organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2-Meth­oxy­phenyl)-3-(3,4,5-tri­meth­oxy­phen­ethyl)-2H-1,2,4-triazole-5(4H)-thione

aDepartment of Chemistry, Quaid-i-Azam Univeristy, Islamabad 45320, Pakistan, and bSchool of Chemistry and Materials Science Centre, University of Manchester, Oxford Road, Manchester M13 9PL, England
*Correspondence e-mail: nasimhrama@yahoo.com

(Received 10 December 2007; accepted 11 December 2007; online 18 December 2007)

The title compound, C20H23N3O4S, is an important biologically active heterocyclic compound. The five-membered ring is oriented with respect to the six-membered rings at dihedral angles of 78.60 (3) (trimethoxyphenyl ring) and 71.57 (3)° (methoxyphenyl ring). In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into infinite chains along the c axis.

Related literature

For general background, see: Holla et al. (1998[Holla, B. S., Gonsalves, R. & Shenoy, S. (1998). Il Farmaco, 53, 574-578.]); Turan-Zitouni et al. (1999[Turan-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Il Farmaco, 54, 218-223.]); Demirbas et al. (2002[Demirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717-3723.]); Paulvannan et al. (2000[Paulvannan, K., Chen, T. & Hale, R. (2000). Tetrahedron, 56, 8071-8076.]); Kritsanida et al. (2002[Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Il Farmaco, 57, 253-257.]); Omar et al. (1986[Omar, A., Mohsen, M. E. & Wafa, O. A. (1986). J. Heterocycl. Chem. 23, 1339-1341.]). For related structures, see: Öztürk et al. (2004a[Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004a). Acta Cryst. E60, o425-o427.],b[Öztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004b). Acta Cryst. E60, o642-o644.]); Zhang et al. (2004[Zhang, L.-X., Zhang, A.-J., Lei, X.-X., Zou, K.-H. & Ng, S. W. (2004). Acta Cryst. E60, o613-o615.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23N3O4S

  • Mr = 401.47

  • Triclinic, [P \overline 1]

  • a = 8.6368 (6) Å

  • b = 10.5422 (7) Å

  • c = 11.6944 (8) Å

  • α = 91.733 (1)°

  • β = 92.955 (1)°

  • γ = 104.075 (1)°

  • V = 1030.44 (12) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 (2) K

  • 0.55 × 0.35 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: integration (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.926, Tmax = 0.946

  • 8266 measured reflections

  • 4149 independent reflections

  • 3689 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.07

  • 4149 reflections

  • 261 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O2i 0.878 (17) 1.890 (18) 2.7558 (15) 168.4 (15)
Symmetry code: (i) x, y, z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1999[Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Substituted triazole derivatives display significant biological activities including antimicrobial (Holla et al., 1998), analgesic (Turan-Zitouni et al., 1999), antitumor (Demirbas et al., 2002), antihypertensive (Paulvannan et al., 2000) and antiviral activities (Kritsanida et al., 2002). The biological activity is closely related to the structure, possibly being due to the presence of the —N—C ?S unit (Omar et al., 1986). We are interested in the synthesis and biological activities of aryloxyacetyl hydrazide derivatives and report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987), and are comparable with those observed in related structures Öztürk et al., 2004a,b). The C2?S1 [1.6775 (14) Å] bond is in accordance with the corresponding values of 1.6773 (19) Å in 4-(4-chlorophenyl)-3-(furan-2-yl)-1H-1,2,4-triazole-5(4H)-thione Öztürk et al., 2004a) and 1.668 (5) Å in 4-amino-3-(1,2,3,4,5-pentahydroxypentyl)-1H-1,2,4-triazole-5(4H)-thione (Zhang et al., 2004). In the triazole ring, the N2 ?C2 [1.3326 (19) Å] bond shows double-bond character.

The rings A (N1–N3/C1/C2), B (C5–C10) and C (C14–C19) are, of course, planar and dihedral angles between them are A/B = 78.60 (3)°, A/C = 71.57 (3)° and B/C = 74.12 (3)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into infinite chains along the c axis (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For general background, see: Holla et al. (1998); Turan-Zitouni et al. (1999); Demirbas et al. (2002); Paulvannan et al. (2000); Kritsanida et al. (2002); Omar et al. (1986). For related structures, see: Öztürk et al. (2004a,b); Zhang et al. (2004). For bond-length data, see: Allen et al. (1987).

Experimental top

The synthesis of the title compound was carried out by refluxing a solution of 1-(3-(3,4,5-trimethoxyphenyl)propanoyl)-4-(2-methoxyphenyl)thiosemicarbazide (4.19 g, 10 mmol) in NaOH (2 M) for 5 h. Single crystals suitable for X-ray analysis were obtained by recrystallization from an aqeous ethanol solution at room temperature (yield: 82%; m.p. 491–492 K).

Refinement top

H2N (for NH) was located in difference syntheses and refined isotropically [N2—H2N = 0.878 (17) Å and Uiso(H) = 0.022 (4) Å2]. The remaining H atoms were positioned geometrically, with C—H = 0.95, 0.99 and 0.98 Å for aromatic, methylene and methyl H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Structure description top

Substituted triazole derivatives display significant biological activities including antimicrobial (Holla et al., 1998), analgesic (Turan-Zitouni et al., 1999), antitumor (Demirbas et al., 2002), antihypertensive (Paulvannan et al., 2000) and antiviral activities (Kritsanida et al., 2002). The biological activity is closely related to the structure, possibly being due to the presence of the —N—C ?S unit (Omar et al., 1986). We are interested in the synthesis and biological activities of aryloxyacetyl hydrazide derivatives and report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of (I) (Fig. 1), the ligand bond lengths and angles are within normal ranges (Allen et al., 1987), and are comparable with those observed in related structures Öztürk et al., 2004a,b). The C2?S1 [1.6775 (14) Å] bond is in accordance with the corresponding values of 1.6773 (19) Å in 4-(4-chlorophenyl)-3-(furan-2-yl)-1H-1,2,4-triazole-5(4H)-thione Öztürk et al., 2004a) and 1.668 (5) Å in 4-amino-3-(1,2,3,4,5-pentahydroxypentyl)-1H-1,2,4-triazole-5(4H)-thione (Zhang et al., 2004). In the triazole ring, the N2 ?C2 [1.3326 (19) Å] bond shows double-bond character.

The rings A (N1–N3/C1/C2), B (C5–C10) and C (C14–C19) are, of course, planar and dihedral angles between them are A/B = 78.60 (3)°, A/C = 71.57 (3)° and B/C = 74.12 (3)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into infinite chains along the c axis (Fig. 2), in which they may be effective in the stabilization of the structure.

For general background, see: Holla et al. (1998); Turan-Zitouni et al. (1999); Demirbas et al. (2002); Paulvannan et al. (2000); Kritsanida et al. (2002); Omar et al. (1986). For related structures, see: Öztürk et al. (2004a,b); Zhang et al. (2004). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
4-(2-Methoxyphenyl)-3-(3,4,5-trimethoxyphenethyl)-2H-1,2,4-triazole- 5(4H)-thione top
Crystal data top
C20H23N3O4SZ = 2
Mr = 401.47F(000) = 424
Triclinic, P1Dx = 1.294 Mg m3
Hall symbol: -P 1Melting point: 491(1) K
a = 8.6368 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5422 (7) ÅCell parameters from 5348 reflections
c = 11.6944 (8) Åθ = 2.4–26.4°
α = 91.733 (1)°µ = 0.19 mm1
β = 92.955 (1)°T = 100 K
γ = 104.075 (1)°Rectangular, colourless
V = 1030.44 (12) Å30.55 × 0.35 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4149 independent reflections
Radiation source: fine-focus sealed tube3689 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω and φ scansθmax = 26.4°, θmin = 1.8°
Absorption correction: integration
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.926, Tmax = 0.946k = 1312
8266 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.3128P]
where P = (Fo2 + 2Fc2)/3
4149 reflections(Δ/σ)max = 0.001
261 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C20H23N3O4Sγ = 104.075 (1)°
Mr = 401.47V = 1030.44 (12) Å3
Triclinic, P1Z = 2
a = 8.6368 (6) ÅMo Kα radiation
b = 10.5422 (7) ŵ = 0.19 mm1
c = 11.6944 (8) ÅT = 100 K
α = 91.733 (1)°0.55 × 0.35 × 0.30 mm
β = 92.955 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4149 independent reflections
Absorption correction: integration
(SADABS; Sheldrick, 1996)
3689 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.946Rint = 0.061
8266 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.31 e Å3
4149 reflectionsΔρmin = 0.25 e Å3
261 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.22156 (4)0.29397 (4)1.24108 (3)0.02234 (11)
O10.73558 (18)0.35378 (12)0.44984 (10)0.0440 (3)
O20.73876 (11)0.15824 (11)0.30066 (8)0.0224 (2)
O30.76675 (13)0.07402 (10)0.37013 (8)0.0262 (2)
O41.16300 (12)0.44582 (10)0.89915 (9)0.0260 (2)
N10.87413 (14)0.11839 (12)1.02120 (9)0.0201 (3)
N20.94616 (14)0.15655 (12)1.12957 (10)0.0193 (2)
H2N0.8869 (19)0.1498 (17)1.1889 (15)0.022 (4)*
N31.12777 (13)0.22471 (11)1.01432 (9)0.0177 (2)
C10.98802 (16)0.16129 (14)0.95339 (11)0.0187 (3)
C21.09805 (17)0.22420 (14)1.12896 (11)0.0185 (3)
C30.97520 (16)0.15040 (14)0.82582 (11)0.0210 (3)
H3A1.05170.10120.79920.025*
H3B1.00580.23930.79580.025*
C40.80733 (17)0.08197 (15)0.77691 (11)0.0213 (3)
H4A0.78630.01280.79040.026*
H4B0.72770.11740.81690.026*
C50.78916 (16)0.10143 (14)0.64979 (11)0.0198 (3)
C60.77190 (19)0.22128 (15)0.61242 (12)0.0268 (3)
H60.77120.29000.66670.032*
C70.75566 (19)0.24094 (16)0.49577 (13)0.0267 (3)
C80.75539 (16)0.13938 (14)0.41670 (11)0.0201 (3)
C90.77218 (16)0.01948 (14)0.45455 (11)0.0193 (3)
C100.79036 (16)0.00040 (14)0.57146 (12)0.0199 (3)
H100.80350.08120.59720.024*
C110.7409 (4)0.4614 (2)0.52929 (18)0.0692 (8)
H11A0.65710.43570.58340.104*
H11B0.72360.53640.48730.104*
H11C0.84570.48570.57140.104*
C120.57722 (19)0.1091 (2)0.25334 (14)0.0394 (4)
H12A0.53600.01900.27620.059*
H12B0.57570.11050.16950.059*
H12C0.51000.16420.28200.059*
C130.7628 (2)0.20286 (16)0.40713 (14)0.0354 (4)
H13A0.86430.20260.44880.053*
H13B0.74650.26390.34030.053*
H13C0.67480.23030.45770.053*
C141.27708 (16)0.28093 (14)0.96606 (11)0.0185 (3)
C151.29400 (17)0.39505 (14)0.90645 (11)0.0207 (3)
C161.43893 (18)0.44820 (15)0.85927 (12)0.0258 (3)
H161.45220.52500.81670.031*
C171.56401 (18)0.38788 (17)0.87504 (13)0.0302 (4)
H171.66360.42520.84400.036*
C181.54665 (18)0.27456 (17)0.93495 (13)0.0294 (3)
H181.63360.23470.94530.035*
C191.40069 (17)0.21988 (15)0.97969 (12)0.0237 (3)
H191.38610.14091.01940.028*
C201.1700 (2)0.55440 (16)0.82719 (16)0.0380 (4)
H20A1.25360.62960.85850.057*
H20B1.06660.57740.82400.057*
H20C1.19470.53050.74980.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02592 (19)0.0233 (2)0.01559 (18)0.00255 (14)0.00210 (13)0.00064 (13)
O10.0882 (10)0.0284 (7)0.0253 (6)0.0323 (7)0.0050 (6)0.0065 (5)
O20.0211 (5)0.0317 (6)0.0138 (5)0.0047 (4)0.0009 (4)0.0054 (4)
O30.0389 (6)0.0217 (6)0.0171 (5)0.0057 (5)0.0037 (4)0.0024 (4)
O40.0298 (5)0.0184 (5)0.0309 (6)0.0082 (4)0.0018 (4)0.0057 (4)
N10.0227 (6)0.0228 (6)0.0144 (5)0.0052 (5)0.0009 (4)0.0003 (5)
N20.0222 (6)0.0225 (6)0.0127 (5)0.0041 (5)0.0015 (5)0.0018 (5)
N30.0208 (6)0.0175 (6)0.0142 (5)0.0037 (5)0.0006 (4)0.0023 (4)
C10.0221 (7)0.0161 (7)0.0176 (7)0.0044 (5)0.0002 (5)0.0017 (5)
C20.0246 (7)0.0165 (7)0.0161 (6)0.0077 (5)0.0013 (5)0.0033 (5)
C30.0243 (7)0.0221 (7)0.0159 (6)0.0042 (6)0.0014 (5)0.0018 (5)
C40.0248 (7)0.0220 (7)0.0160 (6)0.0037 (6)0.0008 (5)0.0010 (5)
C50.0194 (7)0.0230 (7)0.0161 (6)0.0037 (5)0.0004 (5)0.0012 (5)
C60.0397 (9)0.0234 (8)0.0189 (7)0.0115 (7)0.0018 (6)0.0031 (6)
C70.0382 (8)0.0227 (8)0.0226 (7)0.0131 (6)0.0026 (6)0.0051 (6)
C80.0208 (7)0.0267 (8)0.0134 (6)0.0068 (6)0.0013 (5)0.0031 (5)
C90.0193 (6)0.0211 (7)0.0165 (6)0.0031 (5)0.0023 (5)0.0021 (5)
C100.0225 (7)0.0186 (7)0.0183 (7)0.0044 (5)0.0008 (5)0.0023 (5)
C110.152 (3)0.0320 (11)0.0399 (11)0.0512 (15)0.0137 (13)0.0079 (9)
C120.0228 (8)0.0672 (13)0.0262 (8)0.0064 (8)0.0028 (6)0.0151 (8)
C130.0555 (11)0.0198 (8)0.0284 (8)0.0029 (7)0.0116 (7)0.0035 (6)
C140.0196 (6)0.0197 (7)0.0151 (6)0.0027 (5)0.0008 (5)0.0015 (5)
C150.0243 (7)0.0188 (7)0.0175 (6)0.0032 (6)0.0008 (5)0.0016 (5)
C160.0319 (8)0.0233 (8)0.0178 (7)0.0023 (6)0.0035 (6)0.0003 (6)
C170.0237 (7)0.0374 (9)0.0245 (7)0.0022 (6)0.0072 (6)0.0076 (7)
C180.0233 (7)0.0361 (9)0.0300 (8)0.0113 (7)0.0006 (6)0.0083 (7)
C190.0280 (7)0.0219 (8)0.0218 (7)0.0084 (6)0.0006 (6)0.0015 (6)
C200.0477 (10)0.0211 (8)0.0438 (10)0.0067 (7)0.0093 (8)0.0116 (7)
Geometric parameters (Å, º) top
S1—C21.6775 (14)C7—C81.393 (2)
O1—C71.3650 (18)C8—C91.390 (2)
O1—C111.435 (2)C9—C101.3944 (19)
O2—C81.3826 (15)C10—H100.9500
O2—C121.4397 (18)C11—H11A0.9800
O3—C91.3647 (17)C11—H11B0.9800
O3—C131.4309 (19)C11—H11C0.9800
O4—C151.3642 (17)C12—H12A0.9800
O4—C201.4324 (18)C12—H12B0.9800
N1—C11.2987 (19)C12—H12C0.9800
N1—N21.3861 (15)C13—H13A0.9800
N2—C21.3326 (19)C13—H13B0.9800
N2—H2N0.878 (17)C13—H13C0.9800
N3—C21.3778 (17)C14—C191.3792 (19)
N3—C11.3789 (18)C14—C151.389 (2)
N3—C141.4340 (18)C15—C161.391 (2)
C1—C31.4892 (18)C16—C171.388 (2)
C3—C41.5266 (19)C16—H160.9500
C3—H3A0.9900C17—C181.384 (2)
C3—H3B0.9900C17—H170.9500
C4—C51.5122 (18)C18—C191.389 (2)
C4—H4A0.9900C18—H180.9500
C4—H4B0.9900C19—H190.9500
C5—C101.3859 (19)C20—H20A0.9800
C5—C61.389 (2)C20—H20B0.9800
C6—C71.391 (2)C20—H20C0.9800
C6—H60.9500
C7—O1—C11116.44 (13)C5—C10—H10120.3
C8—O2—C12113.01 (11)C9—C10—H10120.3
C9—O3—C13116.17 (11)O1—C11—H11A109.5
C15—O4—C20117.11 (12)O1—C11—H11B109.5
C1—N1—N2103.56 (11)H11A—C11—H11B109.5
C2—N2—N1113.78 (11)O1—C11—H11C109.5
C2—N2—H2N125.4 (11)H11A—C11—H11C109.5
N1—N2—H2N119.5 (11)H11B—C11—H11C109.5
C2—N3—C1107.91 (12)O2—C12—H12A109.5
C2—N3—C14126.41 (11)O2—C12—H12B109.5
C1—N3—C14125.68 (11)H12A—C12—H12B109.5
N1—C1—N3111.33 (12)O2—C12—H12C109.5
N1—C1—C3126.51 (12)H12A—C12—H12C109.5
N3—C1—C3122.13 (12)H12B—C12—H12C109.5
N2—C2—N3103.34 (11)O3—C13—H13A109.5
N2—C2—S1128.07 (11)O3—C13—H13B109.5
N3—C2—S1128.58 (11)H13A—C13—H13B109.5
C1—C3—C4112.98 (12)O3—C13—H13C109.5
C1—C3—H3A109.0H13A—C13—H13C109.5
C4—C3—H3A109.0H13B—C13—H13C109.5
C1—C3—H3B109.0C19—C14—C15121.49 (13)
C4—C3—H3B109.0C19—C14—N3119.04 (13)
H3A—C3—H3B107.8C15—C14—N3119.47 (12)
C5—C4—C3111.07 (12)O4—C15—C14115.78 (12)
C5—C4—H4A109.4O4—C15—C16125.22 (13)
C3—C4—H4A109.4C14—C15—C16118.99 (13)
C5—C4—H4B109.4C17—C16—C15119.34 (14)
C3—C4—H4B109.4C17—C16—H16120.3
H4A—C4—H4B108.0C15—C16—H16120.3
C10—C5—C6120.43 (13)C18—C17—C16121.38 (14)
C10—C5—C4120.11 (13)C18—C17—H17119.3
C6—C5—C4119.45 (12)C16—C17—H17119.3
C5—C6—C7120.17 (13)C17—C18—C19119.21 (14)
C5—C6—H6119.9C17—C18—H18120.4
C7—C6—H6119.9C19—C18—H18120.4
O1—C7—C6125.01 (14)C14—C19—C18119.55 (14)
O1—C7—C8115.33 (13)C14—C19—H19120.2
C6—C7—C8119.65 (14)C18—C19—H19120.2
O2—C8—C9120.15 (12)O4—C20—H20A109.5
O2—C8—C7119.89 (13)O4—C20—H20B109.5
C9—C8—C7119.96 (12)H20A—C20—H20B109.5
O3—C9—C8115.17 (12)O4—C20—H20C109.5
O3—C9—C10124.48 (13)H20A—C20—H20C109.5
C8—C9—C10120.34 (13)H20B—C20—H20C109.5
C5—C10—C9119.45 (13)
C1—N1—N2—C21.85 (15)C6—C7—C8—C90.4 (2)
N2—N1—C1—N30.12 (15)C13—O3—C9—C8172.13 (13)
N2—N1—C1—C3178.15 (13)C13—O3—C9—C106.8 (2)
C2—N3—C1—N11.52 (16)O2—C8—C9—O31.54 (19)
C14—N3—C1—N1178.47 (12)C7—C8—C9—O3178.61 (13)
C2—N3—C1—C3176.61 (12)O2—C8—C9—C10179.45 (12)
C14—N3—C1—C33.4 (2)C7—C8—C9—C100.4 (2)
N1—N2—C2—N32.71 (15)C6—C5—C10—C90.7 (2)
N1—N2—C2—S1176.30 (10)C4—C5—C10—C9179.49 (12)
C1—N3—C2—N22.48 (14)O3—C9—C10—C5177.96 (13)
C14—N3—C2—N2177.52 (12)C8—C9—C10—C51.0 (2)
C1—N3—C2—S1176.53 (11)C2—N3—C14—C1972.32 (18)
C14—N3—C2—S13.5 (2)C1—N3—C14—C19107.68 (15)
N1—C1—C3—C40.6 (2)C2—N3—C14—C15107.91 (15)
N3—C1—C3—C4177.23 (12)C1—N3—C14—C1572.09 (18)
C1—C3—C4—C5166.39 (11)C20—O4—C15—C14172.91 (13)
C3—C4—C5—C10104.08 (15)C20—O4—C15—C166.9 (2)
C3—C4—C5—C675.69 (17)C19—C14—C15—O4179.94 (12)
C10—C5—C6—C70.0 (2)N3—C14—C15—O40.29 (18)
C4—C5—C6—C7179.76 (14)C19—C14—C15—C160.2 (2)
C11—O1—C7—C63.6 (3)N3—C14—C15—C16179.52 (12)
C11—O1—C7—C8177.92 (19)O4—C15—C16—C17178.73 (13)
C5—C6—C7—O1178.94 (15)C14—C15—C16—C171.5 (2)
C5—C6—C7—C80.6 (2)C15—C16—C17—C181.2 (2)
C12—O2—C8—C982.37 (17)C16—C17—C18—C190.3 (2)
C12—O2—C8—C797.78 (17)C15—C14—C19—C181.3 (2)
O1—C7—C8—O21.3 (2)N3—C14—C19—C18178.96 (12)
C6—C7—C8—O2179.79 (13)C17—C18—C19—C141.5 (2)
O1—C7—C8—C9178.88 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.878 (17)1.890 (18)2.7558 (15)168.4 (15)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC20H23N3O4S
Mr401.47
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.6368 (6), 10.5422 (7), 11.6944 (8)
α, β, γ (°)91.733 (1), 92.955 (1), 104.075 (1)
V3)1030.44 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.55 × 0.35 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionIntegration
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.926, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
8266, 4149, 3689
Rint0.061
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.07
No. of reflections4149
No. of parameters261
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.25

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O2i0.878 (17)1.890 (18)2.7558 (15)168.4 (15)
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

The authors gratefully acknowledge funds from the Higher Education Commission, Islamabad, Pakistan.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDemirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717–3723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHolla, B. S., Gonsalves, R. & Shenoy, S. (1998). Il Farmaco, 53, 574–578.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & Clercq, E. D. (2002). Il Farmaco, 57, 253–257.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOmar, A., Mohsen, M. E. & Wafa, O. A. (1986). J. Heterocycl. Chem. 23, 1339–1341.  CrossRef CAS Google Scholar
First citationÖztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004a). Acta Cryst. E60, o425–o427.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖztürk, S., Akkurt, M., Cansız, A., Koparır, M., Şekerci, M. & Heinemann, F. W. (2004b). Acta Cryst. E60, o642–o644.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaulvannan, K., Chen, T. & Hale, R. (2000). Tetrahedron, 56, 8071–8076.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTuran-Zitouni, G., Kaplancikli, Z. A., Erol, K. & Kilic, F. S. (1999). Il Farmaco, 54, 218–223.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, L.-X., Zhang, A.-J., Lei, X.-X., Zou, K.-H. & Ng, S. W. (2004). Acta Cryst. E60, o613–o615.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds