organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,8-Di­chloro-6H,12H-5,11-ethano­dibenzo[b,f][1,5]diazo­cine

aDepartment of Chemistry and Biomolecular Sciences, Building F7B, Macquarie University, NSW 2109, Australia, and bCrystal Structure Analysis Facility, School of Chemistry, F11, The University of Sydney, NSW 2006, Australia
*Correspondence e-mail: andrew.try@mq.edu.au

(Received 23 November 2007; accepted 23 November 2007; online 6 December 2007)

In the mol­ecule of the title compound, C16H14Cl2N2, the ethano-strapped 2,8-dichloro analogue of Tröger's base, the dihedral angle between the two benzene rings is 87.01 (3)°.

Related literature

For related literature, see: Tröger (1887[Tröger, J. (1887). J. Prakt. Chem. 36, 225-245.]); Hamada & Mukai (1996[Hamada, Y. & Mukai, S. (1996). Tetrahedron Asymmetry, 7, 2671-2674.]); Ishida et al. (2005[Ishida, Y., Ito, H., Mori, D. & Saigo, K. (2005). Tetrahedron Lett. 46, 109-112.]). For related structures, see: Spielman (1935[Spielman, M. A. (1935). J. Am. Chem. Soc. 57, 583-585.]); Larson & Wilcox (1986[Larson, S. B. & Wilcox, C. S. (1986). Acta Cryst. C42, 224-227.]); Solano et al. (2005[Solano, C., Svensson, D., Olomi, Z., Jensen, J., Wendt, O. F. & Wärnmark, K. (2005). Eur. J. Org. Chem. pp. 3510-3517.]); Faroughi et al. (2006a[Faroughi, M., Try, A. C. & Turner, P. (2006a). Acta Cryst. E62, o3674-o3675.],b[Faroughi, M., Try, A. C. & Turner, P. (2006b). Acta Cryst. E62, o3893-o3894.]); Faroughi, Try, Klepetko & Turner (2007[Faroughi, M., Try, A. C., Klepetko, J. & Turner, P. (2007). Tetrahedron Lett. 48, 6548-6551.]); Faroughi, Try & Turner (2007[Faroughi, M., Try, A. C. & Turner, P. (2007). Acta Cryst. E63, o2695.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14Cl2N2

  • Mr = 305.19

  • Triclinic, [P \overline 1]

  • a = 6.8801 (11) Å

  • b = 10.1951 (17) Å

  • c = 10.2466 (16) Å

  • α = 85.320 (3)°

  • β = 84.956 (2)°

  • γ = 76.470 (3)°

  • V = 694.70 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 150 (2) K

  • 0.63 × 0.44 × 0.41 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: Gaussian (XPREP; Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]; Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.773, Tmax = 0.869

  • 6876 measured reflections

  • 3188 independent reflections

  • 2992 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.089

  • S = 1.06

  • 3188 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Siemens, 1995[Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: Xtal3.6 (Hall et al., 1999[Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. The Xtal3.6 System. University of Western Australia.]), ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); software used to prepare material for publication: WinGX.

Supporting information


Comment top

Tröger's base was first prepared in 1887 (Tröger, 1887) and its structure was elucidated until over 30 years latter (Spielman, 1935). The strucural assignment was confirmed by X-ray crystallography (Larson & Wilcox, 1986). Since then large number of related compounds have been reported and the dihedral angle, between the least-squares planes through the aromatic rings, has been measured across a range of simple dibenzo Tröger's base analogues and found to lie between 82° (Solano et al., 2005) and 108° (Faroughi et al., 2006b). A common structural feature in all of these compounds is the methano-strapped diazocine bridge. The conversion of methano-strapped compounds to ethano-strapped analogues of Tröger's base have been reported for 2,8-dimethyl- and 2,8-dimethoxy- (Hamada & Mukai, 1996) as well as 2,8-dibromo- (Ishida et al., 2005; Faroughi, Try, Klepetko & Turner, 2007) substitution patterns. We have previously reported that the dihedral angle in methano-strapped 2,8-dibromo Tröger's base is 94.5° (Faroughi et al., 2006a) whilst the corresponding angle in the ethano-strapped 2,8-dibromo analogue is 86.1° (Faroughi, Try, Klepetko & Turner, 2007). In the present case, the dihedral angle of ethano-strapped 2,8-dichloro Tröger's base (I), whose molecular structure is shown in Fig. 1, was also found to be reduced [87.01 (3)°] in comparison with the methano-strapped analogue, which has a dihedral angle of 95.6° (Faroughi, Try & Turner et al., 2007).

Related literature top

For related literature, see: Tröger (1887); Hamada & Mukai (1996); Ishida et al. (2005). For related structures, see: Spielman (1935); Larson & Wilcox (1986); Solano et al. (2005); Faroughi et al. (2006a,b); Faroughi, Try, Klepetko & Turner (2007); Faroughi, Try & Turner (2007).

Experimental top

The title compound was prepared according to the literature procedure (Hamada & Mukai, 1996) in 72% yield. Single crystals of (I) were produced from slow evaporation of a dichloromethane solution.

Refinement top

H atoms were positioned geometrically, with C—H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Tröger's base was first prepared in 1887 (Tröger, 1887) and its structure was elucidated until over 30 years latter (Spielman, 1935). The strucural assignment was confirmed by X-ray crystallography (Larson & Wilcox, 1986). Since then large number of related compounds have been reported and the dihedral angle, between the least-squares planes through the aromatic rings, has been measured across a range of simple dibenzo Tröger's base analogues and found to lie between 82° (Solano et al., 2005) and 108° (Faroughi et al., 2006b). A common structural feature in all of these compounds is the methano-strapped diazocine bridge. The conversion of methano-strapped compounds to ethano-strapped analogues of Tröger's base have been reported for 2,8-dimethyl- and 2,8-dimethoxy- (Hamada & Mukai, 1996) as well as 2,8-dibromo- (Ishida et al., 2005; Faroughi, Try, Klepetko & Turner, 2007) substitution patterns. We have previously reported that the dihedral angle in methano-strapped 2,8-dibromo Tröger's base is 94.5° (Faroughi et al., 2006a) whilst the corresponding angle in the ethano-strapped 2,8-dibromo analogue is 86.1° (Faroughi, Try, Klepetko & Turner, 2007). In the present case, the dihedral angle of ethano-strapped 2,8-dichloro Tröger's base (I), whose molecular structure is shown in Fig. 1, was also found to be reduced [87.01 (3)°] in comparison with the methano-strapped analogue, which has a dihedral angle of 95.6° (Faroughi, Try & Turner et al., 2007).

For related literature, see: Tröger (1887); Hamada & Mukai (1996); Ishida et al. (2005). For related structures, see: Spielman (1935); Larson & Wilcox (1986); Solano et al. (2005); Faroughi et al. (2006a,b); Faroughi, Try, Klepetko & Turner (2007); Faroughi, Try & Turner (2007).

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I), showing the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Synthetic scheme for the synthesis of (I) showing the numbering system used in naming the compound.
2,8-Dichloro-6H,12H-5,11- ethanodibenzo[b,f][1,5]diazocine top
Crystal data top
C16H14Cl2N2Z = 2
Mr = 305.19F(000) = 316
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Melting point = 454–455 K
a = 6.8801 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.1951 (17) ÅCell parameters from 925 reflections
c = 10.2466 (16) Åθ = 3.5–27.9°
α = 85.320 (3)°µ = 0.46 mm1
β = 84.956 (2)°T = 150 K
γ = 76.470 (3)°Prism, colorless
V = 694.70 (19) Å30.63 × 0.44 × 0.41 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3188 independent reflections
Radiation source: fine-focus sealed tube2992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: gaussian
(XPREP; Coppens et al., 1965; Siemens, 1995)
h = 89
Tmin = 0.773, Tmax = 0.869k = 1313
6876 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.051P)2 + 0.1729P]
where P = (Fo2 + 2Fc2)/3
3188 reflections(Δ/σ)max = 0.002
181 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C16H14Cl2N2γ = 76.470 (3)°
Mr = 305.19V = 694.70 (19) Å3
Triclinic, P1Z = 2
a = 6.8801 (11) ÅMo Kα radiation
b = 10.1951 (17) ŵ = 0.46 mm1
c = 10.2466 (16) ÅT = 150 K
α = 85.320 (3)°0.63 × 0.44 × 0.41 mm
β = 84.956 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3188 independent reflections
Absorption correction: gaussian
(XPREP; Coppens et al., 1965; Siemens, 1995)
2992 reflections with I > 2σ(I)
Tmin = 0.773, Tmax = 0.869Rint = 0.033
6876 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
3188 reflectionsΔρmin = 0.27 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33151 (5)0.87520 (3)1.11085 (3)0.03317 (10)
Cl20.19414 (5)1.02485 (3)0.31142 (3)0.03303 (10)
N10.43135 (15)0.61940 (11)0.81861 (11)0.0288 (2)
N20.19355 (15)0.52439 (10)0.65450 (10)0.0249 (2)
C10.24125 (17)0.67773 (12)0.88354 (11)0.0256 (2)
C20.23827 (19)0.77730 (13)0.96964 (13)0.0300 (3)
H20.35900.80390.98060.036*
C30.0642 (2)0.83825 (12)1.03940 (12)0.0297 (3)
H30.06450.90571.09810.036*
C40.11108 (18)0.79898 (12)1.02196 (11)0.0261 (2)
C50.11437 (17)0.70205 (12)0.93531 (11)0.0242 (2)
H50.23660.67770.92380.029*
C60.06195 (17)0.64005 (11)0.86481 (11)0.0231 (2)
C70.04879 (17)0.53679 (12)0.76854 (11)0.0247 (2)
H7A0.06540.44720.81690.030*
H7B0.08760.56050.73670.030*
C80.19502 (17)0.64895 (11)0.57911 (11)0.0229 (2)
C90.05736 (18)0.68840 (12)0.48295 (11)0.0250 (2)
H90.03540.63460.47320.030*
C100.05307 (18)0.80449 (12)0.40135 (11)0.0267 (2)
H100.04230.83100.33700.032*
C110.19158 (18)0.88103 (12)0.41608 (11)0.0256 (2)
C120.32586 (18)0.84588 (12)0.51236 (12)0.0265 (2)
H120.41700.90090.52200.032*
C130.32901 (17)0.73018 (12)0.59568 (11)0.0250 (2)
C140.48177 (18)0.69776 (14)0.69929 (13)0.0317 (3)
H14A0.61030.64740.65820.038*
H14B0.50420.78410.72540.038*
C150.47175 (18)0.47337 (13)0.80467 (13)0.0324 (3)
H15A0.41030.43030.88260.039*
H15B0.61830.43580.80170.039*
C160.39027 (19)0.43836 (13)0.68131 (13)0.0319 (3)
H16A0.48630.44770.60520.038*
H16B0.37970.34280.69140.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.03691 (18)0.03002 (17)0.03158 (17)0.00488 (12)0.00344 (12)0.00303 (12)
Cl20.0492 (2)0.02418 (16)0.02644 (16)0.01157 (13)0.00413 (12)0.00531 (11)
N10.0231 (5)0.0311 (5)0.0321 (5)0.0078 (4)0.0082 (4)0.0091 (4)
N20.0270 (5)0.0203 (5)0.0266 (5)0.0053 (4)0.0019 (4)0.0024 (4)
C10.0256 (5)0.0257 (6)0.0264 (5)0.0078 (4)0.0101 (4)0.0080 (4)
C20.0314 (6)0.0291 (6)0.0333 (6)0.0125 (5)0.0160 (5)0.0065 (5)
C30.0403 (7)0.0237 (6)0.0279 (6)0.0100 (5)0.0145 (5)0.0035 (4)
C40.0316 (6)0.0228 (5)0.0231 (5)0.0051 (4)0.0069 (4)0.0042 (4)
C50.0269 (5)0.0242 (5)0.0232 (5)0.0094 (4)0.0072 (4)0.0047 (4)
C60.0264 (5)0.0219 (5)0.0223 (5)0.0085 (4)0.0075 (4)0.0055 (4)
C70.0261 (5)0.0239 (5)0.0258 (5)0.0097 (4)0.0039 (4)0.0020 (4)
C80.0253 (5)0.0198 (5)0.0231 (5)0.0048 (4)0.0006 (4)0.0001 (4)
C90.0291 (5)0.0244 (6)0.0231 (5)0.0089 (4)0.0026 (4)0.0028 (4)
C100.0326 (6)0.0266 (6)0.0213 (5)0.0064 (5)0.0058 (4)0.0006 (4)
C110.0333 (6)0.0203 (5)0.0222 (5)0.0060 (4)0.0001 (4)0.0011 (4)
C120.0277 (5)0.0252 (6)0.0277 (6)0.0096 (4)0.0012 (4)0.0009 (4)
C130.0235 (5)0.0254 (6)0.0262 (5)0.0064 (4)0.0033 (4)0.0019 (4)
C140.0240 (5)0.0366 (7)0.0358 (7)0.0120 (5)0.0081 (5)0.0104 (5)
C150.0252 (6)0.0308 (6)0.0376 (7)0.0019 (5)0.0051 (5)0.0099 (5)
C160.0311 (6)0.0236 (6)0.0367 (6)0.0012 (5)0.0003 (5)0.0053 (5)
Geometric parameters (Å, º) top
Cl1—C41.7477 (13)C7—H7B0.9900
Cl2—C111.7471 (12)C8—C91.3968 (16)
N1—C11.4334 (16)C8—C131.4043 (16)
N1—C151.4657 (17)C9—C101.3882 (17)
N1—C141.4659 (16)C9—H90.9500
N2—C81.4332 (14)C10—C111.3901 (17)
N2—C71.4608 (15)C10—H100.9500
N2—C161.4653 (16)C11—C121.3795 (17)
C1—C21.3937 (18)C12—C131.3956 (16)
C1—C61.4077 (15)C12—H120.9500
C2—C31.3802 (19)C13—C141.5223 (16)
C2—H20.9500C14—H14A0.9900
C3—C41.3865 (17)C14—H14B0.9900
C3—H30.9500C15—C161.5269 (19)
C4—C51.3866 (17)C15—H15A0.9900
C5—C61.3980 (17)C15—H15B0.9900
C5—H50.9500C16—H16A0.9900
C6—C71.5230 (16)C16—H16B0.9900
C7—H7A0.9900
C1—N1—C15115.51 (10)C10—C9—C8121.47 (11)
C1—N1—C14113.66 (10)C10—C9—H9119.3
C15—N1—C14114.24 (11)C8—C9—H9119.3
C8—N2—C7114.43 (9)C9—C10—C11118.43 (11)
C8—N2—C16115.99 (9)C9—C10—H10120.8
C7—N2—C16113.67 (9)C11—C10—H10120.8
C2—C1—C6119.43 (11)C12—C11—C10121.14 (11)
C2—C1—N1116.75 (10)C12—C11—Cl2119.53 (9)
C6—C1—N1123.82 (11)C10—C11—Cl2119.33 (9)
C3—C2—C1121.62 (11)C11—C12—C13120.58 (11)
C3—C2—H2119.2C11—C12—H12119.7
C1—C2—H2119.2C13—C12—H12119.7
C2—C3—C4118.57 (11)C12—C13—C8119.04 (10)
C2—C3—H3120.7C12—C13—C14117.56 (10)
C4—C3—H3120.7C8—C13—C14123.39 (10)
C3—C4—C5121.36 (12)N1—C14—C13116.80 (10)
C3—C4—Cl1118.71 (10)N1—C14—H14A108.1
C5—C4—Cl1119.92 (9)C13—C14—H14A108.1
C4—C5—C6120.10 (10)N1—C14—H14B108.1
C4—C5—H5120.0C13—C14—H14B108.1
C6—C5—H5120.0H14A—C14—H14B107.3
C5—C6—C1118.91 (11)N1—C15—C16112.65 (10)
C5—C6—C7117.90 (10)N1—C15—H15A109.1
C1—C6—C7123.18 (11)C16—C15—H15A109.1
N2—C7—C6116.32 (9)N1—C15—H15B109.1
N2—C7—H7A108.2C16—C15—H15B109.1
C6—C7—H7A108.2H15A—C15—H15B107.8
N2—C7—H7B108.2N2—C16—C15112.95 (11)
C6—C7—H7B108.2N2—C16—H16A109.0
H7A—C7—H7B107.4C15—C16—H16A109.0
C9—C8—C13119.27 (10)N2—C16—H16B109.0
C9—C8—N2117.29 (10)C15—C16—H16B109.0
C13—C8—N2123.43 (10)H16A—C16—H16B107.8
C15—N1—C1—C2140.54 (11)C16—N2—C8—C1339.77 (16)
C14—N1—C1—C284.57 (13)C13—C8—C9—C101.50 (18)
C15—N1—C1—C639.47 (15)N2—C8—C9—C10177.27 (10)
C14—N1—C1—C695.42 (14)C8—C9—C10—C110.77 (18)
C6—C1—C2—C31.36 (18)C9—C10—C11—C122.32 (18)
N1—C1—C2—C3178.64 (11)C9—C10—C11—Cl2178.13 (9)
C1—C2—C3—C40.33 (18)C10—C11—C12—C131.56 (18)
C2—C3—C4—C50.88 (18)Cl2—C11—C12—C13178.90 (9)
C2—C3—C4—Cl1179.63 (9)C11—C12—C13—C80.77 (18)
C3—C4—C5—C61.03 (17)C11—C12—C13—C14179.84 (11)
Cl1—C4—C5—C6179.48 (8)C9—C8—C13—C122.26 (17)
C4—C5—C6—C10.03 (16)N2—C8—C13—C12176.43 (10)
C4—C5—C6—C7178.54 (10)C9—C8—C13—C14178.73 (11)
C2—C1—C6—C51.19 (17)N2—C8—C13—C142.57 (18)
N1—C1—C6—C5178.82 (10)C1—N1—C14—C1354.36 (15)
C2—C1—C6—C7177.30 (10)C15—N1—C14—C1381.12 (14)
N1—C1—C6—C72.70 (17)C12—C13—C14—N1153.32 (12)
C8—N2—C7—C654.43 (13)C8—C13—C14—N127.67 (18)
C16—N2—C7—C682.00 (12)C1—N1—C15—C1686.66 (13)
C5—C6—C7—N2150.29 (10)C14—N1—C15—C1647.97 (14)
C1—C6—C7—N228.21 (15)C8—N2—C16—C1586.98 (12)
C7—N2—C8—C985.65 (13)C7—N2—C16—C1548.75 (14)
C16—N2—C8—C9138.96 (11)N1—C15—C16—N239.74 (14)
C7—N2—C8—C1395.62 (13)

Experimental details

Crystal data
Chemical formulaC16H14Cl2N2
Mr305.19
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.8801 (11), 10.1951 (17), 10.2466 (16)
α, β, γ (°)85.320 (3), 84.956 (2), 76.470 (3)
V3)694.70 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.63 × 0.44 × 0.41
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionGaussian
(XPREP; Coppens et al., 1965; Siemens, 1995)
Tmin, Tmax0.773, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
6876, 3188, 2992
Rint0.033
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.089, 1.06
No. of reflections3188
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.27

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT and XPREP (Siemens, 1995), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank the Australian Research Council for a Discovery Project grant to ACT (grant No. DP0345180) and Macquarie University for the award of a Macquarie University Research Development grant.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFaroughi, M., Try, A. C., Klepetko, J. & Turner, P. (2007). Tetrahedron Lett. 48, 6548–6551.  Web of Science CSD CrossRef CAS Google Scholar
First citationFaroughi, M., Try, A. C. & Turner, P. (2006a). Acta Cryst. E62, o3674–o3675.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaroughi, M., Try, A. C. & Turner, P. (2006b). Acta Cryst. E62, o3893–o3894.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaroughi, M., Try, A. C. & Turner, P. (2007). Acta Cryst. E63, o2695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. The Xtal3.6 System. University of Western Australia.  Google Scholar
First citationHamada, Y. & Mukai, S. (1996). Tetrahedron Asymmetry, 7, 2671–2674.  CrossRef CAS Web of Science Google Scholar
First citationIshida, Y., Ito, H., Mori, D. & Saigo, K. (2005). Tetrahedron Lett. 46, 109–112.  Web of Science CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLarson, S. B. & Wilcox, C. S. (1986). Acta Cryst. C42, 224–227.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSolano, C., Svensson, D., Olomi, Z., Jensen, J., Wendt, O. F. & Wärnmark, K. (2005). Eur. J. Org. Chem. pp. 3510–3517.  Web of Science CSD CrossRef Google Scholar
First citationSpielman, M. A. (1935). J. Am. Chem. Soc. 57, 583–585.  CrossRef CAS Google Scholar
First citationTröger, J. (1887). J. Prakt. Chem. 36, 225–245.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds