metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­(3,5-di­methyl-1H-pyrazole-κN)(oxalato-κ2O,O′)copper(II)

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01033 Kiev, Ukraine, and bDepartment of Chemistry, University of Joensuu, P.O.Box 111, FI-80101 Joensuu, Finland
*Correspondence e-mail: ifritsky@univ.kiev.ua

(Received 1 November 2007; accepted 14 November 2007; online 6 December 2007)

In the title compound, [Cu(C2O4)(C5H8N2)2(H2O)], the CuII atom is coordinated in a slightly distorted square-pyramidal geometry by two N atoms belonging to the two 3,5-dimethyl-1H-pyrazole ligands, two O atoms of the oxalate anion providing an O,O′-chelating coordination mode, and an O atom of the water mol­ecule occupying the apical position. The crystal packing shows a well defined layer structure. Intra-layer connections are realised through a system of hydrogen bonds while the nature of the inter-layer inter­actions is completely hydro­phobic, including no hydrogen-bonding inter­actions.

Related literature

For related literature on metal oxalates and 1H-pyrazole complexes, see: Abdeljalil et al. (2006[Abdeljalil, E. F., Najib, B. L., Abdelali, K., El Bali, B. & Bolte, M. (2006). Acta Cryst. E62, m551-m552.]); Bataille & Louër (1999[Bataille, T. & Louër, D. (1999). Acta Cryst. C55, 1760-1762.]); Castillo et al. (2001[Castillo, O., Luque, A., Lloret, F. & Romàn, P. (2001). Inorg. Chem. Commun. 4, 350-353.]); Naumov et al. (1995[Naumov, D. Y., Virovets, A. V., Podberezskaya, N. V. & Boldyreva, E. V. (1995). Acta Cryst. C51, 60-62.]); Raptis et al. (1999[Raptis, R., Georgakaki, I. & Hockless, D. (1999). Angew. Chem. Int. Ed. 38, 1632-1634.]); Strotmeyer et al. (2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]); Tomyn et al. (2007[Tomyn, S. V., Gumienna-Kontecka, E., Fritsky, I. O., Iskenderov, T. S. & Światek-Kozłowska, J. (2007). Acta Cryst. E63, m438-m440.]); Warda (1998[Warda, S. A. (1998). Acta Cryst. C54, 916-918.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2O4)(C5H8N2)2(H2O)]

  • Mr = 361.84

  • Triclinic, [P \overline 1]

  • a = 8.2597 (6) Å

  • b = 8.4010 (8) Å

  • c = 12.2288 (11) Å

  • α = 77.007 (4)°

  • β = 89.189 (6)°

  • γ = 62.436 (5)°

  • V = 729.00 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 120 (2) K

  • 0.23 × 0.13 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.720, Tmax = 0.888

  • 11529 measured reflections

  • 3765 independent reflections

  • 3186 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.175

  • S = 1.12

  • 3765 reflections

  • 204 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −1.02 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O2 1.946 (2)
Cu1—O5 1.971 (2)
Cu1—N2 1.975 (3)
Cu1—N3 2.002 (2)
Cu1—O1 2.283 (2)
O2—Cu1—O5 84.54 (9)
O2—Cu1—N2 172.35 (10)
O5—Cu1—N2 92.59 (9)
O2—Cu1—N3 88.41 (10)
O5—Cu1—N3 170.11 (10)
N2—Cu1—N3 93.53 (10)
O2—Cu1—O1 89.05 (9)
O5—Cu1—O1 91.85 (9)
N2—Cu1—O1 98.15 (10)
N3—Cu1—O1 94.96 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.99 1.88 2.798 (3) 153
O1—H2⋯O5ii 0.97 1.97 2.923 (3) 168
N1—H3⋯O3iii 0.88 2.03 2.857 (3) 156
N4—H18⋯O3i 0.88 1.97 2.845 (3) 175
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y, -z+1; (iii) -x, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

1H-Pyrazole and its 3,5-substituted derivatives have been widely used as bridging ligands in molecular magnetism and supramolecular chemistry for obtaining discrete oligonuclear complexes of high nuclearity and coordination polymers (Abdeljalil et al., 2006; Raptis et al., 1999; Warda, 1998). On the other hand, oxalate is an important polynucleative ligand as it can exhibit various bridging modes, which, together with the varied coordination preferences of metal ions, can result in the formation of oligonuclear species or compounds containing one-, two- and three-dimensional coordination polymers and frameworks (Castillo et al., 2001; Naumov et al., 1995; Bataille & Louër, 1999; Strotmeyer et al., 2003; Tomyn et al., 2007). Simultanetous use of 1H-pyrazole derivatives and oxalates can result in the creation of new molecular topologies or in obtaining mononuclear complexes with vacant donor atoms, which can be used as building blocks for the preparation of oligonuclear assemblies or coordination polymers.

The molecular structure of the title compound (Fig. 1) consists of a CuII ion as the central atom possessing a slightly distorted square-pyramidal geometry. The four equatorial positions are occupied by two N atoms belonging to the two monodentately coordinated 3,5-dimethyl-1H-pyrazole molecules and two O atoms of the oxalate anion coordinated in an O,O'-chelate mode forming a five-membered chelate ring. The axial position is occupied by the O atom of the water molecule (Table 1). A crystal packing diagram (Fig. 2) depicts a well defined layer structure along the c-axis direction. Each layer is formed with the help of O1—H···O and N—H···O hydrogen bonds (Table 2) while the nature of inter-layer interactions is utterly hydrophobic including no hydrogen bonding interactions.

Related literature top

For related literature on metal oxalates and 1H-pyrazole complexes, see: Abdeljalil et al. (2006); Bataille & Louër (1999); Castillo et al. (2001); Naumov et al. (1995); Raptis et al. (1999); Strotmeyer et al. (2003); Tomyn et al. (2007); Warda (1998).

Experimental top

Cu(NO3)2.3H2O (0.242 g, 1 mmol) and 3,5-dimethyl-1H-pyrazole (0.961 g, 1 mmol) were dissolved in water (10 ml), and then a powder of K2C2O4.H2O (0.184 g, 1 mmol) was added to the obtained solution. The resulting mixture was stirred at 358 K for 25 min and filtered. Blue needle-like crystals suitable for X-ray analysis were formed from the filtrate in several minutes. They were filtered off and washed with diethyl ester (yield 67%). Analysis calculated for C12H18CuN4O5: C 39.83, H 5.01, N 15.48%; found: C 39.11, H 5.13, N 15.42%.

Refinement top

H atoms on the ligand were positioned geometrically and refined as riding atoms, with C—H = 0.95Å (CH), 0.98Å (CH3), N—H = 0.88Å and with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C, N) for the others. H atoms of the water molecule were located from a difference Fourier map and fixed with Uiso(H) = 1.5Ueq(O). The structure was refined as twinned. BASF parameter was refined to 0.307.

Structure description top

1H-Pyrazole and its 3,5-substituted derivatives have been widely used as bridging ligands in molecular magnetism and supramolecular chemistry for obtaining discrete oligonuclear complexes of high nuclearity and coordination polymers (Abdeljalil et al., 2006; Raptis et al., 1999; Warda, 1998). On the other hand, oxalate is an important polynucleative ligand as it can exhibit various bridging modes, which, together with the varied coordination preferences of metal ions, can result in the formation of oligonuclear species or compounds containing one-, two- and three-dimensional coordination polymers and frameworks (Castillo et al., 2001; Naumov et al., 1995; Bataille & Louër, 1999; Strotmeyer et al., 2003; Tomyn et al., 2007). Simultanetous use of 1H-pyrazole derivatives and oxalates can result in the creation of new molecular topologies or in obtaining mononuclear complexes with vacant donor atoms, which can be used as building blocks for the preparation of oligonuclear assemblies or coordination polymers.

The molecular structure of the title compound (Fig. 1) consists of a CuII ion as the central atom possessing a slightly distorted square-pyramidal geometry. The four equatorial positions are occupied by two N atoms belonging to the two monodentately coordinated 3,5-dimethyl-1H-pyrazole molecules and two O atoms of the oxalate anion coordinated in an O,O'-chelate mode forming a five-membered chelate ring. The axial position is occupied by the O atom of the water molecule (Table 1). A crystal packing diagram (Fig. 2) depicts a well defined layer structure along the c-axis direction. Each layer is formed with the help of O1—H···O and N—H···O hydrogen bonds (Table 2) while the nature of inter-layer interactions is utterly hydrophobic including no hydrogen bonding interactions.

For related literature on metal oxalates and 1H-pyrazole complexes, see: Abdeljalil et al. (2006); Bataille & Louër (1999); Castillo et al. (2001); Naumov et al. (1995); Raptis et al. (1999); Strotmeyer et al. (2003); Tomyn et al. (2007); Warda (1998).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for the title compound, showing the layers along the c-axis direction. Hydrogen bonds are indicated by dashed lines. H atoms not included in hydrogen bonds are omitted for clarity.
Aquabis(3,5-dimethyl-1H-pyrazole-κN)(oxalato-κ2O,O')copper(II) top
Crystal data top
[Cu(C2O4)(C5H8N2)2(H2O)]Z = 2
Mr = 361.84F(000) = 374
Triclinic, P1Dx = 1.648 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2597 (6) ÅCell parameters from 33067 reflections
b = 8.4010 (8) Åθ = 1.0–27.5°
c = 12.2288 (11) ŵ = 1.53 mm1
α = 77.007 (4)°T = 120 K
β = 89.189 (6)°Plate, blue
γ = 62.436 (5)°0.23 × 0.13 × 0.08 mm
V = 729.00 (11) Å3
Data collection top
Nonius Kappa CCD
diffractometer
3765 independent reflections
Radiation source: fine-focus sealed tube3186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 9 pixels mm-1θmax = 28.7°, θmin = 2.8°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1111
Tmin = 0.720, Tmax = 0.888l = 1616
11529 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + 4.1563P]
where P = (Fo2 + 2Fc2)/3
3765 reflections(Δ/σ)max = 0.001
204 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Cu(C2O4)(C5H8N2)2(H2O)]γ = 62.436 (5)°
Mr = 361.84V = 729.00 (11) Å3
Triclinic, P1Z = 2
a = 8.2597 (6) ÅMo Kα radiation
b = 8.4010 (8) ŵ = 1.53 mm1
c = 12.2288 (11) ÅT = 120 K
α = 77.007 (4)°0.23 × 0.13 × 0.08 mm
β = 89.189 (6)°
Data collection top
Nonius Kappa CCD
diffractometer
3765 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3186 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.888Rint = 0.069
11529 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.12Δρmax = 0.80 e Å3
3765 reflectionsΔρmin = 1.02 e Å3
204 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.14007 (5)0.12441 (5)0.63070 (3)0.01550 (12)
O50.0055 (3)0.3021 (3)0.48971 (18)0.0169 (5)
O20.3431 (3)0.1554 (3)0.56547 (17)0.0177 (5)
O40.0332 (3)0.4796 (3)0.33510 (18)0.0224 (5)
O30.3977 (3)0.3252 (3)0.41587 (18)0.0185 (5)
O10.2189 (3)0.1213 (3)0.55296 (19)0.0228 (5)
H10.34900.18610.53830.034*
H20.15700.19340.54820.034*
N20.0797 (3)0.1276 (3)0.6984 (2)0.0158 (5)
N10.2437 (3)0.2848 (4)0.6778 (2)0.0180 (6)
H30.25960.39440.64060.022*
N30.3058 (3)0.0261 (4)0.7738 (2)0.0160 (5)
N40.4574 (3)0.1886 (3)0.7756 (2)0.0163 (5)
H180.49590.23130.71560.020*
C20.3788 (4)0.2518 (4)0.7215 (3)0.0171 (6)
C10.5724 (4)0.4006 (5)0.7112 (3)0.0237 (7)
H40.58110.48350.75870.036*
H60.65210.34490.73580.036*
H50.61120.47150.63240.036*
C30.2992 (4)0.0638 (4)0.7711 (3)0.0185 (7)
H70.35910.00280.80860.022*
C40.1140 (4)0.0081 (4)0.7551 (2)0.0146 (6)
C50.0343 (4)0.2053 (4)0.7949 (3)0.0202 (7)
H100.11960.23640.73720.030*
H80.02100.28810.80830.030*
H90.10110.22010.86520.030*
C90.5419 (4)0.2766 (4)0.8815 (3)0.0183 (7)
C100.7136 (4)0.4587 (4)0.9037 (3)0.0229 (7)
H150.68220.55970.92630.034*
H160.79490.46590.96420.034*
H170.77610.46980.83490.034*
C80.4410 (4)0.1676 (4)0.9506 (3)0.0189 (7)
H140.46540.19241.03000.023*
C70.2938 (4)0.0112 (4)0.8806 (3)0.0172 (6)
C60.1419 (4)0.1515 (5)0.9110 (3)0.0243 (7)
H120.09740.25890.84600.036*
H130.18690.17920.97430.036*
H110.04140.12380.93290.036*
C110.2947 (4)0.2729 (4)0.4716 (2)0.0149 (6)
C120.0885 (4)0.3626 (4)0.4252 (3)0.0176 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01345 (19)0.0151 (2)0.0170 (2)0.00671 (15)0.00082 (14)0.00214 (15)
O50.0149 (10)0.0147 (11)0.0191 (11)0.0066 (9)0.0009 (8)0.0013 (9)
O20.0150 (11)0.0167 (12)0.0189 (11)0.0065 (9)0.0008 (9)0.0018 (9)
O40.0206 (11)0.0199 (12)0.0237 (12)0.0091 (10)0.0018 (9)0.0005 (10)
O30.0181 (11)0.0157 (12)0.0221 (11)0.0089 (9)0.0044 (9)0.0036 (9)
O10.0174 (11)0.0246 (13)0.0310 (13)0.0107 (10)0.0065 (9)0.0138 (10)
N20.0137 (12)0.0110 (13)0.0179 (13)0.0032 (10)0.0006 (10)0.0005 (10)
N10.0147 (13)0.0114 (13)0.0245 (14)0.0039 (11)0.0004 (11)0.0033 (11)
N30.0174 (13)0.0135 (13)0.0179 (13)0.0075 (11)0.0032 (10)0.0049 (11)
N40.0144 (12)0.0152 (13)0.0163 (13)0.0040 (11)0.0003 (10)0.0048 (11)
C20.0146 (15)0.0147 (16)0.0221 (16)0.0056 (12)0.0029 (12)0.0080 (13)
C10.0154 (15)0.0176 (17)0.0361 (19)0.0064 (13)0.0028 (14)0.0063 (15)
C30.0213 (16)0.0181 (16)0.0218 (16)0.0137 (14)0.0056 (13)0.0054 (13)
C40.0185 (15)0.0122 (15)0.0137 (14)0.0072 (13)0.0013 (12)0.0040 (12)
C50.0207 (16)0.0095 (15)0.0251 (17)0.0030 (13)0.0013 (13)0.0037 (13)
C90.0188 (15)0.0168 (16)0.0219 (16)0.0110 (13)0.0035 (13)0.0040 (13)
C100.0208 (16)0.0145 (16)0.0264 (17)0.0030 (13)0.0009 (13)0.0036 (14)
C80.0175 (16)0.0168 (16)0.0169 (15)0.0047 (13)0.0010 (12)0.0013 (13)
C70.0188 (15)0.0166 (16)0.0182 (16)0.0097 (13)0.0026 (12)0.0051 (13)
C60.0222 (17)0.0233 (18)0.0237 (17)0.0061 (14)0.0024 (14)0.0094 (14)
C110.0139 (14)0.0128 (15)0.0203 (15)0.0062 (12)0.0036 (12)0.0087 (13)
C120.0171 (15)0.0197 (17)0.0175 (16)0.0092 (13)0.0025 (12)0.0066 (13)
Geometric parameters (Å, º) top
Cu1—O21.946 (2)C1—H40.9800
Cu1—O51.971 (2)C1—H60.9800
Cu1—N21.975 (3)C1—H50.9800
Cu1—N32.002 (2)C3—C41.390 (4)
Cu1—O12.283 (2)C3—H70.9500
O5—C121.285 (4)C4—C51.503 (4)
O2—C111.261 (4)C5—H100.9800
O4—C121.225 (4)C5—H80.9800
O3—C111.256 (4)C5—H90.9800
O1—H10.9902C9—C81.367 (5)
O1—H20.9664C9—C101.497 (4)
N2—C41.341 (4)C10—H150.9800
N2—N11.359 (3)C10—H160.9800
N1—C21.345 (4)C10—H170.9800
N1—H30.8800C8—C71.408 (4)
N3—C71.337 (4)C8—H140.9500
N3—N41.355 (3)C7—C61.487 (4)
N4—C91.352 (4)C6—H120.9800
N4—H180.8800C6—H130.9800
C2—C31.383 (4)C6—H110.9800
C2—C11.490 (4)C11—C121.561 (4)
O2—Cu1—O584.54 (9)C4—C3—H7126.9
O2—Cu1—N2172.35 (10)N2—C4—C3110.0 (3)
O5—Cu1—N292.59 (9)N2—C4—C5122.3 (3)
O2—Cu1—N388.41 (10)C3—C4—C5127.7 (3)
O5—Cu1—N3170.11 (10)C4—C5—H10109.5
N2—Cu1—N393.53 (10)C4—C5—H8109.5
O2—Cu1—O189.05 (9)H10—C5—H8109.5
O5—Cu1—O191.85 (9)C4—C5—H9109.5
N2—Cu1—O198.15 (10)H10—C5—H9109.5
N3—Cu1—O194.96 (9)H8—C5—H9109.5
C12—O5—Cu1112.55 (18)N4—C9—C8106.8 (3)
C11—O2—Cu1112.86 (18)N4—C9—C10120.6 (3)
Cu1—O1—H1115.9C8—C9—C10132.6 (3)
Cu1—O1—H2130.8C9—C10—H15109.5
H1—O1—H2111.5C9—C10—H16109.5
C4—N2—N1105.8 (2)H15—C10—H16109.5
C4—N2—Cu1132.3 (2)C9—C10—H17109.5
N1—N2—Cu1121.3 (2)H15—C10—H17109.5
C2—N1—N2111.5 (3)H16—C10—H17109.5
C2—N1—H3124.2C9—C8—C7106.3 (3)
N2—N1—H3124.2C9—C8—H14126.9
C7—N3—N4106.3 (2)C7—C8—H14126.9
C7—N3—Cu1133.1 (2)N3—C7—C8109.3 (3)
N4—N3—Cu1120.31 (19)N3—C7—C6121.3 (3)
C9—N4—N3111.3 (3)C8—C7—C6129.3 (3)
C9—N4—H18124.4C7—C6—H12109.5
N3—N4—H18124.4C7—C6—H13109.5
N1—C2—C3106.5 (3)H12—C6—H13109.5
N1—C2—C1122.5 (3)C7—C6—H11109.5
C3—C2—C1131.0 (3)H12—C6—H11109.5
C2—C1—H4109.5H13—C6—H11109.5
C2—C1—H6109.5O3—C11—O2125.0 (3)
H4—C1—H6109.5O3—C11—C12118.7 (3)
C2—C1—H5109.5O2—C11—C12116.2 (3)
H4—C1—H5109.5O4—C12—O5127.2 (3)
H6—C1—H5109.5O4—C12—C11119.0 (3)
C2—C3—C4106.2 (3)O5—C12—C11113.7 (3)
C2—C3—H7126.9
O2—Cu1—O5—C123.4 (2)C1—C2—C3—C4179.7 (3)
N2—Cu1—O5—C12169.5 (2)N1—N2—C4—C30.5 (3)
O1—Cu1—O5—C1292.3 (2)Cu1—N2—C4—C3171.4 (2)
O5—Cu1—O2—C113.0 (2)N1—N2—C4—C5179.4 (3)
N3—Cu1—O2—C11170.0 (2)Cu1—N2—C4—C59.7 (5)
O1—Cu1—O2—C1195.0 (2)C2—C3—C4—N20.1 (4)
O5—Cu1—N2—C4134.5 (3)C2—C3—C4—C5178.7 (3)
N3—Cu1—N2—C453.3 (3)N3—N4—C9—C80.2 (4)
O1—Cu1—N2—C442.2 (3)N3—N4—C9—C10179.6 (3)
O5—Cu1—N2—N135.3 (2)N4—C9—C8—C70.2 (4)
N3—Cu1—N2—N1137.0 (2)C10—C9—C8—C7179.5 (3)
O1—Cu1—N2—N1127.5 (2)N4—N3—C7—C80.0 (3)
C4—N2—N1—C20.9 (3)Cu1—N3—C7—C8173.5 (2)
Cu1—N2—N1—C2173.1 (2)N4—N3—C7—C6179.8 (3)
O2—Cu1—N3—C7123.6 (3)Cu1—N3—C7—C66.2 (5)
N2—Cu1—N3—C749.0 (3)C9—C8—C7—N30.1 (4)
O1—Cu1—N3—C7147.5 (3)C9—C8—C7—C6179.9 (3)
O2—Cu1—N3—N463.5 (2)Cu1—O2—C11—O3175.7 (2)
N2—Cu1—N3—N4123.9 (2)Cu1—O2—C11—C122.2 (3)
O1—Cu1—N3—N425.4 (2)Cu1—O5—C12—O4176.5 (3)
C7—N3—N4—C90.1 (3)Cu1—O5—C12—C113.1 (3)
Cu1—N3—N4—C9174.7 (2)O3—C11—C12—O41.0 (4)
N2—N1—C2—C31.0 (4)O2—C11—C12—O4179.0 (3)
N2—N1—C2—C1179.8 (3)O3—C11—C12—O5178.6 (3)
N1—C2—C3—C40.7 (3)O2—C11—C12—O50.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.991.882.798 (3)153
O1—H2···O5ii0.971.972.923 (3)168
N1—H3···O3iii0.882.032.857 (3)156
N4—H18···O3i0.881.972.845 (3)175
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C2O4)(C5H8N2)2(H2O)]
Mr361.84
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.2597 (6), 8.4010 (8), 12.2288 (11)
α, β, γ (°)77.007 (4), 89.189 (6), 62.436 (5)
V3)729.00 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.23 × 0.13 × 0.08
Data collection
DiffractometerNonius Kappa CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.720, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
11529, 3765, 3186
Rint0.069
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.175, 1.12
No. of reflections3765
No. of parameters204
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 1.02

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—O21.946 (2)Cu1—N32.002 (2)
Cu1—O51.971 (2)Cu1—O12.283 (2)
Cu1—N21.975 (3)
O2—Cu1—O584.54 (9)N2—Cu1—N393.53 (10)
O2—Cu1—N2172.35 (10)O2—Cu1—O189.05 (9)
O5—Cu1—N292.59 (9)O5—Cu1—O191.85 (9)
O2—Cu1—N388.41 (10)N2—Cu1—O198.15 (10)
O5—Cu1—N3170.11 (10)N3—Cu1—O194.96 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.991.882.798 (3)153
O1—H2···O5ii0.971.972.923 (3)168
N1—H3···O3iii0.882.032.857 (3)156
N4—H18···O3i0.881.972.845 (3)175
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank NATO for financial support (grant CBP. NUKR. CLG 982019). AIB thanks the DAAD for a scholarship under the Leonhard-Euler-Stipendium Programme.

References

First citationAbdeljalil, E. F., Najib, B. L., Abdelali, K., El Bali, B. & Bolte, M. (2006). Acta Cryst. E62, m551–m552.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBataille, T. & Louër, D. (1999). Acta Cryst. C55, 1760–1762.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCastillo, O., Luque, A., Lloret, F. & Romàn, P. (2001). Inorg. Chem. Commun. 4, 350–353.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNaumov, D. Y., Virovets, A. V., Podberezskaya, N. V. & Boldyreva, E. V. (1995). Acta Cryst. C51, 60–62.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRaptis, R., Georgakaki, I. & Hockless, D. (1999). Angew. Chem. Int. Ed. 38, 1632–1634.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar
First citationTomyn, S. V., Gumienna-Kontecka, E., Fritsky, I. O., Iskenderov, T. S. & Światek-Kozłowska, J. (2007). Acta Cryst. E63, m438–m440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWarda, S. A. (1998). Acta Cryst. C54, 916–918.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds