organic compounds
2,8-Dichloro-6H,12H-5,11-ethanodibenzo[b,f][1,5]diazocine
aDepartment of Chemistry and Biomolecular Sciences, Building F7B, Macquarie University, NSW 2109, Australia, and bCrystal Structure Analysis Facility, School of Chemistry, F11, The University of Sydney, NSW 2006, Australia
*Correspondence e-mail: andrew.try@mq.edu.au
In the molecule of the title compound, C16H14Cl2N2, the ethano-strapped 2,8-dichloro analogue of Tröger's base, the dihedral angle between the two benzene rings is 87.01 (3)°.
Related literature
For related literature, see: Tröger (1887); Hamada & Mukai (1996); Ishida et al. (2005). For related structures, see: Spielman (1935); Larson & Wilcox (1986); Solano et al. (2005); Faroughi et al. (2006a,b); Faroughi, Try, Klepetko & Turner (2007); Faroughi, Try & Turner (2007).
Experimental
Crystal data
|
Data collection: SMART (Siemens, 1995); cell SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX.
Supporting information
https://doi.org/10.1107/S1600536807062642/hk2402sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807062642/hk2402Isup2.hkl
The title compound was prepared according to the literature procedure (Hamada & Mukai, 1996) in 72% yield. Single crystals of (I) were produced from slow evaporation of a dichloromethane solution.
H atoms were positioned geometrically, with C—H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).
Tröger's base was first prepared in 1887 (Tröger, 1887) and its structure was elucidated until over 30 years latter (Spielman, 1935). The strucural assignment was confirmed by X-ray crystallography (Larson & Wilcox, 1986). Since then large number of related compounds have been reported and the dihedral angle, between the least-squares planes through the aromatic rings, has been measured across a range of simple dibenzo Tröger's base analogues and found to lie between 82° (Solano et al., 2005) and 108° (Faroughi et al., 2006b). A common structural feature in all of these compounds is the methano-strapped diazocine bridge. The conversion of methano-strapped compounds to ethano-strapped analogues of Tröger's base have been reported for 2,8-dimethyl- and 2,8-dimethoxy- (Hamada & Mukai, 1996) as well as 2,8-dibromo- (Ishida et al., 2005; Faroughi, Try, Klepetko & Turner, 2007) substitution patterns. We have previously reported that the dihedral angle in methano-strapped 2,8-dibromo Tröger's base is 94.5° (Faroughi et al., 2006a) whilst the corresponding angle in the ethano-strapped 2,8-dibromo analogue is 86.1° (Faroughi, Try, Klepetko & Turner, 2007). In the present case, the dihedral angle of ethano-strapped 2,8-dichloro Tröger's base (I), whose molecular structure is shown in Fig. 1, was also found to be reduced [87.01 (3)°] in comparison with the methano-strapped analogue, which has a dihedral angle of 95.6° (Faroughi, Try & Turner et al., 2007).
For related literature, see: Tröger (1887); Hamada & Mukai (1996); Ishida et al. (2005). For related structures, see: Spielman (1935); Larson & Wilcox (1986); Solano et al. (2005); Faroughi et al. (2006a,b); Faroughi, Try, Klepetko & Turner (2007); Faroughi, Try & Turner (2007).
Data collection: SMART (Siemens, 1995); cell
SAINT (Siemens, 1995); data reduction: SAINT and XPREP (Siemens, 1995); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).C16H14Cl2N2 | Z = 2 |
Mr = 305.19 | F(000) = 316 |
Triclinic, P1 | Dx = 1.459 Mg m−3 |
Hall symbol: -P 1 | Melting point = 454–455 K |
a = 6.8801 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.1951 (17) Å | Cell parameters from 925 reflections |
c = 10.2466 (16) Å | θ = 3.5–27.9° |
α = 85.320 (3)° | µ = 0.46 mm−1 |
β = 84.956 (2)° | T = 150 K |
γ = 76.470 (3)° | Prism, colorless |
V = 694.70 (19) Å3 | 0.63 × 0.44 × 0.41 mm |
Bruker SMART 1000 CCD diffractometer | 3188 independent reflections |
Radiation source: fine-focus sealed tube | 2992 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ω scans | θmax = 28.3°, θmin = 2.0° |
Absorption correction: gaussian (XPREP; Coppens et al., 1965; Siemens, 1995) | h = −8→9 |
Tmin = 0.773, Tmax = 0.869 | k = −13→13 |
6876 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.051P)2 + 0.1729P] where P = (Fo2 + 2Fc2)/3 |
3188 reflections | (Δ/σ)max = 0.002 |
181 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C16H14Cl2N2 | γ = 76.470 (3)° |
Mr = 305.19 | V = 694.70 (19) Å3 |
Triclinic, P1 | Z = 2 |
a = 6.8801 (11) Å | Mo Kα radiation |
b = 10.1951 (17) Å | µ = 0.46 mm−1 |
c = 10.2466 (16) Å | T = 150 K |
α = 85.320 (3)° | 0.63 × 0.44 × 0.41 mm |
β = 84.956 (2)° |
Bruker SMART 1000 CCD diffractometer | 3188 independent reflections |
Absorption correction: gaussian (XPREP; Coppens et al., 1965; Siemens, 1995) | 2992 reflections with I > 2σ(I) |
Tmin = 0.773, Tmax = 0.869 | Rint = 0.033 |
6876 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.089 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.34 e Å−3 |
3188 reflections | Δρmin = −0.27 e Å−3 |
181 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | −0.33151 (5) | 0.87520 (3) | 1.11085 (3) | 0.03317 (10) | |
Cl2 | 0.19414 (5) | 1.02485 (3) | 0.31142 (3) | 0.03303 (10) | |
N1 | 0.43135 (15) | 0.61940 (11) | 0.81861 (11) | 0.0288 (2) | |
N2 | 0.19355 (15) | 0.52439 (10) | 0.65450 (10) | 0.0249 (2) | |
C1 | 0.24125 (17) | 0.67773 (12) | 0.88354 (11) | 0.0256 (2) | |
C2 | 0.23827 (19) | 0.77730 (13) | 0.96964 (13) | 0.0300 (3) | |
H2 | 0.3590 | 0.8039 | 0.9806 | 0.036* | |
C3 | 0.0642 (2) | 0.83825 (12) | 1.03940 (12) | 0.0297 (3) | |
H3 | 0.0645 | 0.9057 | 1.0981 | 0.036* | |
C4 | −0.11108 (18) | 0.79898 (12) | 1.02196 (11) | 0.0261 (2) | |
C5 | −0.11437 (17) | 0.70205 (12) | 0.93531 (11) | 0.0242 (2) | |
H5 | −0.2366 | 0.6777 | 0.9238 | 0.029* | |
C6 | 0.06195 (17) | 0.64005 (11) | 0.86481 (11) | 0.0231 (2) | |
C7 | 0.04879 (17) | 0.53679 (12) | 0.76854 (11) | 0.0247 (2) | |
H7A | 0.0654 | 0.4472 | 0.8169 | 0.030* | |
H7B | −0.0876 | 0.5605 | 0.7367 | 0.030* | |
C8 | 0.19502 (17) | 0.64895 (11) | 0.57911 (11) | 0.0229 (2) | |
C9 | 0.05736 (18) | 0.68840 (12) | 0.48295 (11) | 0.0250 (2) | |
H9 | −0.0354 | 0.6346 | 0.4732 | 0.030* | |
C10 | 0.05307 (18) | 0.80449 (12) | 0.40135 (11) | 0.0267 (2) | |
H10 | −0.0423 | 0.8310 | 0.3370 | 0.032* | |
C11 | 0.19158 (18) | 0.88103 (12) | 0.41608 (11) | 0.0256 (2) | |
C12 | 0.32586 (18) | 0.84588 (12) | 0.51236 (12) | 0.0265 (2) | |
H12 | 0.4170 | 0.9009 | 0.5220 | 0.032* | |
C13 | 0.32901 (17) | 0.73018 (12) | 0.59568 (11) | 0.0250 (2) | |
C14 | 0.48177 (18) | 0.69776 (14) | 0.69929 (13) | 0.0317 (3) | |
H14A | 0.6103 | 0.6474 | 0.6582 | 0.038* | |
H14B | 0.5042 | 0.7841 | 0.7254 | 0.038* | |
C15 | 0.47175 (18) | 0.47337 (13) | 0.80467 (13) | 0.0324 (3) | |
H15A | 0.4103 | 0.4303 | 0.8826 | 0.039* | |
H15B | 0.6183 | 0.4358 | 0.8017 | 0.039* | |
C16 | 0.39027 (19) | 0.43836 (13) | 0.68131 (13) | 0.0319 (3) | |
H16A | 0.4863 | 0.4477 | 0.6052 | 0.038* | |
H16B | 0.3797 | 0.3428 | 0.6914 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.03691 (18) | 0.03002 (17) | 0.03158 (17) | −0.00488 (12) | −0.00344 (12) | −0.00303 (12) |
Cl2 | 0.0492 (2) | 0.02418 (16) | 0.02644 (16) | −0.01157 (13) | −0.00413 (12) | 0.00531 (11) |
N1 | 0.0231 (5) | 0.0311 (5) | 0.0321 (5) | −0.0078 (4) | −0.0082 (4) | 0.0091 (4) |
N2 | 0.0270 (5) | 0.0203 (5) | 0.0266 (5) | −0.0053 (4) | −0.0019 (4) | 0.0024 (4) |
C1 | 0.0256 (5) | 0.0257 (6) | 0.0264 (5) | −0.0078 (4) | −0.0101 (4) | 0.0080 (4) |
C2 | 0.0314 (6) | 0.0291 (6) | 0.0333 (6) | −0.0125 (5) | −0.0160 (5) | 0.0065 (5) |
C3 | 0.0403 (7) | 0.0237 (6) | 0.0279 (6) | −0.0100 (5) | −0.0145 (5) | 0.0035 (4) |
C4 | 0.0316 (6) | 0.0228 (5) | 0.0231 (5) | −0.0051 (4) | −0.0069 (4) | 0.0042 (4) |
C5 | 0.0269 (5) | 0.0242 (5) | 0.0232 (5) | −0.0094 (4) | −0.0072 (4) | 0.0047 (4) |
C6 | 0.0264 (5) | 0.0219 (5) | 0.0223 (5) | −0.0085 (4) | −0.0075 (4) | 0.0055 (4) |
C7 | 0.0261 (5) | 0.0239 (5) | 0.0258 (5) | −0.0097 (4) | −0.0039 (4) | 0.0020 (4) |
C8 | 0.0253 (5) | 0.0198 (5) | 0.0231 (5) | −0.0048 (4) | −0.0006 (4) | 0.0001 (4) |
C9 | 0.0291 (5) | 0.0244 (6) | 0.0231 (5) | −0.0089 (4) | −0.0026 (4) | −0.0028 (4) |
C10 | 0.0326 (6) | 0.0266 (6) | 0.0213 (5) | −0.0064 (5) | −0.0058 (4) | −0.0006 (4) |
C11 | 0.0333 (6) | 0.0203 (5) | 0.0222 (5) | −0.0060 (4) | 0.0001 (4) | 0.0011 (4) |
C12 | 0.0277 (5) | 0.0252 (6) | 0.0277 (6) | −0.0096 (4) | −0.0012 (4) | 0.0009 (4) |
C13 | 0.0235 (5) | 0.0254 (6) | 0.0262 (5) | −0.0064 (4) | −0.0033 (4) | 0.0019 (4) |
C14 | 0.0240 (5) | 0.0366 (7) | 0.0358 (7) | −0.0120 (5) | −0.0081 (5) | 0.0104 (5) |
C15 | 0.0252 (6) | 0.0308 (6) | 0.0376 (7) | −0.0019 (5) | −0.0051 (5) | 0.0099 (5) |
C16 | 0.0311 (6) | 0.0236 (6) | 0.0367 (6) | −0.0012 (5) | 0.0003 (5) | 0.0053 (5) |
Cl1—C4 | 1.7477 (13) | C7—H7B | 0.9900 |
Cl2—C11 | 1.7471 (12) | C8—C9 | 1.3968 (16) |
N1—C1 | 1.4334 (16) | C8—C13 | 1.4043 (16) |
N1—C15 | 1.4657 (17) | C9—C10 | 1.3882 (17) |
N1—C14 | 1.4659 (16) | C9—H9 | 0.9500 |
N2—C8 | 1.4332 (14) | C10—C11 | 1.3901 (17) |
N2—C7 | 1.4608 (15) | C10—H10 | 0.9500 |
N2—C16 | 1.4653 (16) | C11—C12 | 1.3795 (17) |
C1—C2 | 1.3937 (18) | C12—C13 | 1.3956 (16) |
C1—C6 | 1.4077 (15) | C12—H12 | 0.9500 |
C2—C3 | 1.3802 (19) | C13—C14 | 1.5223 (16) |
C2—H2 | 0.9500 | C14—H14A | 0.9900 |
C3—C4 | 1.3865 (17) | C14—H14B | 0.9900 |
C3—H3 | 0.9500 | C15—C16 | 1.5269 (19) |
C4—C5 | 1.3866 (17) | C15—H15A | 0.9900 |
C5—C6 | 1.3980 (17) | C15—H15B | 0.9900 |
C5—H5 | 0.9500 | C16—H16A | 0.9900 |
C6—C7 | 1.5230 (16) | C16—H16B | 0.9900 |
C7—H7A | 0.9900 | ||
C1—N1—C15 | 115.51 (10) | C10—C9—C8 | 121.47 (11) |
C1—N1—C14 | 113.66 (10) | C10—C9—H9 | 119.3 |
C15—N1—C14 | 114.24 (11) | C8—C9—H9 | 119.3 |
C8—N2—C7 | 114.43 (9) | C9—C10—C11 | 118.43 (11) |
C8—N2—C16 | 115.99 (9) | C9—C10—H10 | 120.8 |
C7—N2—C16 | 113.67 (9) | C11—C10—H10 | 120.8 |
C2—C1—C6 | 119.43 (11) | C12—C11—C10 | 121.14 (11) |
C2—C1—N1 | 116.75 (10) | C12—C11—Cl2 | 119.53 (9) |
C6—C1—N1 | 123.82 (11) | C10—C11—Cl2 | 119.33 (9) |
C3—C2—C1 | 121.62 (11) | C11—C12—C13 | 120.58 (11) |
C3—C2—H2 | 119.2 | C11—C12—H12 | 119.7 |
C1—C2—H2 | 119.2 | C13—C12—H12 | 119.7 |
C2—C3—C4 | 118.57 (11) | C12—C13—C8 | 119.04 (10) |
C2—C3—H3 | 120.7 | C12—C13—C14 | 117.56 (10) |
C4—C3—H3 | 120.7 | C8—C13—C14 | 123.39 (10) |
C3—C4—C5 | 121.36 (12) | N1—C14—C13 | 116.80 (10) |
C3—C4—Cl1 | 118.71 (10) | N1—C14—H14A | 108.1 |
C5—C4—Cl1 | 119.92 (9) | C13—C14—H14A | 108.1 |
C4—C5—C6 | 120.10 (10) | N1—C14—H14B | 108.1 |
C4—C5—H5 | 120.0 | C13—C14—H14B | 108.1 |
C6—C5—H5 | 120.0 | H14A—C14—H14B | 107.3 |
C5—C6—C1 | 118.91 (11) | N1—C15—C16 | 112.65 (10) |
C5—C6—C7 | 117.90 (10) | N1—C15—H15A | 109.1 |
C1—C6—C7 | 123.18 (11) | C16—C15—H15A | 109.1 |
N2—C7—C6 | 116.32 (9) | N1—C15—H15B | 109.1 |
N2—C7—H7A | 108.2 | C16—C15—H15B | 109.1 |
C6—C7—H7A | 108.2 | H15A—C15—H15B | 107.8 |
N2—C7—H7B | 108.2 | N2—C16—C15 | 112.95 (11) |
C6—C7—H7B | 108.2 | N2—C16—H16A | 109.0 |
H7A—C7—H7B | 107.4 | C15—C16—H16A | 109.0 |
C9—C8—C13 | 119.27 (10) | N2—C16—H16B | 109.0 |
C9—C8—N2 | 117.29 (10) | C15—C16—H16B | 109.0 |
C13—C8—N2 | 123.43 (10) | H16A—C16—H16B | 107.8 |
C15—N1—C1—C2 | 140.54 (11) | C16—N2—C8—C13 | −39.77 (16) |
C14—N1—C1—C2 | −84.57 (13) | C13—C8—C9—C10 | 1.50 (18) |
C15—N1—C1—C6 | −39.47 (15) | N2—C8—C9—C10 | −177.27 (10) |
C14—N1—C1—C6 | 95.42 (14) | C8—C9—C10—C11 | 0.77 (18) |
C6—C1—C2—C3 | 1.36 (18) | C9—C10—C11—C12 | −2.32 (18) |
N1—C1—C2—C3 | −178.64 (11) | C9—C10—C11—Cl2 | 178.13 (9) |
C1—C2—C3—C4 | −0.33 (18) | C10—C11—C12—C13 | 1.56 (18) |
C2—C3—C4—C5 | −0.88 (18) | Cl2—C11—C12—C13 | −178.90 (9) |
C2—C3—C4—Cl1 | 179.63 (9) | C11—C12—C13—C8 | 0.77 (18) |
C3—C4—C5—C6 | 1.03 (17) | C11—C12—C13—C14 | 179.84 (11) |
Cl1—C4—C5—C6 | −179.48 (8) | C9—C8—C13—C12 | −2.26 (17) |
C4—C5—C6—C1 | 0.03 (16) | N2—C8—C13—C12 | 176.43 (10) |
C4—C5—C6—C7 | −178.54 (10) | C9—C8—C13—C14 | 178.73 (11) |
C2—C1—C6—C5 | −1.19 (17) | N2—C8—C13—C14 | −2.57 (18) |
N1—C1—C6—C5 | 178.82 (10) | C1—N1—C14—C13 | −54.36 (15) |
C2—C1—C6—C7 | 177.30 (10) | C15—N1—C14—C13 | 81.12 (14) |
N1—C1—C6—C7 | −2.70 (17) | C12—C13—C14—N1 | 153.32 (12) |
C8—N2—C7—C6 | −54.43 (13) | C8—C13—C14—N1 | −27.67 (18) |
C16—N2—C7—C6 | 82.00 (12) | C1—N1—C15—C16 | 86.66 (13) |
C5—C6—C7—N2 | 150.29 (10) | C14—N1—C15—C16 | −47.97 (14) |
C1—C6—C7—N2 | −28.21 (15) | C8—N2—C16—C15 | 86.98 (12) |
C7—N2—C8—C9 | −85.65 (13) | C7—N2—C16—C15 | −48.75 (14) |
C16—N2—C8—C9 | 138.96 (11) | N1—C15—C16—N2 | −39.74 (14) |
C7—N2—C8—C13 | 95.62 (13) |
Experimental details
Crystal data | |
Chemical formula | C16H14Cl2N2 |
Mr | 305.19 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 6.8801 (11), 10.1951 (17), 10.2466 (16) |
α, β, γ (°) | 85.320 (3), 84.956 (2), 76.470 (3) |
V (Å3) | 694.70 (19) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.46 |
Crystal size (mm) | 0.63 × 0.44 × 0.41 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD diffractometer |
Absorption correction | Gaussian (XPREP; Coppens et al., 1965; Siemens, 1995) |
Tmin, Tmax | 0.773, 0.869 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6876, 3188, 2992 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.089, 1.06 |
No. of reflections | 3188 |
No. of parameters | 181 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.27 |
Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT and XPREP (Siemens, 1995), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), Xtal3.6 (Hall et al., 1999), ORTEPII (Johnson, 1976) and WinGX (Farrugia, 1999), WinGX (Farrugia, 1999).
Acknowledgements
The authors thank the Australian Research Council for a Discovery Project grant to ACT (grant No. DP0345180) and Macquarie University for the award of a Macquarie University Research Development grant.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038. CrossRef CAS IUCr Journals Web of Science Google Scholar
Faroughi, M., Try, A. C., Klepetko, J. & Turner, P. (2007). Tetrahedron Lett. 48, 6548–6551. Web of Science CSD CrossRef CAS Google Scholar
Faroughi, M., Try, A. C. & Turner, P. (2006a). Acta Cryst. E62, o3674–o3675. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faroughi, M., Try, A. C. & Turner, P. (2006b). Acta Cryst. E62, o3893–o3894. Web of Science CSD CrossRef IUCr Journals Google Scholar
Faroughi, M., Try, A. C. & Turner, P. (2007). Acta Cryst. E63, o2695. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hall, S. R., du Boulay, D. J. & Olthof-Hazekamp, R. (1999). Editors. The Xtal3.6 System. University of Western Australia. Google Scholar
Hamada, Y. & Mukai, S. (1996). Tetrahedron Asymmetry, 7, 2671–2674. CrossRef CAS Web of Science Google Scholar
Ishida, Y., Ito, H., Mori, D. & Saigo, K. (2005). Tetrahedron Lett. 46, 109–112. Web of Science CrossRef CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Larson, S. B. & Wilcox, C. S. (1986). Acta Cryst. C42, 224–227. CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Google Scholar
Siemens (1995). SMART, SAINT and XPREP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Solano, C., Svensson, D., Olomi, Z., Jensen, J., Wendt, O. F. & Wärnmark, K. (2005). Eur. J. Org. Chem. pp. 3510–3517. Web of Science CSD CrossRef Google Scholar
Spielman, M. A. (1935). J. Am. Chem. Soc. 57, 583–585. CrossRef CAS Google Scholar
Tröger, J. (1887). J. Prakt. Chem. 36, 225–245. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tröger's base was first prepared in 1887 (Tröger, 1887) and its structure was elucidated until over 30 years latter (Spielman, 1935). The strucural assignment was confirmed by X-ray crystallography (Larson & Wilcox, 1986). Since then large number of related compounds have been reported and the dihedral angle, between the least-squares planes through the aromatic rings, has been measured across a range of simple dibenzo Tröger's base analogues and found to lie between 82° (Solano et al., 2005) and 108° (Faroughi et al., 2006b). A common structural feature in all of these compounds is the methano-strapped diazocine bridge. The conversion of methano-strapped compounds to ethano-strapped analogues of Tröger's base have been reported for 2,8-dimethyl- and 2,8-dimethoxy- (Hamada & Mukai, 1996) as well as 2,8-dibromo- (Ishida et al., 2005; Faroughi, Try, Klepetko & Turner, 2007) substitution patterns. We have previously reported that the dihedral angle in methano-strapped 2,8-dibromo Tröger's base is 94.5° (Faroughi et al., 2006a) whilst the corresponding angle in the ethano-strapped 2,8-dibromo analogue is 86.1° (Faroughi, Try, Klepetko & Turner, 2007). In the present case, the dihedral angle of ethano-strapped 2,8-dichloro Tröger's base (I), whose molecular structure is shown in Fig. 1, was also found to be reduced [87.01 (3)°] in comparison with the methano-strapped analogue, which has a dihedral angle of 95.6° (Faroughi, Try & Turner et al., 2007).