metal-organic compounds
Aquabis(3,5-dimethyl-1H-pyrazole-κN)(oxalato-κ2O,O′)copper(II)
aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01033 Kiev, Ukraine, and bDepartment of Chemistry, University of Joensuu, P.O.Box 111, FI-80101 Joensuu, Finland
*Correspondence e-mail: ifritsky@univ.kiev.ua
In the title compound, [Cu(C2O4)(C5H8N2)2(H2O)], the CuII atom is coordinated in a slightly distorted square-pyramidal geometry by two N atoms belonging to the two 3,5-dimethyl-1H-pyrazole ligands, two O atoms of the oxalate anion providing an O,O′-chelating coordination mode, and an O atom of the water molecule occupying the apical position. The crystal packing shows a well defined layer structure. Intra-layer connections are realised through a system of hydrogen bonds while the nature of the inter-layer interactions is completely hydrophobic, including no hydrogen-bonding interactions.
Related literature
For related literature on metal oxalates and 1H-pyrazole complexes, see: Abdeljalil et al. (2006); Bataille & Louër (1999); Castillo et al. (2001); Naumov et al. (1995); Raptis et al. (1999); Strotmeyer et al. (2003); Tomyn et al. (2007); Warda (1998).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1998); cell DENZO (Otwinowski & Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536807058928/hy2100sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807058928/hy2100Isup2.hkl
Cu(NO3)2.3H2O (0.242 g, 1 mmol) and 3,5-dimethyl-1H-pyrazole (0.961 g, 1 mmol) were dissolved in water (10 ml), and then a powder of K2C2O4.H2O (0.184 g, 1 mmol) was added to the obtained solution. The resulting mixture was stirred at 358 K for 25 min and filtered. Blue needle-like crystals suitable for X-ray analysis were formed from the filtrate in several minutes. They were filtered off and washed with diethyl ester (yield 67%). Analysis calculated for C12H18CuN4O5: C 39.83, H 5.01, N 15.48%; found: C 39.11, H 5.13, N 15.42%.
H atoms on the ligand were positioned geometrically and refined as riding atoms, with C—H = 0.95Å (CH), 0.98Å (CH3), N—H = 0.88Å and with Uiso(H) = 1.5Ueq(C) for methyl groups and Uiso(H) = 1.2Ueq(C, N) for the others. H atoms of the water molecule were located from a difference Fourier map and fixed with Uiso(H) = 1.5Ueq(O). The structure was refined as twinned. BASF parameter was refined to 0.307.
1H-Pyrazole and its 3,5-substituted derivatives have been widely used as bridging ligands in molecular magnetism and supramolecular chemistry for obtaining discrete oligonuclear complexes of high nuclearity and coordination polymers (Abdeljalil et al., 2006; Raptis et al., 1999; Warda, 1998). On the other hand, oxalate is an important polynucleative ligand as it can exhibit various bridging modes, which, together with the varied coordination preferences of metal ions, can result in the formation of oligonuclear species or compounds containing one-, two- and three-dimensional coordination polymers and frameworks (Castillo et al., 2001; Naumov et al., 1995; Bataille & Louër, 1999; Strotmeyer et al., 2003; Tomyn et al., 2007). Simultanetous use of 1H-pyrazole derivatives and oxalates can result in the creation of new molecular topologies or in obtaining mononuclear complexes with vacant donor atoms, which can be used as building blocks for the preparation of oligonuclear assemblies or coordination polymers.
The molecular structure of the title compound (Fig. 1) consists of a CuII ion as the central atom possessing a slightly distorted square-pyramidal geometry. The four equatorial positions are occupied by two N atoms belonging to the two monodentately coordinated 3,5-dimethyl-1H-pyrazole molecules and two O atoms of the oxalate anion coordinated in an O,O'-chelate mode forming a five-membered chelate ring. The axial position is occupied by the O atom of the water molecule (Table 1). A crystal packing diagram (Fig. 2) depicts a well defined layer structure along the c-axis direction. Each layer is formed with the help of O1—H···O and N—H···O hydrogen bonds (Table 2) while the nature of inter-layer interactions is utterly hydrophobic including no hydrogen bonding interactions.
For related literature on metal oxalates and 1H-pyrazole complexes, see: Abdeljalil et al. (2006); Bataille & Louër (1999); Castillo et al. (2001); Naumov et al. (1995); Raptis et al. (1999); Strotmeyer et al. (2003); Tomyn et al. (2007); Warda (1998).
Data collection: COLLECT (Nonius, 1998); cell
DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu(C2O4)(C5H8N2)2(H2O)] | Z = 2 |
Mr = 361.84 | F(000) = 374 |
Triclinic, P1 | Dx = 1.648 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.2597 (6) Å | Cell parameters from 33067 reflections |
b = 8.4010 (8) Å | θ = 1.0–27.5° |
c = 12.2288 (11) Å | µ = 1.53 mm−1 |
α = 77.007 (4)° | T = 120 K |
β = 89.189 (6)° | Plate, blue |
γ = 62.436 (5)° | 0.23 × 0.13 × 0.08 mm |
V = 729.00 (11) Å3 |
Nonius Kappa CCD diffractometer | 3765 independent reflections |
Radiation source: fine-focus sealed tube | 3186 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.069 |
Detector resolution: 9 pixels mm-1 | θmax = 28.7°, θmin = 2.8° |
φ and ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −11→11 |
Tmin = 0.720, Tmax = 0.888 | l = −16→16 |
11529 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.070 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.175 | H-atom parameters constrained |
S = 1.12 | w = 1/[σ2(Fo2) + 4.1563P] where P = (Fo2 + 2Fc2)/3 |
3765 reflections | (Δ/σ)max = 0.001 |
204 parameters | Δρmax = 0.80 e Å−3 |
0 restraints | Δρmin = −1.02 e Å−3 |
[Cu(C2O4)(C5H8N2)2(H2O)] | γ = 62.436 (5)° |
Mr = 361.84 | V = 729.00 (11) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.2597 (6) Å | Mo Kα radiation |
b = 8.4010 (8) Å | µ = 1.53 mm−1 |
c = 12.2288 (11) Å | T = 120 K |
α = 77.007 (4)° | 0.23 × 0.13 × 0.08 mm |
β = 89.189 (6)° |
Nonius Kappa CCD diffractometer | 3765 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 3186 reflections with I > 2σ(I) |
Tmin = 0.720, Tmax = 0.888 | Rint = 0.069 |
11529 measured reflections |
R[F2 > 2σ(F2)] = 0.070 | 0 restraints |
wR(F2) = 0.175 | H-atom parameters constrained |
S = 1.12 | Δρmax = 0.80 e Å−3 |
3765 reflections | Δρmin = −1.02 e Å−3 |
204 parameters |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.14007 (5) | 0.12441 (5) | 0.63070 (3) | 0.01550 (12) | |
O5 | −0.0055 (3) | 0.3021 (3) | 0.48971 (18) | 0.0169 (5) | |
O2 | 0.3431 (3) | 0.1554 (3) | 0.56547 (17) | 0.0177 (5) | |
O4 | 0.0332 (3) | 0.4796 (3) | 0.33510 (18) | 0.0224 (5) | |
O3 | 0.3977 (3) | 0.3252 (3) | 0.41587 (18) | 0.0185 (5) | |
O1 | 0.2189 (3) | −0.1213 (3) | 0.55296 (19) | 0.0228 (5) | |
H1 | 0.3490 | −0.1861 | 0.5383 | 0.034* | |
H2 | 0.1570 | −0.1934 | 0.5482 | 0.034* | |
N2 | −0.0797 (3) | 0.1276 (3) | 0.6984 (2) | 0.0158 (5) | |
N1 | −0.2437 (3) | 0.2848 (4) | 0.6778 (2) | 0.0180 (6) | |
H3 | −0.2596 | 0.3944 | 0.6406 | 0.022* | |
N3 | 0.3058 (3) | −0.0261 (4) | 0.7738 (2) | 0.0160 (5) | |
N4 | 0.4574 (3) | −0.1886 (3) | 0.7756 (2) | 0.0163 (5) | |
H18 | 0.4959 | −0.2313 | 0.7156 | 0.020* | |
C2 | −0.3788 (4) | 0.2518 (4) | 0.7215 (3) | 0.0171 (6) | |
C1 | −0.5724 (4) | 0.4006 (5) | 0.7112 (3) | 0.0237 (7) | |
H4 | −0.5811 | 0.4835 | 0.7587 | 0.036* | |
H6 | −0.6521 | 0.3449 | 0.7358 | 0.036* | |
H5 | −0.6112 | 0.4715 | 0.6324 | 0.036* | |
C3 | −0.2992 (4) | 0.0638 (4) | 0.7711 (3) | 0.0185 (7) | |
H7 | −0.3591 | −0.0028 | 0.8086 | 0.022* | |
C4 | −0.1140 (4) | −0.0081 (4) | 0.7551 (2) | 0.0146 (6) | |
C5 | 0.0343 (4) | −0.2053 (4) | 0.7949 (3) | 0.0202 (7) | |
H10 | 0.1196 | −0.2364 | 0.7372 | 0.030* | |
H8 | −0.0210 | −0.2881 | 0.8083 | 0.030* | |
H9 | 0.1011 | −0.2201 | 0.8652 | 0.030* | |
C9 | 0.5419 (4) | −0.2766 (4) | 0.8815 (3) | 0.0183 (7) | |
C10 | 0.7136 (4) | −0.4587 (4) | 0.9037 (3) | 0.0229 (7) | |
H15 | 0.6822 | −0.5597 | 0.9263 | 0.034* | |
H16 | 0.7949 | −0.4659 | 0.9642 | 0.034* | |
H17 | 0.7761 | −0.4698 | 0.8349 | 0.034* | |
C8 | 0.4410 (4) | −0.1676 (4) | 0.9506 (3) | 0.0189 (7) | |
H14 | 0.4654 | −0.1924 | 1.0300 | 0.023* | |
C7 | 0.2938 (4) | −0.0112 (4) | 0.8806 (3) | 0.0172 (6) | |
C6 | 0.1419 (4) | 0.1515 (5) | 0.9110 (3) | 0.0243 (7) | |
H12 | 0.0974 | 0.2589 | 0.8460 | 0.036* | |
H13 | 0.1869 | 0.1792 | 0.9743 | 0.036* | |
H11 | 0.0414 | 0.1238 | 0.9329 | 0.036* | |
C11 | 0.2947 (4) | 0.2729 (4) | 0.4716 (2) | 0.0149 (6) | |
C12 | 0.0885 (4) | 0.3626 (4) | 0.4252 (3) | 0.0176 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01345 (19) | 0.0151 (2) | 0.0170 (2) | −0.00671 (15) | 0.00082 (14) | −0.00214 (15) |
O5 | 0.0149 (10) | 0.0147 (11) | 0.0191 (11) | −0.0066 (9) | 0.0009 (8) | −0.0013 (9) |
O2 | 0.0150 (11) | 0.0167 (12) | 0.0189 (11) | −0.0065 (9) | 0.0008 (9) | −0.0018 (9) |
O4 | 0.0206 (11) | 0.0199 (12) | 0.0237 (12) | −0.0091 (10) | −0.0018 (9) | −0.0005 (10) |
O3 | 0.0181 (11) | 0.0157 (12) | 0.0221 (11) | −0.0089 (9) | 0.0044 (9) | −0.0036 (9) |
O1 | 0.0174 (11) | 0.0246 (13) | 0.0310 (13) | −0.0107 (10) | 0.0065 (9) | −0.0138 (10) |
N2 | 0.0137 (12) | 0.0110 (13) | 0.0179 (13) | −0.0032 (10) | −0.0006 (10) | −0.0005 (10) |
N1 | 0.0147 (13) | 0.0114 (13) | 0.0245 (14) | −0.0039 (11) | −0.0004 (11) | −0.0033 (11) |
N3 | 0.0174 (13) | 0.0135 (13) | 0.0179 (13) | −0.0075 (11) | 0.0032 (10) | −0.0049 (11) |
N4 | 0.0144 (12) | 0.0152 (13) | 0.0163 (13) | −0.0040 (11) | 0.0003 (10) | −0.0048 (11) |
C2 | 0.0146 (15) | 0.0147 (16) | 0.0221 (16) | −0.0056 (12) | 0.0029 (12) | −0.0080 (13) |
C1 | 0.0154 (15) | 0.0176 (17) | 0.0361 (19) | −0.0064 (13) | 0.0028 (14) | −0.0063 (15) |
C3 | 0.0213 (16) | 0.0181 (16) | 0.0218 (16) | −0.0137 (14) | 0.0056 (13) | −0.0054 (13) |
C4 | 0.0185 (15) | 0.0122 (15) | 0.0137 (14) | −0.0072 (13) | 0.0013 (12) | −0.0040 (12) |
C5 | 0.0207 (16) | 0.0095 (15) | 0.0251 (17) | −0.0030 (13) | 0.0013 (13) | −0.0037 (13) |
C9 | 0.0188 (15) | 0.0168 (16) | 0.0219 (16) | −0.0110 (13) | 0.0035 (13) | −0.0040 (13) |
C10 | 0.0208 (16) | 0.0145 (16) | 0.0264 (17) | −0.0030 (13) | −0.0009 (13) | −0.0036 (14) |
C8 | 0.0175 (16) | 0.0168 (16) | 0.0169 (15) | −0.0047 (13) | −0.0010 (12) | −0.0013 (13) |
C7 | 0.0188 (15) | 0.0166 (16) | 0.0182 (16) | −0.0097 (13) | 0.0026 (12) | −0.0051 (13) |
C6 | 0.0222 (17) | 0.0233 (18) | 0.0237 (17) | −0.0061 (14) | 0.0024 (14) | −0.0094 (14) |
C11 | 0.0139 (14) | 0.0128 (15) | 0.0203 (15) | −0.0062 (12) | 0.0036 (12) | −0.0087 (13) |
C12 | 0.0171 (15) | 0.0197 (17) | 0.0175 (16) | −0.0092 (13) | 0.0025 (12) | −0.0066 (13) |
Cu1—O2 | 1.946 (2) | C1—H4 | 0.9800 |
Cu1—O5 | 1.971 (2) | C1—H6 | 0.9800 |
Cu1—N2 | 1.975 (3) | C1—H5 | 0.9800 |
Cu1—N3 | 2.002 (2) | C3—C4 | 1.390 (4) |
Cu1—O1 | 2.283 (2) | C3—H7 | 0.9500 |
O5—C12 | 1.285 (4) | C4—C5 | 1.503 (4) |
O2—C11 | 1.261 (4) | C5—H10 | 0.9800 |
O4—C12 | 1.225 (4) | C5—H8 | 0.9800 |
O3—C11 | 1.256 (4) | C5—H9 | 0.9800 |
O1—H1 | 0.9902 | C9—C8 | 1.367 (5) |
O1—H2 | 0.9664 | C9—C10 | 1.497 (4) |
N2—C4 | 1.341 (4) | C10—H15 | 0.9800 |
N2—N1 | 1.359 (3) | C10—H16 | 0.9800 |
N1—C2 | 1.345 (4) | C10—H17 | 0.9800 |
N1—H3 | 0.8800 | C8—C7 | 1.408 (4) |
N3—C7 | 1.337 (4) | C8—H14 | 0.9500 |
N3—N4 | 1.355 (3) | C7—C6 | 1.487 (4) |
N4—C9 | 1.352 (4) | C6—H12 | 0.9800 |
N4—H18 | 0.8800 | C6—H13 | 0.9800 |
C2—C3 | 1.383 (4) | C6—H11 | 0.9800 |
C2—C1 | 1.490 (4) | C11—C12 | 1.561 (4) |
O2—Cu1—O5 | 84.54 (9) | C4—C3—H7 | 126.9 |
O2—Cu1—N2 | 172.35 (10) | N2—C4—C3 | 110.0 (3) |
O5—Cu1—N2 | 92.59 (9) | N2—C4—C5 | 122.3 (3) |
O2—Cu1—N3 | 88.41 (10) | C3—C4—C5 | 127.7 (3) |
O5—Cu1—N3 | 170.11 (10) | C4—C5—H10 | 109.5 |
N2—Cu1—N3 | 93.53 (10) | C4—C5—H8 | 109.5 |
O2—Cu1—O1 | 89.05 (9) | H10—C5—H8 | 109.5 |
O5—Cu1—O1 | 91.85 (9) | C4—C5—H9 | 109.5 |
N2—Cu1—O1 | 98.15 (10) | H10—C5—H9 | 109.5 |
N3—Cu1—O1 | 94.96 (9) | H8—C5—H9 | 109.5 |
C12—O5—Cu1 | 112.55 (18) | N4—C9—C8 | 106.8 (3) |
C11—O2—Cu1 | 112.86 (18) | N4—C9—C10 | 120.6 (3) |
Cu1—O1—H1 | 115.9 | C8—C9—C10 | 132.6 (3) |
Cu1—O1—H2 | 130.8 | C9—C10—H15 | 109.5 |
H1—O1—H2 | 111.5 | C9—C10—H16 | 109.5 |
C4—N2—N1 | 105.8 (2) | H15—C10—H16 | 109.5 |
C4—N2—Cu1 | 132.3 (2) | C9—C10—H17 | 109.5 |
N1—N2—Cu1 | 121.3 (2) | H15—C10—H17 | 109.5 |
C2—N1—N2 | 111.5 (3) | H16—C10—H17 | 109.5 |
C2—N1—H3 | 124.2 | C9—C8—C7 | 106.3 (3) |
N2—N1—H3 | 124.2 | C9—C8—H14 | 126.9 |
C7—N3—N4 | 106.3 (2) | C7—C8—H14 | 126.9 |
C7—N3—Cu1 | 133.1 (2) | N3—C7—C8 | 109.3 (3) |
N4—N3—Cu1 | 120.31 (19) | N3—C7—C6 | 121.3 (3) |
C9—N4—N3 | 111.3 (3) | C8—C7—C6 | 129.3 (3) |
C9—N4—H18 | 124.4 | C7—C6—H12 | 109.5 |
N3—N4—H18 | 124.4 | C7—C6—H13 | 109.5 |
N1—C2—C3 | 106.5 (3) | H12—C6—H13 | 109.5 |
N1—C2—C1 | 122.5 (3) | C7—C6—H11 | 109.5 |
C3—C2—C1 | 131.0 (3) | H12—C6—H11 | 109.5 |
C2—C1—H4 | 109.5 | H13—C6—H11 | 109.5 |
C2—C1—H6 | 109.5 | O3—C11—O2 | 125.0 (3) |
H4—C1—H6 | 109.5 | O3—C11—C12 | 118.7 (3) |
C2—C1—H5 | 109.5 | O2—C11—C12 | 116.2 (3) |
H4—C1—H5 | 109.5 | O4—C12—O5 | 127.2 (3) |
H6—C1—H5 | 109.5 | O4—C12—C11 | 119.0 (3) |
C2—C3—C4 | 106.2 (3) | O5—C12—C11 | 113.7 (3) |
C2—C3—H7 | 126.9 | ||
O2—Cu1—O5—C12 | −3.4 (2) | C1—C2—C3—C4 | 179.7 (3) |
N2—Cu1—O5—C12 | 169.5 (2) | N1—N2—C4—C3 | −0.5 (3) |
O1—Cu1—O5—C12 | −92.3 (2) | Cu1—N2—C4—C3 | −171.4 (2) |
O5—Cu1—O2—C11 | 3.0 (2) | N1—N2—C4—C5 | −179.4 (3) |
N3—Cu1—O2—C11 | −170.0 (2) | Cu1—N2—C4—C5 | 9.7 (5) |
O1—Cu1—O2—C11 | 95.0 (2) | C2—C3—C4—N2 | −0.1 (4) |
O5—Cu1—N2—C4 | 134.5 (3) | C2—C3—C4—C5 | 178.7 (3) |
N3—Cu1—N2—C4 | −53.3 (3) | N3—N4—C9—C8 | 0.2 (4) |
O1—Cu1—N2—C4 | 42.2 (3) | N3—N4—C9—C10 | −179.6 (3) |
O5—Cu1—N2—N1 | −35.3 (2) | N4—C9—C8—C7 | −0.2 (4) |
N3—Cu1—N2—N1 | 137.0 (2) | C10—C9—C8—C7 | 179.5 (3) |
O1—Cu1—N2—N1 | −127.5 (2) | N4—N3—C7—C8 | 0.0 (3) |
C4—N2—N1—C2 | 0.9 (3) | Cu1—N3—C7—C8 | 173.5 (2) |
Cu1—N2—N1—C2 | 173.1 (2) | N4—N3—C7—C6 | −179.8 (3) |
O2—Cu1—N3—C7 | 123.6 (3) | Cu1—N3—C7—C6 | −6.2 (5) |
N2—Cu1—N3—C7 | −49.0 (3) | C9—C8—C7—N3 | 0.1 (4) |
O1—Cu1—N3—C7 | −147.5 (3) | C9—C8—C7—C6 | 179.9 (3) |
O2—Cu1—N3—N4 | −63.5 (2) | Cu1—O2—C11—O3 | 175.7 (2) |
N2—Cu1—N3—N4 | 123.9 (2) | Cu1—O2—C11—C12 | −2.2 (3) |
O1—Cu1—N3—N4 | 25.4 (2) | Cu1—O5—C12—O4 | −176.5 (3) |
C7—N3—N4—C9 | −0.1 (3) | Cu1—O5—C12—C11 | 3.1 (3) |
Cu1—N3—N4—C9 | −174.7 (2) | O3—C11—C12—O4 | 1.0 (4) |
N2—N1—C2—C3 | −1.0 (4) | O2—C11—C12—O4 | 179.0 (3) |
N2—N1—C2—C1 | 179.8 (3) | O3—C11—C12—O5 | −178.6 (3) |
N1—C2—C3—C4 | 0.7 (3) | O2—C11—C12—O5 | −0.6 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.99 | 1.88 | 2.798 (3) | 153 |
O1—H2···O5ii | 0.97 | 1.97 | 2.923 (3) | 168 |
N1—H3···O3iii | 0.88 | 2.03 | 2.857 (3) | 156 |
N4—H18···O3i | 0.88 | 1.97 | 2.845 (3) | 175 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) −x, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2O4)(C5H8N2)2(H2O)] |
Mr | 361.84 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 120 |
a, b, c (Å) | 8.2597 (6), 8.4010 (8), 12.2288 (11) |
α, β, γ (°) | 77.007 (4), 89.189 (6), 62.436 (5) |
V (Å3) | 729.00 (11) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.53 |
Crystal size (mm) | 0.23 × 0.13 × 0.08 |
Data collection | |
Diffractometer | Nonius Kappa CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.720, 0.888 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11529, 3765, 3186 |
Rint | 0.069 |
(sin θ/λ)max (Å−1) | 0.675 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.070, 0.175, 1.12 |
No. of reflections | 3765 |
No. of parameters | 204 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.80, −1.02 |
Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
Cu1—O2 | 1.946 (2) | Cu1—N3 | 2.002 (2) |
Cu1—O5 | 1.971 (2) | Cu1—O1 | 2.283 (2) |
Cu1—N2 | 1.975 (3) | ||
O2—Cu1—O5 | 84.54 (9) | N2—Cu1—N3 | 93.53 (10) |
O2—Cu1—N2 | 172.35 (10) | O2—Cu1—O1 | 89.05 (9) |
O5—Cu1—N2 | 92.59 (9) | O5—Cu1—O1 | 91.85 (9) |
O2—Cu1—N3 | 88.41 (10) | N2—Cu1—O1 | 98.15 (10) |
O5—Cu1—N3 | 170.11 (10) | N3—Cu1—O1 | 94.96 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3i | 0.99 | 1.88 | 2.798 (3) | 153 |
O1—H2···O5ii | 0.97 | 1.97 | 2.923 (3) | 168 |
N1—H3···O3iii | 0.88 | 2.03 | 2.857 (3) | 156 |
N4—H18···O3i | 0.88 | 1.97 | 2.845 (3) | 175 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) −x, −y+1, −z+1. |
Acknowledgements
The authors thank NATO for financial support (grant CBP. NUKR. CLG 982019). AIB thanks the DAAD for a scholarship under the Leonhard-Euler-Stipendium Programme.
References
Abdeljalil, E. F., Najib, B. L., Abdelali, K., El Bali, B. & Bolte, M. (2006). Acta Cryst. E62, m551–m552. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bataille, T. & Louër, D. (1999). Acta Cryst. C55, 1760–1762. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Castillo, O., Luque, A., Lloret, F. & Romàn, P. (2001). Inorg. Chem. Commun. 4, 350–353. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Naumov, D. Y., Virovets, A. V., Podberezskaya, N. V. & Boldyreva, E. V. (1995). Acta Cryst. C51, 60–62. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Raptis, R., Georgakaki, I. & Hockless, D. (1999). Angew. Chem. Int. Ed. 38, 1632–1634. CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547. Web of Science CSD CrossRef CAS Google Scholar
Tomyn, S. V., Gumienna-Kontecka, E., Fritsky, I. O., Iskenderov, T. S. & Światek-Kozłowska, J. (2007). Acta Cryst. E63, m438–m440. Web of Science CSD CrossRef IUCr Journals Google Scholar
Warda, S. A. (1998). Acta Cryst. C54, 916–918. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
1H-Pyrazole and its 3,5-substituted derivatives have been widely used as bridging ligands in molecular magnetism and supramolecular chemistry for obtaining discrete oligonuclear complexes of high nuclearity and coordination polymers (Abdeljalil et al., 2006; Raptis et al., 1999; Warda, 1998). On the other hand, oxalate is an important polynucleative ligand as it can exhibit various bridging modes, which, together with the varied coordination preferences of metal ions, can result in the formation of oligonuclear species or compounds containing one-, two- and three-dimensional coordination polymers and frameworks (Castillo et al., 2001; Naumov et al., 1995; Bataille & Louër, 1999; Strotmeyer et al., 2003; Tomyn et al., 2007). Simultanetous use of 1H-pyrazole derivatives and oxalates can result in the creation of new molecular topologies or in obtaining mononuclear complexes with vacant donor atoms, which can be used as building blocks for the preparation of oligonuclear assemblies or coordination polymers.
The molecular structure of the title compound (Fig. 1) consists of a CuII ion as the central atom possessing a slightly distorted square-pyramidal geometry. The four equatorial positions are occupied by two N atoms belonging to the two monodentately coordinated 3,5-dimethyl-1H-pyrazole molecules and two O atoms of the oxalate anion coordinated in an O,O'-chelate mode forming a five-membered chelate ring. The axial position is occupied by the O atom of the water molecule (Table 1). A crystal packing diagram (Fig. 2) depicts a well defined layer structure along the c-axis direction. Each layer is formed with the help of O1—H···O and N—H···O hydrogen bonds (Table 2) while the nature of inter-layer interactions is utterly hydrophobic including no hydrogen bonding interactions.