metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ2-aqua-μ4-naphthalene-1,8-di­carboxyl­ato-manganese(II)]

aCollege of Chemistry and Life Science, Tianjin Normal University, Tianjin 300074, People's Republic of China
*Correspondence e-mail: hsxyzgy@mail.tjnu.edu.cn

(Received 23 November 2007; accepted 27 November 2007; online 18 December 2007)

The asymmetric unit of the title complex, [Mn(C12H6O4)(H2O)]n, contains one MnII ion, one 1,8-naphthalene­dicarboxyl­ate (1,8-NDC) ligand and one water mol­ecule. The MnII ion is six-coordinated within a distorted octa­hedral coordination geometry, in which the equatorial sites are occupied by four carboxyl­ate O atoms from four different 1,8-NDC ligands, while the axial positions are occupied by two O atoms of two coordinated water mol­ecules. Adjacent MnII centres are bridged by one coordinated water and two carboxyl­ate groups in a synsyn mode to form infinite chains along the b axis, which are further cross-linked by the naphthalene spacers of the 1,8-NDC ligands to produce a two-dimensional extended network.

Related literature

For general background, see: Chen et al. (2005[Chen, L. F., Zhang, J., Song, L. J. & Ju, Z. F. (2005). Inorg. Chem. Commun. 8, 555-558.]). For related literature, see: Van der Ploeg et al. (1979[Van der Ploeg, A. F. M. J., Van Koten, G. & Spek, A. L. (1979). Inorg. Chem. 18, 1052-1060.]); Hu et al. 2006[Hu, T. L., Li, J. R., Liu, C. S., Shi, X. S., Zhou, J. N., Bu, X. H. & Ribas, J. (2006). Inorg. Chem. 45, 162-173.].

[Scheme 1]

Experimental

Crystal data
  • [Mn(C12H6O4)(H2O)]

  • Mr = 287.12

  • Monoclinic, P 21 /c

  • a = 15.720 (3) Å

  • b = 7.2167 (14) Å

  • c = 9.837 (2) Å

  • β = 98.87 (3)°

  • V = 1102.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 294 (2) K

  • 0.20 × 0.20 × 0.16 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.794, Tmax = 0.830

  • 9056 measured reflections

  • 1945 independent reflections

  • 1632 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.089

  • S = 1.09

  • 1945 reflections

  • 171 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O2i 2.115 (2)
Mn1—O4 2.122 (2)
Mn1—O1 2.156 (2)
Mn1—O3 2.159 (2)
Mn1—O1W 2.214 (2)
Mn1—O1Wii 2.232 (2)
O2i—Mn1—O4 105.32 (8)
O2i—Mn1—O1 171.04 (8)
O4—Mn1—O1 83.54 (8)
O2i—Mn1—O3 83.67 (8)
O4—Mn1—O3 170.82 (8)
O1—Mn1—O3 87.43 (8)
O2i—Mn1—O1W 90.70 (9)
O4—Mn1—O1W 90.40 (9)
O1—Mn1—O1W 87.88 (9)
O3—Mn1—O1W 87.61 (9)
O2i—Mn1—O1Wii 85.20 (9)
O4—Mn1—O1Wii 86.44 (9)
O1—Mn1—O1Wii 96.86 (8)
O3—Mn1—O1Wii 96.31 (9)
O1W—Mn1—O1Wii 173.97 (6)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1998[Bruker (1998). SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aromatic carboxylic derivatives as versatile building blocks not only exhibit great potentials in constructing multi-dimensional networks, but also provide various advantages in producing magnetic molecular assemblies with variable size from discrete molecules to nanometer-scale aggregates and infinite solids (Chen et al., 2005). 1,8-Naphthalenedicarboxylate (1,8-NDC), a rigid multi- carboxylate ligand, is of special interest, since its multiple coordination sites, high symmetry and large conjugated structure can allow to construct molecular assemblies with novel structural motifs and physical properties. However, the metal complex of 1,8-NDC is rare so far (Van der Ploeg et al., 1979; Hu et al., 2006). We herein report the crystal structure of the title manganese complex, (I).

The asymmetric unit of (I) contains one MnII ion, one 1,8-NDC ligand and one water molecule. The MnII ion is six-coordinated within a distorted octahedral coordination geometry. The equatorial sites are occupied by four carboxylate oxygen atoms from different 1,8-NDC ligands, while the axial positions are occupied by two water molecules. The Mn—O distances are within their normal ranges (Table 1). Adjacent MnII centers are bridged by two carboxylate groups and one coordination water to form an infinite one-dimensional chain running along the b axis, in which the carboxylate groups adopt syn-syn bidentate coordination mode (Fig. 2). The intrachain Mn···Mn distance is 3.614 Å. The one-dimensional chains are further cross-linked by the naphthalene spacers of 1,8-NDC to produce a two-dimensional extended network (Fig. 3).

Related literature top

For general background, see: Chen et al. (2005). For related literature, see: Van der Ploeg et al. (1979); Hu et al. 2006.

Experimental top

For the preparaton of the title complex, a mixture of MnCl2 (1 mmol), 1,8-naphthalenedicarboxylic acid (1 mmol), NaOH (2 mmol) and water (8 ml) in a teflon-lined stainless steel autoclave (15 ml) was kept at 423 K for 2 d. Colorless crystals were obtained after cooling to room temperature (yield; 30%). Anal. Calc. for C12H8MnO5: C 50.20, H 2.81%; Found: 50.56, H 2.52%.

Refinement top

H atom (for H2O) were located in a difference sythesis and refined isotropically [O—H = 0.89 (4) and 0.80 (4) Å, Uiso(H) = 0.055 (13) and 0.045 (12) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Aromatic carboxylic derivatives as versatile building blocks not only exhibit great potentials in constructing multi-dimensional networks, but also provide various advantages in producing magnetic molecular assemblies with variable size from discrete molecules to nanometer-scale aggregates and infinite solids (Chen et al., 2005). 1,8-Naphthalenedicarboxylate (1,8-NDC), a rigid multi- carboxylate ligand, is of special interest, since its multiple coordination sites, high symmetry and large conjugated structure can allow to construct molecular assemblies with novel structural motifs and physical properties. However, the metal complex of 1,8-NDC is rare so far (Van der Ploeg et al., 1979; Hu et al., 2006). We herein report the crystal structure of the title manganese complex, (I).

The asymmetric unit of (I) contains one MnII ion, one 1,8-NDC ligand and one water molecule. The MnII ion is six-coordinated within a distorted octahedral coordination geometry. The equatorial sites are occupied by four carboxylate oxygen atoms from different 1,8-NDC ligands, while the axial positions are occupied by two water molecules. The Mn—O distances are within their normal ranges (Table 1). Adjacent MnII centers are bridged by two carboxylate groups and one coordination water to form an infinite one-dimensional chain running along the b axis, in which the carboxylate groups adopt syn-syn bidentate coordination mode (Fig. 2). The intrachain Mn···Mn distance is 3.614 Å. The one-dimensional chains are further cross-linked by the naphthalene spacers of 1,8-NDC to produce a two-dimensional extended network (Fig. 3).

For general background, see: Chen et al. (2005). For related literature, see: Van der Ploeg et al. (1979); Hu et al. 2006.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry codes: (A) 2 - x, y - 1/2, 1/2 - z; (B) 2 - x, 1 - y,1 - z; (C) x, 1/2 - y, z - 1/2; (D) 2 - x, 1/2 + y, 1/2 - z].
[Figure 2] Fig. 2. A view of the one-dimensional chain in (I).
[Figure 3] Fig. 3. The extended two-dimensional layer structure of (I).
Poly[µ2-aqua-µ4-naphthalene-1,8-dicarboxylato-manganese(II)] top
Crystal data top
[Mn(C12H6O4)(H2O)]F(000) = 580
Mr = 287.12Dx = 1.730 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2641 reflections
a = 15.720 (3) Åθ = 3.1–27.5°
b = 7.2167 (14) ŵ = 1.21 mm1
c = 9.837 (2) ÅT = 294 K
β = 98.87 (3)°Block, colourless
V = 1102.6 (4) Å30.20 × 0.20 × 0.16 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1945 independent reflections
Radiation source: fine-focus sealed tube1632 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1818
Tmin = 0.794, Tmax = 0.830k = 88
9056 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0445P)2]
where P = (Fo2 + 2Fc2)/3
1945 reflections(Δ/σ)max = 0.001
171 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Mn(C12H6O4)(H2O)]V = 1102.6 (4) Å3
Mr = 287.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.720 (3) ŵ = 1.21 mm1
b = 7.2167 (14) ÅT = 294 K
c = 9.837 (2) Å0.20 × 0.20 × 0.16 mm
β = 98.87 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1945 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1632 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.830Rint = 0.058
9056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.85 e Å3
1945 reflectionsΔρmin = 0.33 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.99931 (3)0.10265 (5)0.25999 (4)0.01809 (16)
O1W0.99998 (17)0.1557 (3)0.3815 (2)0.0211 (5)
H1WA0.952 (3)0.169 (5)0.419 (4)0.055 (13)*
H1WB1.041 (3)0.170 (5)0.439 (4)0.045 (12)*
O10.90398 (13)0.2094 (3)0.3753 (2)0.0248 (5)
O20.89298 (12)0.5099 (3)0.3261 (2)0.0265 (5)
O31.09599 (13)0.2087 (3)0.4210 (2)0.0251 (5)
O40.89011 (12)0.0082 (3)0.1235 (2)0.0268 (5)
C10.86289 (19)0.3603 (4)0.3608 (3)0.0200 (6)
C20.76960 (19)0.3550 (4)0.3732 (3)0.0232 (7)
C30.7238 (2)0.2112 (5)0.3086 (4)0.0370 (9)
H30.75280.11190.27660.044*
C40.6336 (2)0.2110 (6)0.2897 (4)0.0509 (11)
H40.60320.11100.24690.061*
C50.5907 (2)0.3560 (6)0.3335 (4)0.0460 (10)
H50.53090.35710.31690.055*
C60.63495 (19)0.5047 (5)0.4034 (3)0.0334 (8)
C70.5903 (2)0.6559 (5)0.4497 (4)0.0437 (10)
H70.53050.65760.43230.052*
C80.6326 (2)0.7975 (6)0.5184 (4)0.0501 (10)
H80.60210.89830.54490.060*
C90.7223 (2)0.7935 (5)0.5499 (3)0.0368 (9)
H90.75080.89130.59900.044*
C100.7689 (2)0.6497 (4)0.5105 (3)0.0248 (7)
C111.13824 (19)0.3572 (4)0.4273 (3)0.0198 (6)
C120.72618 (18)0.5038 (4)0.4298 (3)0.0234 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0187 (3)0.0169 (2)0.0185 (3)0.00005 (19)0.00249 (17)0.00056 (18)
O1W0.0221 (13)0.0214 (11)0.0194 (12)0.0009 (9)0.0017 (10)0.0025 (8)
O10.0230 (12)0.0284 (12)0.0234 (12)0.0067 (10)0.0048 (9)0.0014 (9)
O20.0246 (12)0.0283 (13)0.0282 (12)0.0030 (10)0.0091 (9)0.0008 (9)
O30.0230 (12)0.0288 (12)0.0232 (12)0.0073 (10)0.0026 (9)0.0045 (9)
O40.0240 (12)0.0282 (13)0.0264 (12)0.0009 (9)0.0023 (9)0.0033 (9)
C10.0205 (17)0.0268 (17)0.0128 (14)0.0021 (13)0.0027 (11)0.0038 (12)
C20.0192 (17)0.0269 (17)0.0234 (16)0.0011 (12)0.0029 (12)0.0009 (13)
C30.027 (2)0.034 (2)0.050 (2)0.0056 (15)0.0051 (16)0.0138 (16)
C40.029 (2)0.051 (3)0.070 (3)0.0170 (18)0.0015 (19)0.026 (2)
C50.0181 (19)0.063 (3)0.055 (2)0.0063 (17)0.0005 (16)0.0129 (19)
C60.0208 (19)0.044 (2)0.035 (2)0.0001 (15)0.0018 (14)0.0031 (16)
C70.0168 (19)0.057 (3)0.056 (2)0.0107 (16)0.0010 (16)0.0082 (19)
C80.031 (2)0.052 (3)0.067 (3)0.0167 (19)0.0066 (19)0.016 (2)
C90.026 (2)0.037 (2)0.046 (2)0.0074 (15)0.0002 (15)0.0138 (16)
C100.0203 (17)0.0282 (17)0.0251 (17)0.0016 (13)0.0010 (13)0.0008 (13)
C110.0197 (16)0.0268 (17)0.0130 (14)0.0009 (13)0.0033 (11)0.0024 (12)
C120.0200 (17)0.0252 (17)0.0245 (17)0.0003 (13)0.0017 (12)0.0010 (13)
Geometric parameters (Å, º) top
Mn1—O2i2.115 (2)C6—C121.418 (4)
Mn1—O42.122 (2)C7—C81.343 (5)
Mn1—O12.156 (2)C7—H70.9300
Mn1—O32.159 (2)C8—C91.396 (5)
Mn1—O1W2.214 (2)C8—H80.9300
Mn1—O1Wii2.232 (2)C9—C101.362 (4)
C1—O21.247 (3)C9—H90.9300
C1—O11.262 (3)C10—C121.423 (4)
C1—C21.491 (4)C10—C11iii1.494 (4)
C2—C31.364 (4)C11—O4ii1.252 (3)
C2—C121.430 (4)C11—O31.257 (3)
C3—C41.401 (5)C11—C10iii1.494 (4)
C3—H30.9300O2—Mn1ii2.115 (2)
C4—C51.350 (5)O4—C11i1.252 (3)
C4—H40.9300O1W—Mn1i2.232 (2)
C5—C61.400 (5)O1W—H1WA0.89 (4)
C5—H50.9300O1W—H1WB0.80 (4)
C6—C71.410 (5)
O2i—Mn1—O4105.32 (8)C5—C6—C12119.9 (3)
O2i—Mn1—O1171.04 (8)C7—C6—C12118.9 (3)
O4—Mn1—O183.54 (8)C8—C7—C6121.3 (3)
O2i—Mn1—O383.67 (8)C8—C7—H7119.4
O4—Mn1—O3170.82 (8)C6—C7—H7119.4
O1—Mn1—O387.43 (8)C7—C8—C9120.0 (4)
O2i—Mn1—O1W90.70 (9)C7—C8—H8120.0
O4—Mn1—O1W90.40 (9)C9—C8—H8120.0
O1—Mn1—O1W87.88 (9)C10—C9—C8121.5 (3)
O3—Mn1—O1W87.61 (9)C10—C9—H9119.3
O2i—Mn1—O1Wii85.20 (9)C8—C9—H9119.3
O4—Mn1—O1Wii86.44 (9)C9—C10—C12119.6 (3)
O1—Mn1—O1Wii96.86 (8)C9—C10—C11iii116.3 (3)
O3—Mn1—O1Wii96.31 (9)C12—C10—C11iii123.4 (3)
O1W—Mn1—O1Wii173.97 (6)O4ii—C11—O3124.7 (3)
O2—C1—O1124.6 (3)O4ii—C11—C10iii117.3 (3)
O2—C1—C2117.6 (3)O3—C11—C10iii117.8 (3)
O1—C1—C2117.5 (3)C6—C12—C10118.4 (3)
C3—C2—C12120.2 (3)C6—C12—C2117.5 (3)
C3—C2—C1115.9 (3)C10—C12—C2124.0 (3)
C12—C2—C1123.2 (3)C1—O1—Mn1129.36 (18)
C2—C3—C4120.9 (3)C1—O2—Mn1ii138.1 (2)
C2—C3—H3119.6C11—O3—Mn1130.17 (19)
C4—C3—H3119.6C11i—O4—Mn1137.39 (19)
C5—C4—C3120.1 (3)Mn1—O1W—Mn1i108.74 (9)
C5—C4—H4120.0Mn1—O1W—H1WA112 (2)
C3—C4—H4120.0Mn1i—O1W—H1WA105 (2)
C4—C5—C6121.1 (3)Mn1—O1W—H1WB115 (3)
C4—C5—H5119.5Mn1i—O1W—H1WB105 (3)
C6—C5—H5119.5H1WA—O1W—H1WB110 (4)
C5—C6—C7121.2 (3)
O2—C1—C2—C3131.1 (3)C1—C2—C12—C6163.6 (3)
O1—C1—C2—C343.2 (4)C3—C2—C12—C10173.6 (3)
O2—C1—C2—C1239.4 (4)C1—C2—C12—C1016.3 (5)
O1—C1—C2—C12146.3 (3)O2—C1—O1—Mn135.5 (4)
C12—C2—C3—C43.5 (5)C2—C1—O1—Mn1138.5 (2)
C1—C2—C3—C4167.3 (3)O4—Mn1—O1—C184.6 (2)
C2—C3—C4—C51.2 (6)O3—Mn1—O1—C197.1 (2)
C3—C4—C5—C62.8 (6)O1W—Mn1—O1—C1175.2 (2)
C4—C5—C6—C7179.8 (4)O1Wii—Mn1—O1—C11.0 (3)
C4—C5—C6—C120.4 (6)O1—C1—O2—Mn1ii14.5 (5)
C5—C6—C7—C8179.1 (4)C2—C1—O2—Mn1ii159.4 (2)
C12—C6—C7—C80.3 (6)O4ii—C11—O3—Mn134.3 (4)
C6—C7—C8—C92.5 (6)C10iii—C11—O3—Mn1140.3 (2)
C7—C8—C9—C101.2 (6)O2i—Mn1—O3—C1183.3 (2)
C8—C9—C10—C122.9 (5)O1—Mn1—O3—C1197.7 (3)
C8—C9—C10—C11iii168.6 (3)O1W—Mn1—O3—C11174.3 (3)
C5—C6—C12—C10175.1 (3)O1Wii—Mn1—O3—C111.1 (3)
C7—C6—C12—C104.3 (5)O2i—Mn1—O4—C11i55.2 (3)
C5—C6—C12—C24.9 (5)O1—Mn1—O4—C11i123.4 (3)
C7—C6—C12—C2175.7 (3)O1W—Mn1—O4—C11i35.6 (3)
C9—C10—C12—C65.6 (5)O1Wii—Mn1—O4—C11i139.2 (3)
C11iii—C10—C12—C6165.3 (3)O2i—Mn1—O1W—Mn1i52.06 (11)
C9—C10—C12—C2174.4 (3)O4—Mn1—O1W—Mn1i53.27 (11)
C11iii—C10—C12—C214.7 (5)O1—Mn1—O1W—Mn1i136.79 (11)
C3—C2—C12—C66.5 (4)O3—Mn1—O1W—Mn1i135.70 (11)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C12H6O4)(H2O)]
Mr287.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)15.720 (3), 7.2167 (14), 9.837 (2)
β (°) 98.87 (3)
V3)1102.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.20 × 0.20 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID-S
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.794, 0.830
No. of measured, independent and
observed [I > 2σ(I)] reflections
9056, 1945, 1632
Rint0.058
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.089, 1.09
No. of reflections1945
No. of parameters171
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.33

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Selected geometric parameters (Å, º) top
Mn1—O2i2.115 (2)Mn1—O32.159 (2)
Mn1—O42.122 (2)Mn1—O1W2.214 (2)
Mn1—O12.156 (2)Mn1—O1Wii2.232 (2)
O2i—Mn1—O4105.32 (8)O1—Mn1—O1W87.88 (9)
O2i—Mn1—O1171.04 (8)O3—Mn1—O1W87.61 (9)
O4—Mn1—O183.54 (8)O2i—Mn1—O1Wii85.20 (9)
O2i—Mn1—O383.67 (8)O4—Mn1—O1Wii86.44 (9)
O4—Mn1—O3170.82 (8)O1—Mn1—O1Wii96.86 (8)
O1—Mn1—O387.43 (8)O3—Mn1—O1Wii96.31 (9)
O2i—Mn1—O1W90.70 (9)O1W—Mn1—O1Wii173.97 (6)
O4—Mn1—O1W90.40 (9)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Tianjin Normal University for supporting this work.

References

First citationBruker (1998). SADABS (Version 2.03) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L. F., Zhang, J., Song, L. J. & Ju, Z. F. (2005). Inorg. Chem. Commun. 8, 555–558.  CrossRef CAS Google Scholar
First citationHu, T. L., Li, J. R., Liu, C. S., Shi, X. S., Zhou, J. N., Bu, X. H. & Ribas, J. (2006). Inorg. Chem. 45, 162–173.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationVan der Ploeg, A. F. M. J., Van Koten, G. & Spek, A. L. (1979). Inorg. Chem. 18, 1052–1060.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds