organic compounds
(E)-5-Phenyl-N′-(1-phenylethylidene)-1H-pyrazole-3-carbohydrazide
aNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net
In the molecule of the title compound, C18H16N4O, the intramolecular N—H⋯N hydrogen bond results in the formation of a planar five-membered ring, which is also co-planar with the adjacent five-membered ring, being oriented at a dihedral angle of 1.23 (3)°. The dihedral angles formed by the planar pyrazole ring with the adjacent phenyl ring and the other phenyl ring are 7.29 and 11.21°, respectively. The dihedral angle between the two phenyl rings is 18.07°. In the intermolecular N—H⋯O hydrogen bonds link the molecules.
Related literature
For general background, see: Ogretir et al. (2006); Tarafder et al. (2000); Deschamps et al. (2003); Wu et al. (2006). For related literature, see: Yang & Raptis (2003); Ali et al. (2005). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Siemens, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S160053680706223X/hk2398sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S160053680706223X/hk2398Isup2.hkl
A mixture of 5-phenyl-1H-pyrazole-3-carbohydrazide (10 mmol) with acetophenone (10 mmol) was stirred in refluxing ethanol (30 ml) for 5 h to afford the title compound, (I), (yield; 81%). Single crystals suitable for X-ray analysis were obtained by recrystallization from dimethylformamide (DMF) at 309 K.
H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.
Schiff bases have been used extensively as ligands in the field of coordination chemistry (Ogretir et al., 2006). As dinegatively charged ligands,
show potential as antimicrobial and anticancer agents (Tarafder et al., 2000; Deschamps et al., 2003) and so have biochemical and pharmacological applications. In addition, the chemical behavior of metal complexes with Schiff base ligands has attracted much attention because of their in some industrial and biochemical processes (Wu et al., 2006). The title compound, (I), was synthesized as part of our study of these ligands and we report herein its crystal structure.In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). They are in good agreement with the corresponding values reported (Yang & Raptis, 2003). The C7—N1 [1.285 (6) Å] bond has a double-bond character (Ali et al., 2005). The intramolecular N—H···N hydrogen bond (Table 1) results in the formation of a planar five-membered ring B (N2/H2A/N3/C9/C1). Rings A (C1—C6), C (N3/N4/C10—C11) and D (C13—C18) are, of course, planar and the dihedral angles between them are A/B = 11.06 (3)°, A/C = 11.10 (3)°, A/D = 17.82 (2)°, B/C = 1.23 (3)°, B/D = 7.85 (3)° and C/D = 7.15 (3)°. So, rings B and C are also co-planar.
In the
intermolecular N—H···O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.For general background, see: Ogretir et al. (2006); Tarafder et al. (2000); Deschamps et al. (2003); Wu et al. (2006). For related literature, see: Yang & Raptis (2003); Ali et al. (2005). For bond-length data, see: Allen et al. (1987).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Siemens, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. |
C18H16N4O | Dx = 1.302 Mg m−3 |
Mr = 304.35 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P43 | Cell parameters from 25 reflections |
Hall symbol: P 4cw | θ = 1–25° |
a = 8.0190 (11) Å | µ = 0.08 mm−1 |
c = 24.147 (5) Å | T = 294 K |
V = 1552.8 (4) Å3 | Block, yellow |
Z = 4 | 0.25 × 0.20 × 0.18 mm |
F(000) = 640 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.081 |
Radiation source: fine-focus sealed tube | θmax = 26.9°, θmin = 2.5° |
Graphite monochromator | h = 0→9 |
ω scans | k = 0→9 |
3737 measured reflections | l = −28→28 |
1686 independent reflections | 3 standard reflections every 100 reflections |
1017 reflections with I > 2σ(I) | intensity decay: 4.1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.054 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0792P)2] where P = (Fo2 + 2Fc2)/3 |
1686 reflections | (Δ/σ)max < 0.001 |
209 parameters | Δρmax = 0.19 e Å−3 |
1 restraint | Δρmin = −0.32 e Å−3 |
C18H16N4O | Z = 4 |
Mr = 304.35 | Mo Kα radiation |
Tetragonal, P43 | µ = 0.08 mm−1 |
a = 8.0190 (11) Å | T = 294 K |
c = 24.147 (5) Å | 0.25 × 0.20 × 0.18 mm |
V = 1552.8 (4) Å3 |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.081 |
3737 measured reflections | 3 standard reflections every 100 reflections |
1686 independent reflections | intensity decay: 4.1% |
1017 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.054 | 1 restraint |
wR(F2) = 0.143 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.19 e Å−3 |
1686 reflections | Δρmin = −0.32 e Å−3 |
209 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6526 (4) | 0.7885 (4) | 0.19156 (14) | 0.0530 (9) | |
N1 | 0.8996 (5) | 0.5984 (5) | 0.14452 (17) | 0.0484 (9) | |
N2 | 0.7574 (4) | 0.6473 (5) | 0.11695 (18) | 0.0495 (10) | |
H2A | 0.7423 | 0.6186 | 0.0830 | 0.059* | |
N3 | 0.4872 (4) | 0.7339 (5) | 0.05571 (16) | 0.0477 (10) | |
N4 | 0.3421 (5) | 0.7929 (5) | 0.03787 (17) | 0.0467 (9) | |
H4A | 0.3060 | 0.7777 | 0.0047 | 0.056* | |
C1 | 1.2768 (6) | 0.3604 (6) | 0.1231 (3) | 0.0600 (14) | |
H1B | 1.2546 | 0.3129 | 0.0888 | 0.072* | |
C2 | 1.4206 (7) | 0.3174 (7) | 0.1507 (3) | 0.0700 (16) | |
H2B | 1.4918 | 0.2381 | 0.1355 | 0.084* | |
C3 | 1.4605 (6) | 0.3911 (7) | 0.2008 (3) | 0.0615 (14) | |
H3B | 1.5600 | 0.3658 | 0.2187 | 0.074* | |
C4 | 1.3495 (7) | 0.5025 (7) | 0.2236 (2) | 0.0624 (14) | |
H4B | 1.3737 | 0.5505 | 0.2578 | 0.075* | |
C5 | 1.2040 (6) | 0.5445 (6) | 0.1972 (2) | 0.0547 (13) | |
H5A | 1.1314 | 0.6203 | 0.2135 | 0.066* | |
C6 | 1.1639 (5) | 0.4735 (6) | 0.1456 (2) | 0.0445 (11) | |
C7 | 1.0116 (6) | 0.5222 (5) | 0.1161 (2) | 0.0427 (10) | |
C8 | 0.9950 (7) | 0.4862 (7) | 0.0543 (2) | 0.0612 (14) | |
H8A | 0.9620 | 0.5861 | 0.0354 | 0.092* | |
H8B | 0.9123 | 0.4013 | 0.0487 | 0.092* | |
H8C | 1.1002 | 0.4485 | 0.0401 | 0.092* | |
C9 | 0.6421 (6) | 0.7398 (5) | 0.1432 (2) | 0.0445 (11) | |
C10 | 0.4972 (5) | 0.7848 (5) | 0.10870 (19) | 0.0401 (9) | |
C11 | 0.3586 (5) | 0.8767 (5) | 0.12334 (19) | 0.0424 (10) | |
H11A | 0.3378 | 0.9267 | 0.1574 | 0.051* | |
C12 | 0.2562 (5) | 0.8794 (5) | 0.07682 (19) | 0.0403 (10) | |
C13 | 0.0915 (5) | 0.9501 (5) | 0.06862 (18) | 0.0384 (10) | |
C14 | 0.0112 (6) | 0.9482 (7) | 0.0169 (2) | 0.0552 (13) | |
H14A | 0.0658 | 0.9053 | −0.0140 | 0.066* | |
C15 | −0.1487 (7) | 1.0101 (7) | 0.0119 (3) | 0.0645 (15) | |
H15A | −0.2025 | 1.0052 | −0.0221 | 0.077* | |
C16 | −0.2297 (6) | 1.0789 (7) | 0.0566 (2) | 0.0594 (14) | |
H16A | −0.3361 | 1.1233 | 0.0525 | 0.071* | |
C17 | −0.1517 (6) | 1.0818 (7) | 0.1080 (2) | 0.0581 (13) | |
H17A | −0.2059 | 1.1264 | 0.1386 | 0.070* | |
C18 | 0.0066 (6) | 1.0182 (6) | 0.1129 (2) | 0.0514 (12) | |
H18A | 0.0584 | 1.0211 | 0.1474 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.064 (2) | 0.071 (2) | 0.024 (2) | 0.0045 (16) | −0.0093 (14) | −0.0017 (15) |
N1 | 0.052 (2) | 0.058 (2) | 0.035 (3) | 0.0014 (18) | −0.0090 (18) | 0.0042 (18) |
N2 | 0.052 (2) | 0.066 (2) | 0.030 (2) | 0.0052 (19) | −0.0083 (18) | −0.0035 (19) |
N3 | 0.048 (2) | 0.062 (2) | 0.033 (2) | 0.0054 (18) | −0.0069 (17) | −0.0105 (17) |
N4 | 0.050 (2) | 0.061 (2) | 0.029 (2) | 0.0088 (18) | −0.0065 (17) | −0.0093 (17) |
C1 | 0.056 (3) | 0.071 (3) | 0.053 (4) | 0.002 (3) | −0.003 (3) | −0.012 (3) |
C2 | 0.056 (3) | 0.072 (4) | 0.082 (5) | 0.005 (3) | 0.000 (3) | −0.011 (3) |
C3 | 0.055 (3) | 0.075 (3) | 0.054 (4) | −0.003 (3) | −0.010 (3) | 0.009 (3) |
C4 | 0.067 (3) | 0.075 (3) | 0.044 (4) | −0.008 (3) | −0.008 (3) | 0.004 (3) |
C5 | 0.060 (3) | 0.056 (3) | 0.048 (4) | 0.002 (2) | −0.007 (2) | −0.002 (2) |
C6 | 0.045 (2) | 0.045 (2) | 0.043 (3) | −0.005 (2) | 0.004 (2) | 0.005 (2) |
C7 | 0.047 (2) | 0.052 (2) | 0.029 (3) | −0.004 (2) | 0.0008 (19) | −0.001 (2) |
C8 | 0.067 (3) | 0.076 (3) | 0.041 (4) | 0.004 (3) | 0.001 (2) | −0.004 (2) |
C9 | 0.053 (3) | 0.050 (3) | 0.031 (3) | −0.009 (2) | −0.004 (2) | 0.003 (2) |
C10 | 0.049 (2) | 0.050 (2) | 0.022 (2) | −0.003 (2) | −0.0065 (18) | −0.0004 (18) |
C11 | 0.055 (3) | 0.046 (2) | 0.027 (3) | −0.001 (2) | −0.003 (2) | −0.0047 (18) |
C12 | 0.049 (2) | 0.047 (2) | 0.024 (3) | −0.0011 (19) | −0.0063 (18) | −0.0003 (19) |
C13 | 0.047 (2) | 0.042 (2) | 0.026 (3) | 0.0015 (18) | 0.0018 (18) | 0.0020 (18) |
C14 | 0.064 (3) | 0.074 (3) | 0.028 (3) | 0.018 (3) | −0.005 (2) | −0.003 (2) |
C15 | 0.068 (3) | 0.095 (4) | 0.031 (3) | 0.022 (3) | −0.011 (2) | 0.007 (3) |
C16 | 0.054 (3) | 0.075 (3) | 0.049 (4) | 0.015 (2) | 0.001 (2) | 0.012 (2) |
C17 | 0.059 (3) | 0.077 (3) | 0.039 (3) | 0.013 (3) | 0.009 (2) | 0.000 (2) |
C18 | 0.060 (3) | 0.068 (3) | 0.026 (3) | 0.000 (2) | 0.002 (2) | −0.002 (2) |
O1—C9 | 1.234 (6) | C7—C8 | 1.526 (7) |
N1—C7 | 1.285 (6) | C8—H8A | 0.9600 |
N1—N2 | 1.378 (5) | C8—H8B | 0.9600 |
N2—C9 | 1.344 (6) | C8—H8C | 0.9600 |
N2—H2A | 0.8600 | C9—C10 | 1.474 (6) |
N3—N4 | 1.328 (5) | C10—C11 | 1.380 (6) |
N3—C10 | 1.346 (6) | C11—C12 | 1.392 (6) |
N4—C12 | 1.357 (6) | C11—H11A | 0.9300 |
N4—H4A | 0.8600 | C12—C13 | 1.451 (6) |
C1—C2 | 1.375 (8) | C13—C18 | 1.381 (7) |
C1—C6 | 1.391 (7) | C13—C14 | 1.406 (7) |
C1—H1B | 0.9300 | C14—C15 | 1.380 (7) |
C2—C3 | 1.385 (8) | C14—H14A | 0.9300 |
C2—H2B | 0.9300 | C15—C16 | 1.376 (8) |
C3—C4 | 1.376 (8) | C15—H15A | 0.9300 |
C3—H3B | 0.9300 | C16—C17 | 1.389 (7) |
C4—C5 | 1.371 (7) | C16—H16A | 0.9300 |
C4—H4B | 0.9300 | C17—C18 | 1.373 (7) |
C5—C6 | 1.408 (7) | C17—H17A | 0.9300 |
C5—H5A | 0.9300 | C18—H18A | 0.9300 |
C6—C7 | 1.466 (7) | ||
C7—N1—N2 | 117.2 (4) | H8A—C8—H8C | 109.5 |
C9—N2—N1 | 119.9 (4) | H8B—C8—H8C | 109.5 |
C9—N2—H2A | 120.1 | O1—C9—N2 | 125.0 (4) |
N1—N2—H2A | 120.1 | O1—C9—C10 | 120.8 (4) |
N4—N3—C10 | 104.6 (4) | N2—C9—C10 | 114.2 (4) |
N3—N4—C12 | 113.7 (4) | N3—C10—C11 | 110.9 (4) |
N3—N4—H4A | 123.1 | N3—C10—C9 | 120.7 (4) |
C12—N4—H4A | 123.1 | C11—C10—C9 | 128.4 (4) |
C2—C1—C6 | 121.4 (6) | C10—C11—C12 | 106.1 (4) |
C2—C1—H1B | 119.3 | C10—C11—H11A | 127.0 |
C6—C1—H1B | 119.3 | C12—C11—H11A | 127.0 |
C1—C2—C3 | 120.6 (5) | N4—C12—C11 | 104.6 (4) |
C1—C2—H2B | 119.7 | N4—C12—C13 | 124.6 (4) |
C3—C2—H2B | 119.7 | C11—C12—C13 | 130.8 (4) |
C4—C3—C2 | 118.5 (5) | C18—C13—C14 | 117.9 (4) |
C4—C3—H3B | 120.7 | C18—C13—C12 | 119.8 (4) |
C2—C3—H3B | 120.7 | C14—C13—C12 | 122.3 (4) |
C5—C4—C3 | 121.6 (5) | C15—C14—C13 | 119.9 (5) |
C5—C4—H4B | 119.2 | C15—C14—H14A | 120.1 |
C3—C4—H4B | 119.2 | C13—C14—H14A | 120.1 |
C4—C5—C6 | 120.5 (5) | C16—C15—C14 | 121.0 (5) |
C4—C5—H5A | 119.8 | C16—C15—H15A | 119.5 |
C6—C5—H5A | 119.8 | C14—C15—H15A | 119.5 |
C1—C6—C5 | 117.4 (4) | C15—C16—C17 | 119.6 (5) |
C1—C6—C7 | 121.8 (5) | C15—C16—H16A | 120.2 |
C5—C6—C7 | 120.8 (4) | C17—C16—H16A | 120.2 |
N1—C7—C6 | 116.8 (4) | C18—C17—C16 | 119.2 (5) |
N1—C7—C8 | 123.4 (4) | C18—C17—H17A | 120.4 |
C6—C7—C8 | 119.8 (4) | C16—C17—H17A | 120.4 |
C7—C8—H8A | 109.5 | C17—C18—C13 | 122.3 (5) |
C7—C8—H8B | 109.5 | C17—C18—H18A | 118.8 |
H8A—C8—H8B | 109.5 | C13—C18—H18A | 118.8 |
C7—C8—H8C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···N3 | 0.86 | 2.34 | 2.714 (2) | 107 |
N4—H4A···O1i | 0.86 | 1.98 | 2.788 (2) | 157 |
Symmetry code: (i) −x+1, −y, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C18H16N4O |
Mr | 304.35 |
Crystal system, space group | Tetragonal, P43 |
Temperature (K) | 294 |
a, c (Å) | 8.0190 (11), 24.147 (5) |
V (Å3) | 1552.8 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.25 × 0.20 × 0.18 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3737, 1686, 1017 |
Rint | 0.081 |
(sin θ/λ)max (Å−1) | 0.636 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.143, 1.04 |
No. of reflections | 1686 |
No. of parameters | 209 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.19, −0.32 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Siemens, 1990), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···N3 | 0.86 | 2.34 | 2.714 (2) | 107 |
N4—H4A···O1i | 0.86 | 1.98 | 2.788 (2) | 157 |
Symmetry code: (i) −x+1, −y, z−1/2. |
Acknowledgements
The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04).
References
Ali, H. M., Puvaneswary, S. & Ng, S. W. (2005). Acta Cryst. E61, o3464–o3465. Web of Science CSD CrossRef IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Deschamps, P., Kulkarni, P. P. & Sarkar, B. (2003). Inorg. Chem. 42, 7366–7368. Web of Science CSD CrossRef PubMed CAS Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ogretir, C., Dal, H., Berber, H. & Taktak, F. F. (2006). J. Chem. Eng. Data, 51, 46–50. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Siemens (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Tarafder, M. T. H., Ali, M. A., Wee, D. J., Azahari, K., Silong, S. & Crouse, K. A. (2000). Transition Met. Chem. 25, 456–460. Web of Science CrossRef CAS Google Scholar
Wu, L.-B., Hu, Z.-Q. & Lai, G.-Q. (2006). Chin. J. Struct. Chem. 25, 567–571. CAS Google Scholar
Yang, G. & Raptis, R. G. (2003). J. Heterocycl. Chem. 32, 659–664. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Schiff bases have been used extensively as ligands in the field of coordination chemistry (Ogretir et al., 2006). As dinegatively charged ligands, Schiff bases show potential as antimicrobial and anticancer agents (Tarafder et al., 2000; Deschamps et al., 2003) and so have biochemical and pharmacological applications. In addition, the chemical behavior of metal complexes with Schiff base ligands has attracted much attention because of their catalytic activity in some industrial and biochemical processes (Wu et al., 2006). The title compound, (I), was synthesized as part of our study of these ligands and we report herein its crystal structure.
In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). They are in good agreement with the corresponding values reported (Yang & Raptis, 2003). The C7—N1 [1.285 (6) Å] bond has a double-bond character (Ali et al., 2005). The intramolecular N—H···N hydrogen bond (Table 1) results in the formation of a planar five-membered ring B (N2/H2A/N3/C9/C1). Rings A (C1—C6), C (N3/N4/C10—C11) and D (C13—C18) are, of course, planar and the dihedral angles between them are A/B = 11.06 (3)°, A/C = 11.10 (3)°, A/D = 17.82 (2)°, B/C = 1.23 (3)°, B/D = 7.85 (3)° and C/D = 7.15 (3)°. So, rings B and C are also co-planar.
In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.