organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-2,6-di­methyl­aniline

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 29 November 2007; accepted 30 November 2007; online 6 December 2007)

The asymmetric unit of the title compound, C8H10BrN, contains two independent mol­ecules. The Br, N and methyl group C atoms lie in the benzene ring planes. In the crystal structure, N—H⋯N hydrogen bonds link the mol­ecules.

Related literature

For general background, see: Heravi et al. (2005[Heravi, M. M., Abdolhosseini, N. & Oskooie, H. A. (2005). Tetrahedron Lett. 46, 8959-8963.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H10BrN

  • Mr = 200.07

  • Monoclinic, P 21 /c

  • a = 20.141 (4) Å

  • b = 5.150 (1) Å

  • c = 17.300 (4) Å

  • β = 111.53 (3)°

  • V = 1669.3 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.85 mm−1

  • T = 294 (2) K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.211, Tmax = 0.379

  • 3392 measured reflections

  • 3268 independent reflections

  • 1523 reflections with I > 2σ(I)

  • Rint = 0.040

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.166

  • S = 1.06

  • 3268 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.50 3.279 (10) 151
N2—H2E⋯N1ii 0.86 2.50 3.287 (10) 152
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

The title compound, (I), contains amino and halogen groups, which can react with different groups to prepare various function organic compounds. It is a kind of aromatic organic intermediate that can be used for many fields such as aromatic conductive polymers and organometallic chemistry (Heravi et al., 2005). We herein report its crystal structure.

The asymmetric unit of (I) contains two independent molecules (Fig. 1), in which the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The Br, N and C atoms of the methyl groups lie in the benzene ring planes.

In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Heravi et al. (2005). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I), was prepared by the literature method (Heravi et al., 2005). The crystals were obtained by dissolving (I) (0.5 g) in hexane (20 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

The title compound, (I), contains amino and halogen groups, which can react with different groups to prepare various function organic compounds. It is a kind of aromatic organic intermediate that can be used for many fields such as aromatic conductive polymers and organometallic chemistry (Heravi et al., 2005). We herein report its crystal structure.

The asymmetric unit of (I) contains two independent molecules (Fig. 1), in which the bond lengths and angles (Table 1) are within normal ranges (Allen et al., 1987). The Br, N and C atoms of the methyl groups lie in the benzene ring planes.

In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 2) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure.

For general background, see: Heravi et al. (2005). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius,1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A packing diagram of (I). Hydrogen bonds are shown as dashed lines.
4-Bromo-2,6-dimethylaniline top
Crystal data top
C8H10BrNF(000) = 800
Mr = 200.07Dx = 1.592 Mg m3
Monoclinic, P21/cMelting point: 321 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 20.141 (4) ÅCell parameters from 25 reflections
b = 5.150 (1) Åθ = 10–13°
c = 17.300 (4) ŵ = 4.85 mm1
β = 111.53 (3)°T = 294 K
V = 1669.3 (7) Å3Needle, colorless
Z = 80.40 × 0.20 × 0.20 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1523 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 26.0°, θmin = 1.1°
ω/2θ scansh = 2423
Absorption correction: ψ scan
(North et al., 1968)
k = 06
Tmin = 0.211, Tmax = 0.379l = 021
3392 measured reflections3 standard reflections every 120 min
3268 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.050P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
3268 reflectionsΔρmax = 0.24 e Å3
183 parametersΔρmin = 0.25 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C8H10BrNV = 1669.3 (7) Å3
Mr = 200.07Z = 8
Monoclinic, P21/cMo Kα radiation
a = 20.141 (4) ŵ = 4.85 mm1
b = 5.150 (1) ÅT = 294 K
c = 17.300 (4) Å0.40 × 0.20 × 0.20 mm
β = 111.53 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1523 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.040
Tmin = 0.211, Tmax = 0.3793 standard reflections every 120 min
3392 measured reflections intensity decay: none
3268 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064183 parameters
wR(F2) = 0.166H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
3268 reflectionsΔρmin = 0.25 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.08550 (5)0.9358 (3)0.10030 (5)0.1246 (5)
Br20.43509 (5)0.5936 (2)0.34568 (6)0.1157 (4)
N10.1751 (3)1.3344 (13)0.4526 (4)0.100 (2)
H1A0.20921.44550.47080.120*
H1B0.15571.27260.48540.120*
N20.7343 (3)0.1666 (14)0.4436 (4)0.102 (2)
H2D0.76350.23000.42260.123*
H2E0.74820.04630.48050.123*
C10.2375 (4)1.5677 (16)0.3431 (5)0.103 (3)
H1C0.25401.60650.29890.154*
H1D0.27711.51240.39120.154*
H1E0.21651.72020.35650.154*
C20.0684 (4)0.9407 (18)0.4006 (5)0.103 (3)
H2A0.03540.80590.37270.154*
H2B0.04371.07370.41830.154*
H2C0.10560.86920.44820.154*
C30.1002 (4)1.0549 (18)0.3425 (5)0.086 (2)
C40.0812 (4)0.9643 (17)0.2630 (5)0.090 (2)
H4A0.04750.83240.24480.108*
C50.1113 (4)1.066 (2)0.2090 (5)0.095 (2)
C60.1609 (4)1.2610 (17)0.2362 (4)0.086 (2)
H6A0.18031.33250.19980.103*
C70.1822 (4)1.3524 (15)0.3159 (5)0.079 (2)
C80.1512 (4)1.2540 (18)0.3696 (5)0.086 (2)
C90.6901 (4)0.5486 (19)0.3171 (5)0.108 (3)
H9A0.73320.61280.35860.163*
H9B0.66730.68580.27900.163*
H9C0.70130.40840.28740.163*
C100.6417 (4)0.0549 (16)0.5187 (5)0.101 (3)
H10A0.65620.20250.49480.152*
H10B0.60240.10230.53460.152*
H10C0.68100.00230.56690.152*
C110.6190 (4)0.1636 (15)0.4553 (5)0.083 (2)
C120.5507 (4)0.2581 (19)0.4319 (5)0.093 (2)
H12A0.51930.19060.45500.112*
C130.5290 (4)0.4543 (18)0.3736 (5)0.089 (2)
C140.5726 (4)0.5468 (19)0.3354 (5)0.097 (3)
H14A0.55610.67270.29420.116*
C150.6406 (5)0.4529 (17)0.3581 (5)0.087 (2)
C160.6641 (4)0.2596 (18)0.4174 (5)0.087 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1232 (8)0.1683 (11)0.0770 (6)0.0228 (7)0.0304 (5)0.0229 (6)
Br20.0927 (6)0.1499 (9)0.0949 (7)0.0165 (6)0.0231 (5)0.0050 (7)
N10.096 (4)0.113 (6)0.087 (5)0.010 (4)0.029 (4)0.010 (4)
N20.092 (4)0.116 (6)0.095 (5)0.001 (4)0.028 (4)0.003 (4)
C10.098 (6)0.088 (6)0.117 (7)0.006 (5)0.033 (5)0.009 (6)
C20.093 (5)0.119 (7)0.094 (6)0.004 (5)0.032 (5)0.013 (6)
C30.077 (4)0.106 (6)0.070 (5)0.002 (5)0.023 (4)0.006 (5)
C40.084 (5)0.091 (6)0.085 (5)0.005 (4)0.020 (4)0.002 (5)
C50.092 (5)0.126 (7)0.063 (4)0.007 (5)0.024 (4)0.002 (5)
C60.086 (5)0.105 (6)0.065 (5)0.007 (5)0.026 (4)0.008 (5)
C70.073 (4)0.085 (5)0.074 (4)0.003 (4)0.021 (3)0.005 (4)
C80.082 (4)0.095 (5)0.073 (4)0.007 (4)0.020 (4)0.002 (4)
C90.105 (6)0.136 (8)0.083 (5)0.006 (6)0.033 (5)0.000 (6)
C100.109 (6)0.091 (6)0.092 (6)0.002 (5)0.023 (5)0.008 (5)
C110.080 (5)0.078 (6)0.076 (5)0.009 (4)0.009 (4)0.008 (4)
C120.084 (5)0.109 (7)0.077 (5)0.003 (5)0.019 (4)0.002 (5)
C130.090 (5)0.104 (7)0.062 (4)0.014 (5)0.013 (4)0.013 (5)
C140.095 (6)0.120 (7)0.071 (5)0.001 (5)0.025 (4)0.006 (5)
C150.094 (5)0.095 (6)0.071 (5)0.009 (5)0.029 (4)0.010 (5)
C160.079 (5)0.104 (6)0.075 (5)0.009 (5)0.023 (4)0.014 (5)
Geometric parameters (Å, º) top
Br1—C51.880 (8)Br2—C131.913 (8)
N1—C81.399 (9)N2—C161.403 (9)
N1—H1A0.8600N2—H2D0.8600
N1—H1B0.8600N2—H2E0.8600
C1—C71.520 (10)C9—C151.503 (11)
C1—H1C0.9600C9—H9A0.9600
C1—H1D0.9600C9—H9B0.9600
C1—H1E0.9600C9—H9C0.9600
C2—C31.497 (10)C10—C111.520 (10)
C2—H2A0.9600C10—H10A0.9600
C2—H2B0.9600C10—H10B0.9600
C2—H2C0.9600C10—H10C0.9600
C3—C41.367 (10)C11—C121.373 (10)
C3—C81.405 (11)C11—C161.391 (10)
C4—C51.390 (11)C12—C131.380 (11)
C4—H4A0.9300C12—H12A0.9300
C5—C61.374 (11)C13—C141.363 (11)
C6—C71.369 (10)C14—C151.368 (10)
C6—H6A0.9300C14—H14A0.9300
C7—C81.390 (10)C15—C161.382 (11)
C8—N1—H1A120.0C16—N2—H2D120.0
C8—N1—H1B120.0C16—N2—H2E120.0
H1A—N1—H1B120.0H2D—N2—H2E120.0
C7—C1—H1C109.5C15—C9—H9A109.5
C7—C1—H1D109.5C15—C9—H9B109.5
H1C—C1—H1D109.5H9A—C9—H9B109.5
C7—C1—H1E109.5C15—C9—H9C109.5
H1C—C1—H1E109.5H9A—C9—H9C109.5
H1D—C1—H1E109.5H9B—C9—H9C109.5
C3—C2—H2A109.5C11—C10—H10A109.5
C3—C2—H2B109.5C11—C10—H10B109.5
H2A—C2—H2B109.5H10A—C10—H10B109.5
C3—C2—H2C109.5C11—C10—H10C109.5
H2A—C2—H2C109.5H10A—C10—H10C109.5
H2B—C2—H2C109.5H10B—C10—H10C109.5
C4—C3—C8119.0 (7)C12—C11—C16119.4 (8)
C4—C3—C2120.7 (8)C12—C11—C10118.6 (8)
C8—C3—C2120.3 (7)C16—C11—C10121.8 (8)
C3—C4—C5121.2 (8)C11—C12—C13119.3 (8)
C3—C4—H4A119.4C11—C12—H12A120.4
C5—C4—H4A119.4C13—C12—H12A120.4
C6—C5—C4119.1 (8)C14—C13—C12121.5 (8)
C6—C5—Br1120.2 (6)C14—C13—Br2119.9 (7)
C4—C5—Br1120.7 (7)C12—C13—Br2118.5 (7)
C7—C6—C5121.1 (7)C13—C14—C15119.5 (8)
C7—C6—H6A119.5C13—C14—H14A120.3
C5—C6—H6A119.5C15—C14—H14A120.3
C6—C7—C8119.8 (7)C14—C15—C16120.1 (8)
C6—C7—C1119.1 (7)C14—C15—C9121.1 (8)
C8—C7—C1121.1 (7)C16—C15—C9118.8 (8)
C7—C8—N1120.6 (8)C15—C16—C11120.1 (8)
C7—C8—C3119.7 (7)C15—C16—N2121.0 (8)
N1—C8—C3119.5 (7)C11—C16—N2118.9 (8)
C8—C3—C4—C50.0 (12)C16—C11—C12—C132.7 (12)
C2—C3—C4—C5178.9 (8)C10—C11—C12—C13179.3 (7)
C3—C4—C5—C60.2 (13)C11—C12—C13—C143.7 (13)
C3—C4—C5—Br1179.1 (6)C11—C12—C13—Br2177.2 (6)
C4—C5—C6—C71.6 (13)C12—C13—C14—C153.4 (13)
Br1—C5—C6—C7177.8 (6)Br2—C13—C14—C15177.5 (6)
C5—C6—C7—C82.6 (12)C13—C14—C15—C162.2 (13)
C5—C6—C7—C1179.6 (8)C13—C14—C15—C9179.6 (8)
C6—C7—C8—N1176.4 (7)C14—C15—C16—C111.2 (12)
C1—C7—C8—N15.9 (12)C9—C15—C16—C11178.7 (7)
C6—C7—C8—C32.3 (12)C14—C15—C16—N2177.9 (7)
C1—C7—C8—C3180.0 (7)C9—C15—C16—N24.6 (12)
C4—C3—C8—C71.0 (12)C12—C11—C16—C151.5 (12)
C2—C3—C8—C7177.8 (7)C10—C11—C16—C15178.0 (7)
C4—C3—C8—N1175.1 (7)C12—C11—C16—N2178.2 (7)
C2—C3—C8—N13.7 (12)C10—C11—C16—N25.3 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.503.279 (10)151
N2—H2E···N1ii0.862.503.287 (10)152
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC8H10BrN
Mr200.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)20.141 (4), 5.150 (1), 17.300 (4)
β (°) 111.53 (3)
V3)1669.3 (7)
Z8
Radiation typeMo Kα
µ (mm1)4.85
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.211, 0.379
No. of measured, independent and
observed [I > 2σ(I)] reflections
3392, 3268, 1523
Rint0.040
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.166, 1.06
No. of reflections3268
No. of parameters183
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: CAD-4 Software (Enraf–Nonius,1985), CAD-4 Software, XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2000).

Selected geometric parameters (Å, º) top
Br1—C51.880 (8)Br2—C131.913 (8)
N1—C81.399 (9)N2—C161.403 (9)
C6—C5—Br1120.2 (6)C14—C13—Br2119.9 (7)
C4—C5—Br1120.7 (7)C12—C13—Br2118.5 (7)
C7—C8—N1120.6 (8)C15—C16—N2121.0 (8)
N1—C8—C3119.5 (7)C11—C16—N2118.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.503.279 (10)151.00
N2—H2E···N1ii0.862.503.287 (10)152.00
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHeravi, M. M., Abdolhosseini, N. & Oskooie, H. A. (2005). Tetrahedron Lett. 46, 8959–8963.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds