042 (2)0.026 (3)0.0015 (18)0.0018 (18)0.0020 (18)
C140.064 (3)0.074 (3)0.028 (3)0.018 (3)0.005 (2)0.003 (2)
C150.068 (3)0.095 (4)0.031 (3)0.022 (3)0.011 (2)0.007 (3)
C160.054 (3)0.075 (3)0.049 (4)0.015 (2)0.001 (2)0.012 (2)
C170.059 (3)0.077 (3)0.039 (3)0.013 (3)0.009 (2)0.000 (2)
C180.060 (3)0.068 (3)0.026 (3)0.000 (2)0.002 (2)0.002 (2)
Geometric parameters (Å, º) top
O1—C91.234 (6)C7—C81.526 (7)
N1—C71.285 (6)C8—H8A0.9600
N1—N21.378 (5)C8—H8B0.9600
N2—C91.344 (6)C8—H8C0.9600
N2—H2A0.8600C9—C101.474 (6)
N3—N41.328 (5)C10—C111.380 (6)
N3—C101.346 (6)C11—C121.392 (6)
N4—C121.357 (6)C11—H11A0.9300
N4—H4A0.8600C12—C131.451 (6)
C1—C21.375 (8)C13—C181.381 (7)
C1—C61.391 (7)C13—C141.406 (7)
C1—H1B0.9300C14—C151.380 (7)
C2—C31.385 (8)C14—H14A0.9300
C2—H2B0.9300C15—C161.376 (8)
C3—C41.376 (8)C15—H15A0.9300
C3—H3B0.9300C16—C171.389 (7)
C4—C51.371 (7)C16—H16A0.9300
C4—H4B0.9300C17—C181.373 (7)
C5—C61.408 (7)C17—H17A0.9300
C5—H5A0.9300C18—H18A0.9300
C6—C71.466 (7)
C7—N1—N2117.2 (4)H8A—C8—H8C109.5
C9—N2—N1119.9 (4)H8B—C8—H8C109.5
C9—N2—H2A120.1O1—C9—N2125.0 (4)
N1—N2—H2A120.1O1—C9—C10120.8 (4)
N4—N3—C10104.6 (4)N2—C9—C10114.2 (4)
N3—N4—C12113.7 (4)N3—C10—C11110.9 (4)
N3—N4—H4A123.1N3—C10—C9120.7 (4)
C12—N4—H4A123.1C11—C10—C9128.4 (4)
C2—C1—C6121.4 (6)C10—C11—C12106.1 (4)
C2—C1—H1B119.3C10—C11—H11A127.0
C6—C1—H1B119.3C12—C11—H11A127.0
C1—C2—C3120.6 (5)N4—C12—C11104.6 (4)
C1—C2—H2B119.7N4—C12—C13124.6 (4)
C3—C2—H2B119.7C11—C12—C13130.8 (4)
C4—C3—C2118.5 (5)C18—C13—C14117.9 (4)
C4—C3—H3B120.7C18—C13—C12119.8 (4)
C2—C3—H3B120.7C14—C13—C12122.3 (4)
C5—C4—C3121.6 (5)C15—C14—C13119.9 (5)
C5—C4—H4B119.2C15—C14—H14A120.1
C3—C4—H4B119.2C13—C14—H14A120.1
C4—C5—C6120.5 (5)C16—C15—C14121.0 (5)
C4—C5—H5A119.8C16—C15—H15A119.5
C6—C5—H5A119.8C14—C15—H15A119.5
C1—C6—C5117.4 (4)C15—C16—C17119.6 (5)
C1—C6—C7121.8 (5)C15—C16—H16A120.2
C5—C6—C7120.8 (4)C17—C16—H16A120.2
N1—C7—C6116.8 (4)C18—C17—C16119.2 (5)
N1—C7—C8123.4 (4)C18—C17—H17A120.4
C6—C7—C8119.8 (4)C16—C17—H17A120.4
C7—C8—H8A109.5C17—C18—C13122.3 (5)
C7—C8—H8B109.5C17—C18—H18A118.8
H8A—C8—H8B109.5C13—C18—H18A118.8
C7—C8—H8C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N30.862.342.714 (2)107
N4—H4A···O1i0.861.982.788 (2)157
Symmetry code: (i) x+1, y, z1/2.

Experimental details

Crystal data
Chemical formulaC18H16N4O
Mr304.35
Crystal system, space groupTetragonal, P43
Temperature (K)294
a, c (Å)8.0190 (11), 24.147 (5)
V3)1552.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3737, 1686, 1017
Rint0.081
(sin θ/λ)max1)0.636
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.143, 1.04
No. of reflections1686
No. of parameters209
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.32

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Siemens, 1990), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N30.862.342.714 (2)107
N4—H4A···O1i0.861.982.788 (2)157
Symmetry code: (i) x+1, y, z1/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04).

References

First citationAli, H. M., Puvaneswary, S. & Ng, S. W. (2005). Acta Cryst. E61, o3464–o3465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationDeschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOgretir, C., Dal, H., Berber, H. & Taktak, F. F. (2006). J. Chem. Eng. Data, 51, 46–50.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationTarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456–460.  Web of Science CrossRef CAS Google Scholar
First citationWu, L.-B., Hu, Z.-Q. & Lai, G.-Q. (2006). Chin. J. Struct. Chem. 25, 567–571.  CAS Google Scholar
First citationYang, G. & Raptis, R. G. (2003). J. Heterocycl. Chem. 32, 659–664.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds