organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-2-iodo-1,3-di­methyl­benzene

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 29 November 2007; accepted 29 November 2007; online 6 December 2007)

The asymmetric unit of the title compound, C8H8BrI, contains three independent mol­ecules. In each molecule, the Br, I and C atoms of the methyl groups lie in the benzene ring plane. Intra­molecular C—H⋯I hydrogen bonds result in the formation of three planar five-membered rings, which are nearly coplanar with the adjacent rings.

Related literature

For general background, see: Hu et al. (2001[Hu, Y., Ishikawa, Y., Hirai, K. & Tomioka, H. (2001). Bull. Chem. Soc. Jpn, 74, 2207-2218.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8BrI

  • Mr = 310.94

  • Triclinic, [P \overline 1]

  • a = 10.282 (2) Å

  • b = 11.314 (2) Å

  • c = 12.951 (3) Å

  • α = 69.27 (3)°

  • β = 89.11 (3)°

  • γ = 83.70 (3)°

  • V = 1400.1 (6) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 7.64 mm−1

  • T = 294 (2) K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.466, Tmax = 0.466

  • 5802 measured reflections

  • 5481 independent reflections

  • 2809 reflections with I > 2σ(I)

  • Rint = 0.042

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.133

  • S = 1.06

  • 5481 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.72 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯I1 0.96 2.70 3.316 (11) 122
C10—H10A⋯I2 0.96 2.70 3.303 (10) 122
C18—H18A⋯I3 0.96 2.63 3.252 (10) 123

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

The title compound, (I), contains two different halogen groups, which can react with different groups to prepare various function organic compounds by the different reaction activity of Br and I. It is a kind of aromatic organic intermediate that can be used for many fields such as aromatic conductive polymer, organometallic chemistry (Hu et al., 2001). We herein report its crystal structure.

The asymmetric unit of (I) contains three independent molecules (Fig. 1), in which the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The Br, I and C atoms of the methyl groups lie in the benzene ring planes. The intramolecular C—H···I hydrogen bonds (Table 2) result in the formations of three planar five-membered rings; B (I1/H1A/C1/C4/C5), D (I2/H10A/C10—C12) and F (I3/H18A/C18—C20). Rings A (C3—C8), C (C11—C16) and E (C19—C24) are, of course, planar and the dihedral angles between them are A/B = 1.29 (3)°, C/D = 1.73 (3)° and E/F = 1.77 (2)°. So, the adjacent rings are also nearly co-planar.

As can be seen from the packing diagram, (Fig. 2), the molecules are stacked along the b axis. The π-π interactions of benzene rings with a face-to-face stacking distance of 3.636 Å are also found.

Related literature top

For general background, see: Hu et al. (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, a mixture of 4-bromo-2,6-dimethyl- aniline (4.0 g, 20 mmol), concentrated sulfuric acid (40 mmol, 2.24 ml) and water (100 ml) was stirred in an ice bath. When the mixture was below 278 K, the solution of sodium nitrite (1.75 g, 25 mmol) and water (100 ml) was added dropwise. Then, the mixture was added to a solution of KI (3.3 g, 20 mmol) and water (50 ml) with stirring. The solid residue was extracted with boiling hexane (40 ml) and hexane was distilled off. The product was recrystallized from ethanol. The crystals were obtained by dissolving (I) in ethanol (20 ml) and evaporating ethanol slowly at room temperature for about 10 d.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for aromatic H atoms.

Structure description top

The title compound, (I), contains two different halogen groups, which can react with different groups to prepare various function organic compounds by the different reaction activity of Br and I. It is a kind of aromatic organic intermediate that can be used for many fields such as aromatic conductive polymer, organometallic chemistry (Hu et al., 2001). We herein report its crystal structure.

The asymmetric unit of (I) contains three independent molecules (Fig. 1), in which the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The Br, I and C atoms of the methyl groups lie in the benzene ring planes. The intramolecular C—H···I hydrogen bonds (Table 2) result in the formations of three planar five-membered rings; B (I1/H1A/C1/C4/C5), D (I2/H10A/C10—C12) and F (I3/H18A/C18—C20). Rings A (C3—C8), C (C11—C16) and E (C19—C24) are, of course, planar and the dihedral angles between them are A/B = 1.29 (3)°, C/D = 1.73 (3)° and E/F = 1.77 (2)°. So, the adjacent rings are also nearly co-planar.

As can be seen from the packing diagram, (Fig. 2), the molecules are stacked along the b axis. The π-π interactions of benzene rings with a face-to-face stacking distance of 3.636 Å are also found.

For general background, see: Hu et al. (2001). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON10M (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
5-Bromo-2-iodo-1,3-dimethylbenzene top
Crystal data top
C8H8BrIZ = 6
Mr = 310.94F(000) = 864
Triclinic, P1Dx = 2.213 Mg m3
Hall symbol: -P 1Melting point: 307 K
a = 10.282 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.314 (2) ÅCell parameters from 25 reflections
c = 12.951 (3) Åθ = 10–13°
α = 69.27 (3)°µ = 7.64 mm1
β = 89.11 (3)°T = 294 K
γ = 83.70 (3)°Block, colorless
V = 1400.1 (6) Å30.10 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2809 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 26.0°, θmin = 1.7°
ω/2θ scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 1213
Tmin = 0.466, Tmax = 0.466l = 015
5802 measured reflections3 standard reflections every 120 min
5481 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.050P)2]
where P = (Fo2 + 2Fc2)/3
5481 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = 0.72 e Å3
Crystal data top
C8H8BrIγ = 83.70 (3)°
Mr = 310.94V = 1400.1 (6) Å3
Triclinic, P1Z = 6
a = 10.282 (2) ÅMo Kα radiation
b = 11.314 (2) ŵ = 7.64 mm1
c = 12.951 (3) ÅT = 294 K
α = 69.27 (3)°0.10 × 0.10 × 0.10 mm
β = 89.11 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2809 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.042
Tmin = 0.466, Tmax = 0.4663 standard reflections every 120 min
5802 measured reflections intensity decay: none
5481 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.06Δρmax = 0.76 e Å3
5481 reflectionsΔρmin = 0.72 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.26694 (7)0.30503 (8)0.13847 (7)0.0898 (3)
I20.77050 (7)0.30518 (8)0.67167 (8)0.0901 (3)
I30.74437 (8)0.00666 (8)0.03475 (6)0.0798 (3)
Br10.90853 (10)0.36368 (12)0.15368 (10)0.0785 (4)
Br21.40828 (10)0.38917 (12)0.62860 (10)0.0782 (4)
Br30.75298 (12)0.00304 (14)0.54991 (9)0.0891 (4)
C10.4494 (11)0.3088 (11)0.3459 (8)0.086 (4)
H1A0.35880.30380.33320.129*
H1B0.45730.38170.36610.129*
H1C0.48470.23320.40460.129*
C20.4834 (10)0.3314 (10)0.0588 (8)0.075 (3)
H2A0.55060.34210.11270.113*
H2B0.41440.39990.08560.113*
H2C0.44910.25200.04590.113*
C30.5415 (9)0.3319 (8)0.0497 (7)0.050 (2)
C40.4687 (8)0.3180 (8)0.1459 (8)0.051 (2)
C50.5241 (9)0.3211 (8)0.2418 (8)0.051 (2)
C60.6560 (9)0.3308 (8)0.2456 (7)0.048 (2)
H6A0.69550.32920.31030.058*
C70.7295 (9)0.3430 (8)0.1529 (8)0.051 (2)
C80.6722 (9)0.3438 (8)0.0557 (7)0.054 (2)
H8A0.72340.35250.00590.064*
C90.9707 (9)0.3346 (9)0.8546 (8)0.073 (3)
H9A1.03250.34450.90500.109*
H9B0.93620.25450.88750.109*
H9C0.90060.40240.83820.109*
C100.9673 (10)0.3129 (10)0.4659 (8)0.070 (3)
H10A0.87740.29960.48180.105*
H10B1.01170.24110.45180.105*
H10C0.97140.38830.40200.105*
C111.0326 (9)0.3283 (8)0.5637 (7)0.048 (2)
C120.9713 (9)0.3258 (8)0.6616 (8)0.053 (2)
C131.0378 (10)0.3385 (8)0.7501 (7)0.053 (2)
C141.1692 (9)0.3532 (8)0.7396 (7)0.055 (3)
H14A1.21600.35910.79820.066*
C151.2316 (9)0.3594 (9)0.6444 (8)0.055 (2)
C161.1665 (9)0.3466 (8)0.5572 (8)0.058 (3)
H16A1.21130.35020.49340.070*
C170.5044 (9)0.0355 (10)0.2075 (8)0.068 (3)
H17A0.43800.04540.26190.102*
H17B0.51470.10900.18610.102*
H17C0.47900.03890.14400.102*
C180.9888 (9)0.0237 (10)0.1763 (8)0.072 (3)
H18A0.97510.01520.10620.108*
H18B1.05620.04060.21780.108*
H18C1.01500.10620.16470.108*
C190.8630 (9)0.0082 (7)0.2397 (7)0.047 (2)
C200.7480 (9)0.0034 (8)0.1963 (7)0.048 (2)
C210.6322 (8)0.0216 (8)0.2552 (7)0.049 (2)
C220.6335 (9)0.0184 (9)0.3618 (8)0.058 (3)
H22A0.55770.02730.40280.070*
C230.7527 (10)0.0012 (9)0.4076 (7)0.056 (3)
C240.8632 (8)0.0125 (8)0.3466 (7)0.047 (2)
H24A0.94000.02490.37650.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0426 (4)0.0927 (6)0.1290 (8)0.0114 (4)0.0064 (4)0.0322 (5)
I20.0441 (4)0.0918 (6)0.1307 (7)0.0115 (4)0.0106 (4)0.0342 (5)
I30.0972 (6)0.0946 (6)0.0534 (4)0.0077 (5)0.0096 (4)0.0345 (4)
Br10.0446 (6)0.0942 (9)0.1125 (10)0.0111 (6)0.0070 (6)0.0554 (7)
Br20.0446 (6)0.0999 (9)0.0907 (9)0.0137 (6)0.0124 (6)0.0333 (7)
Br30.0792 (8)0.1468 (12)0.0609 (7)0.0395 (8)0.0175 (6)0.0538 (8)
C10.085 (9)0.101 (9)0.076 (8)0.019 (7)0.026 (7)0.034 (7)
C20.077 (8)0.089 (8)0.066 (7)0.011 (6)0.015 (6)0.034 (6)
C30.051 (6)0.045 (6)0.058 (6)0.006 (4)0.005 (5)0.023 (5)
C40.041 (6)0.048 (6)0.061 (6)0.005 (4)0.009 (5)0.014 (5)
C50.043 (5)0.048 (6)0.057 (6)0.002 (4)0.008 (5)0.014 (5)
C60.049 (6)0.055 (6)0.041 (5)0.004 (5)0.007 (4)0.019 (5)
C70.045 (6)0.038 (5)0.069 (7)0.010 (4)0.003 (5)0.018 (5)
C80.042 (6)0.069 (7)0.053 (6)0.000 (5)0.005 (5)0.028 (5)
C90.070 (7)0.084 (8)0.078 (7)0.039 (6)0.047 (6)0.040 (6)
C100.070 (7)0.081 (8)0.072 (7)0.014 (6)0.002 (6)0.039 (6)
C110.042 (5)0.053 (6)0.043 (5)0.005 (4)0.007 (4)0.010 (4)
C120.043 (6)0.047 (6)0.071 (7)0.006 (4)0.016 (5)0.026 (5)
C130.067 (7)0.048 (6)0.043 (6)0.008 (5)0.010 (5)0.017 (5)
C140.045 (6)0.062 (6)0.051 (6)0.011 (5)0.014 (5)0.012 (5)
C150.036 (5)0.071 (7)0.062 (6)0.010 (5)0.013 (5)0.029 (5)
C160.064 (7)0.059 (6)0.054 (6)0.002 (5)0.020 (5)0.024 (5)
C170.049 (6)0.093 (8)0.068 (7)0.014 (6)0.009 (5)0.033 (6)
C180.047 (6)0.082 (8)0.084 (8)0.001 (5)0.018 (6)0.030 (6)
C190.045 (6)0.034 (5)0.050 (6)0.002 (4)0.009 (4)0.002 (4)
C200.050 (6)0.056 (6)0.037 (5)0.003 (5)0.003 (4)0.017 (4)
C210.038 (5)0.048 (6)0.058 (6)0.005 (4)0.000 (5)0.015 (5)
C220.056 (6)0.068 (7)0.058 (6)0.004 (5)0.005 (5)0.032 (5)
C230.067 (7)0.061 (6)0.043 (6)0.017 (5)0.012 (5)0.021 (5)
C240.039 (5)0.061 (6)0.038 (5)0.007 (4)0.009 (4)0.015 (4)
Geometric parameters (Å, º) top
I1—C42.102 (9)C10—H10C0.9600
Br1—C71.881 (9)C11—C121.399 (12)
C1—C51.513 (13)C11—C161.412 (12)
C1—H1A0.9600C12—C131.401 (12)
C1—H1B0.9600C13—C141.378 (12)
C1—H1C0.9600C14—C151.364 (12)
C2—C31.537 (11)C14—H14A0.9300
C2—H2A0.9600C15—C161.380 (12)
C2—H2B0.9600C16—H16A0.9300
C2—H2C0.9600I3—C202.106 (8)
C3—C81.372 (11)Br3—C231.861 (9)
C3—C41.413 (12)C17—C211.508 (11)
C4—C51.387 (12)C17—H17A0.9600
C5—C61.376 (12)C17—H17B0.9600
C6—C71.382 (11)C17—H17C0.9600
C6—H6A0.9300C18—C191.515 (11)
C7—C81.395 (12)C18—H18A0.9600
C8—H8A0.9300C18—H18B0.9600
I2—C122.100 (9)C18—H18C0.9600
Br2—C151.879 (9)C19—C201.356 (11)
C9—C131.498 (12)C19—C241.402 (11)
C9—H9A0.9600C20—C211.399 (11)
C9—H9B0.9600C21—C221.394 (12)
C9—H9C0.9600C22—C231.431 (12)
C10—C111.515 (12)C22—H22A0.9300
C10—H10A0.9600C23—C241.365 (11)
C10—H10B0.9600C24—H24A0.9300
C5—C1—H1A109.5C11—C12—C13122.8 (9)
C5—C1—H1B109.5C11—C12—I2117.3 (7)
H1A—C1—H1B109.5C13—C12—I2119.9 (7)
C5—C1—H1C109.5C14—C13—C12118.1 (8)
H1A—C1—H1C109.5C14—C13—C9119.9 (9)
H1B—C1—H1C109.5C12—C13—C9122.0 (9)
C3—C2—H2A109.5C15—C14—C13120.8 (9)
C3—C2—H2B109.5C15—C14—H14A119.6
H2A—C2—H2B109.5C13—C14—H14A119.6
C3—C2—H2C109.5C14—C15—C16121.2 (9)
H2A—C2—H2C109.5C14—C15—Br2120.2 (7)
H2B—C2—H2C109.5C16—C15—Br2118.6 (7)
C8—C3—C4117.2 (8)C15—C16—C11120.7 (8)
C8—C3—C2118.9 (9)C15—C16—H16A119.6
C4—C3—C2123.9 (9)C11—C16—H16A119.6
C5—C4—C3122.3 (8)C21—C17—H17A109.5
C5—C4—I1119.4 (7)C21—C17—H17B109.5
C3—C4—I1118.2 (7)H17A—C17—H17B109.5
C6—C5—C4119.0 (9)C21—C17—H17C109.5
C6—C5—C1116.9 (9)H17A—C17—H17C109.5
C4—C5—C1124.0 (9)H17B—C17—H17C109.5
C5—C6—C7119.7 (9)C19—C18—H18A109.5
C5—C6—H6A120.2C19—C18—H18B109.5
C7—C6—H6A120.2H18A—C18—H18B109.5
C6—C7—C8120.9 (8)C19—C18—H18C109.5
C6—C7—Br1120.6 (7)H18A—C18—H18C109.5
C8—C7—Br1118.4 (7)H18B—C18—H18C109.5
C3—C8—C7120.9 (9)C20—C19—C24118.0 (8)
C3—C8—H8A119.5C20—C19—C18123.2 (9)
C7—C8—H8A119.5C24—C19—C18118.7 (8)
C13—C9—H9A109.5C19—C20—C21123.6 (8)
C13—C9—H9B109.5C19—C20—I3118.8 (7)
H9A—C9—H9B109.5C21—C20—I3117.5 (6)
C13—C9—H9C109.5C22—C21—C20117.8 (8)
H9A—C9—H9C109.5C22—C21—C17118.3 (8)
H9B—C9—H9C109.5C20—C21—C17123.8 (8)
C11—C10—H10A109.5C21—C22—C23119.3 (8)
C11—C10—H10B109.5C21—C22—H22A120.4
H10A—C10—H10B109.5C23—C22—H22A120.4
C11—C10—H10C109.5C24—C23—C22119.9 (8)
H10A—C10—H10C109.5C24—C23—Br3121.3 (7)
H10B—C10—H10C109.5C22—C23—Br3118.8 (7)
C12—C11—C16116.3 (8)C23—C24—C19121.2 (8)
C12—C11—C10125.5 (9)C23—C24—H24A119.4
C16—C11—C10118.1 (8)C19—C24—H24A119.4
C8—C3—C4—C52.5 (13)C12—C13—C14—C152.0 (14)
C2—C3—C4—C5178.9 (9)C9—C13—C14—C15178.8 (8)
C8—C3—C4—I1178.2 (7)C13—C14—C15—C162.3 (15)
C2—C3—C4—I13.1 (12)C13—C14—C15—Br2176.4 (7)
C3—C4—C5—C63.7 (14)C14—C15—C16—C110.7 (15)
I1—C4—C5—C6179.4 (6)Br2—C15—C16—C11177.9 (7)
C3—C4—C5—C1179.0 (9)C12—C11—C16—C150.9 (13)
I1—C4—C5—C13.3 (13)C10—C11—C16—C15179.1 (9)
C4—C5—C6—C72.9 (14)C24—C19—C20—C215.4 (13)
C1—C5—C6—C7179.6 (8)C18—C19—C20—C21178.0 (9)
C5—C6—C7—C80.9 (13)C24—C19—C20—I3178.9 (6)
C5—C6—C7—Br1177.3 (7)C18—C19—C20—I32.2 (12)
C4—C3—C8—C70.4 (13)C19—C20—C21—C224.8 (14)
C2—C3—C8—C7179.2 (8)I3—C20—C21—C22179.4 (6)
C6—C7—C8—C30.3 (14)C19—C20—C21—C17179.5 (9)
Br1—C7—C8—C3178.6 (7)I3—C20—C21—C173.7 (12)
C16—C11—C12—C131.1 (13)C20—C21—C22—C232.1 (14)
C10—C11—C12—C13178.9 (9)C17—C21—C22—C23178.1 (8)
C16—C11—C12—I2177.9 (6)C21—C22—C23—C240.3 (14)
C10—C11—C12—I22.1 (12)C21—C22—C23—Br3179.9 (7)
C11—C12—C13—C140.3 (14)C22—C23—C24—C191.0 (14)
I2—C12—C13—C14179.3 (7)Br3—C23—C24—C19179.5 (6)
C11—C12—C13—C9179.5 (8)C20—C19—C24—C233.4 (13)
I2—C12—C13—C91.5 (12)C18—C19—C24—C23179.8 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···I10.962.703.316 (11)122
C10—H10A···I20.962.703.303 (10)122
C18—H18A···I30.962.633.252 (10)123

Experimental details

Crystal data
Chemical formulaC8H8BrI
Mr310.94
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)10.282 (2), 11.314 (2), 12.951 (3)
α, β, γ (°)69.27 (3), 89.11 (3), 83.70 (3)
V3)1400.1 (6)
Z6
Radiation typeMo Kα
µ (mm1)7.64
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.466, 0.466
No. of measured, independent and
observed [I > 2σ(I)] reflections
5802, 5481, 2809
Rint0.042
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.133, 1.06
No. of reflections5481
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.72

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON10M (Spek, 2003), SHELXTL (Bruker, 2000).

Selected geometric parameters (Å, º) top
I1—C42.102 (9)Br2—C151.879 (9)
Br1—C71.881 (9)I3—C202.106 (8)
I2—C122.100 (9)Br3—C231.861 (9)
C5—C4—I1119.4 (7)C14—C15—Br2120.2 (7)
C3—C4—I1118.2 (7)C16—C15—Br2118.6 (7)
C6—C7—Br1120.6 (7)C19—C20—I3118.8 (7)
C8—C7—Br1118.4 (7)C21—C20—I3117.5 (6)
C11—C12—I2117.3 (7)C24—C23—Br3121.3 (7)
C13—C12—I2119.9 (7)C22—C23—Br3118.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···I10.962.703.316 (11)122.00
C10—H10A···I20.962.703.303 (10)122.00
C18—H18A···I30.962.633.252 (10)123.00
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHu, Y., Ishikawa, Y., Hirai, K. & Tomioka, H. (2001). Bull. Chem. Soc. Jpn, 74, 2207–2218.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds