metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(3-methyl­iso­quinoline-κN)silver(I) 4-amino­benzene­sulfonate

aDepartment of Chemistry, Anshan Normal University, Anshan 114007, People's Republic of China
*Correspondence e-mail: yongmeizhang@yahoo.cn

(Received 6 November 2007; accepted 22 November 2007; online 18 December 2007)

In the title compound, [Ag(C10H9N)(H2O)](C6H6NO3S), the AgI atom is two-coordinated by one N atom from a 3-methyl­isoquinoline ligand and one water mol­ecule. The 4-amino­benzene­sulfonate counter-anion does not show any bonding inter­actions with the AgI atom. The compound exhibits a three-dimensional supra­molecular structure constructed by hydrogen bonds. Adjacent isoquinoline groups form ππ inter­actions, with a centroid–centroid distance of 3.54 (1) Å. The crystal studied was an inversion twin.

Related literature

For related literature, see: Atria et al. (1994[Atria, A. M., Baggio, R. F., Garland, M. T. & Spodine, E. (1994). Acta Cryst. C50, 864-866.]); Cai et al. (2003[Cai, J. W., Zhou, J. S. & Lin, M. L. (2003). J. Mater. Chem. 13, 1806-1811.]); Li et al. (2006[Li, F. F., Ma, J. F., Song, S. Y. & Yang, J. (2006). Cryst. Growth Des. 6, 209-215.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C10H9N)(H2O)](C6H6NO3S)

  • Mr = 441.25

  • Orthorhombic, P 21 21 21

  • a = 6.779 (1) Å

  • b = 13.997 (3) Å

  • c = 18.076 (4) Å

  • V = 1715.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.32 mm−1

  • T = 293 (2) K

  • 0.47 × 0.09 × 0.06 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.529, Tmax = 0.911

  • 7289 measured reflections

  • 3904 independent reflections

  • 2458 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.117

  • S = 0.97

  • 3904 reflections

  • 221 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1646 Friedel pairs

  • Flack parameter: 0.46 (6)

Table 1
Selected geometric parameters (Å, °)

Ag1—N1 2.137 (4)
Ag1—O1W 2.138 (5)
N1—Ag1—O1W 178.7 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.37 3.092 (6) 142
N2—H2B⋯O3ii 0.86 2.18 3.005 (7) 160
O1W—H36⋯O2i 0.86 (4) 2.25 (3) 3.027 (8) 150 (6)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-Plus (Siemens, 1990[Siemens (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Sulfonate group can adopt various bridging coordination modes. Silver, a d10 metal, has no crystal field stabilization energy and hence no dominant geometrical preferences (Li et al., 2006). In this paper, we report the synthesis and crystal structure of a new silver(I) complex with a 4-aminobenzenesulfonate as a counter anion.

As shown in Fig. 1, the sulfonate group in the title compound does not show any bonding interactions with AgI atom. AgI atom is two-coordinated by one N atom from a neutral 3-methylisoquinoline ligand and one water molecule. Ag1, N1 and O1W are almost co-linear and the N1—Ag1—O1W angle is 179.2 (2)°. The bond distances and angles are normal (Atria et al., 1994; Cai et al., 2003). Furthermore, the compound shows a three-dimensional supramolecular structure constructed by hydrogen bonds. Adjacent isoquinoline groups form ππ interactions with a centroid-to-centroid distance of 3.54 (1) Å.

Related literature top

For related literature, see: Atria et al. (1994); Cai et al. (2003); Li et al. (2006).

Experimental top

A mixture of AgNO3 (0.170 g, 1 mmol), NaOH (0.040 g, 1 mmol) and 4-aminobenzenesulfonic acid (0.173 g, 1 mmol) in water (15 ml) was stirring for 10 min at room temperature. Then 3-methylisoquinoline (0.143 g, 1 mmol) was added to the solution with stirring for 30 min and a white precipitate was obtained. The precipitate was dissolved by dropwise addition of ammonia (5 M). Green single crystals were obtained by slow evaporation of the solution at room temperature.

Refinement top

H atoms on C and N atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic ring, C—H = 0.96Å and Uiso(H) = 1.5Ueq(C) for methyl group, and N—H = 0.86Å and Uiso(H) = 1.2Ueq(N) for amino group. One of H atoms of the water molecule was located in a difference Fourier map and refined with Uiso(H) = 1.2Ueq(O), and the other one was not located.

Structure description top

Sulfonate group can adopt various bridging coordination modes. Silver, a d10 metal, has no crystal field stabilization energy and hence no dominant geometrical preferences (Li et al., 2006). In this paper, we report the synthesis and crystal structure of a new silver(I) complex with a 4-aminobenzenesulfonate as a counter anion.

As shown in Fig. 1, the sulfonate group in the title compound does not show any bonding interactions with AgI atom. AgI atom is two-coordinated by one N atom from a neutral 3-methylisoquinoline ligand and one water molecule. Ag1, N1 and O1W are almost co-linear and the N1—Ag1—O1W angle is 179.2 (2)°. The bond distances and angles are normal (Atria et al., 1994; Cai et al., 2003). Furthermore, the compound shows a three-dimensional supramolecular structure constructed by hydrogen bonds. Adjacent isoquinoline groups form ππ interactions with a centroid-to-centroid distance of 3.54 (1) Å.

For related literature, see: Atria et al. (1994); Cai et al. (2003); Li et al. (2006).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Siemens, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms of the water molecule are not shown.
Aqua(3-methylisoquinoline-κN)silver(I) 4-aminobenzenesulfonate top
Crystal data top
[Ag(C10H9N)(H2O)](C6H6NO3S)F(000) = 888
Mr = 441.25Dx = 1.709 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3904 reflections
a = 6.779 (1) Åθ = 2.5–27.5°
b = 13.997 (3) ŵ = 1.32 mm1
c = 18.076 (4) ÅT = 293 K
V = 1715.2 (6) Å3Prism, colorless
Z = 40.47 × 0.09 × 0.06 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3904 independent reflections
Radiation source: rotation anode2458 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω scanθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 08
Tmin = 0.529, Tmax = 0.911k = 1818
7289 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0513P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
3904 reflectionsΔρmax = 0.35 e Å3
221 parametersΔρmin = 0.49 e Å3
1 restraintAbsolute structure: Flack (1983), 1646 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.46 (6)
Crystal data top
[Ag(C10H9N)(H2O)](C6H6NO3S)V = 1715.2 (6) Å3
Mr = 441.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.779 (1) ŵ = 1.32 mm1
b = 13.997 (3) ÅT = 293 K
c = 18.076 (4) Å0.47 × 0.09 × 0.06 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3904 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2458 reflections with I > 2σ(I)
Tmin = 0.529, Tmax = 0.911Rint = 0.069
7289 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117Δρmax = 0.35 e Å3
S = 0.97Δρmin = 0.49 e Å3
3904 reflectionsAbsolute structure: Flack (1983), 1646 Friedel pairs
221 parametersAbsolute structure parameter: 0.46 (6)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.70457 (8)0.50911 (3)1.00258 (3)0.06244 (18)
C10.7687 (8)0.2835 (3)0.7059 (3)0.0348 (12)
C20.9238 (9)0.3384 (4)0.7295 (4)0.0427 (14)
H21.05200.32040.71760.051*
C30.8914 (10)0.4213 (4)0.7712 (4)0.0460 (15)
H30.99760.45790.78720.055*
C40.6990 (10)0.4487 (3)0.7887 (3)0.0399 (12)
C50.5426 (8)0.3942 (4)0.7618 (4)0.0448 (15)
H50.41340.41300.77110.054*
C60.5789 (8)0.3121 (4)0.7212 (4)0.0442 (15)
H60.47340.27590.70400.053*
C70.7119 (9)0.3173 (4)1.0899 (3)0.0461 (13)
C80.7113 (9)0.2190 (4)1.0960 (3)0.0491 (14)
H80.71160.19191.14300.059*
C90.7104 (9)0.1581 (4)1.0341 (3)0.0434 (13)
C100.7105 (10)0.0559 (4)1.0380 (4)0.0566 (16)
H100.70980.02571.08380.068*
C110.7118 (10)0.0041 (4)0.9762 (4)0.0633 (17)
H110.71260.06220.97960.076*
C120.7120 (11)0.0471 (4)0.9061 (4)0.0596 (16)
H120.71110.00910.86390.072*
C130.7136 (9)0.1444 (4)0.8992 (4)0.0515 (14)
H130.71530.17290.85280.062*
C140.7124 (8)0.2006 (4)0.9637 (3)0.0400 (12)
C150.7111 (9)0.3032 (4)0.9614 (3)0.0443 (13)
H150.71020.33260.91530.053*
C160.7102 (11)0.3833 (5)1.1546 (4)0.0719 (19)
H16A0.70960.44821.13740.108*
H16B0.82560.37251.18420.108*
H16C0.59440.37181.18380.108*
N10.7112 (7)0.3582 (3)1.0203 (3)0.0427 (11)
N20.6671 (7)0.5272 (3)0.8343 (3)0.0530 (13)
H2A0.54890.54310.84650.064*
H2B0.76560.55990.85040.064*
O10.7523 (6)0.0984 (2)0.7042 (3)0.0573 (13)
O20.6892 (9)0.1821 (3)0.5914 (2)0.0673 (13)
O31.0187 (7)0.1748 (3)0.6393 (3)0.0701 (15)
O1W0.7047 (8)0.6603 (3)0.9857 (3)0.0828 (15)
S10.8103 (2)0.17638 (8)0.65704 (8)0.0415 (3)
H360.593 (5)0.685 (4)0.974 (4)0.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0663 (3)0.0474 (2)0.0736 (4)0.0021 (2)0.0064 (3)0.0002 (3)
C10.040 (3)0.030 (2)0.035 (3)0.000 (2)0.001 (2)0.0032 (19)
C20.039 (3)0.048 (3)0.041 (4)0.004 (3)0.001 (3)0.000 (3)
C30.049 (3)0.038 (3)0.051 (4)0.005 (3)0.010 (3)0.005 (3)
C40.053 (3)0.038 (2)0.029 (3)0.003 (3)0.001 (3)0.000 (2)
C50.037 (3)0.048 (3)0.050 (4)0.002 (3)0.006 (3)0.001 (3)
C60.040 (3)0.039 (3)0.053 (4)0.005 (3)0.003 (3)0.003 (3)
C70.033 (3)0.072 (3)0.034 (3)0.000 (3)0.001 (3)0.002 (3)
C80.044 (3)0.069 (3)0.034 (3)0.003 (3)0.001 (3)0.015 (3)
C90.033 (2)0.048 (3)0.049 (4)0.003 (3)0.002 (3)0.015 (2)
C100.053 (3)0.052 (3)0.065 (5)0.000 (4)0.002 (4)0.022 (3)
C110.058 (3)0.046 (3)0.086 (5)0.000 (4)0.001 (4)0.005 (3)
C120.059 (4)0.061 (3)0.059 (5)0.002 (4)0.004 (4)0.015 (3)
C130.042 (3)0.065 (3)0.048 (4)0.000 (3)0.003 (4)0.001 (3)
C140.028 (2)0.050 (3)0.041 (3)0.002 (3)0.005 (3)0.007 (2)
C150.041 (3)0.048 (3)0.043 (4)0.005 (3)0.000 (3)0.014 (3)
C160.066 (4)0.094 (4)0.056 (5)0.001 (4)0.007 (5)0.030 (4)
N10.033 (2)0.053 (2)0.041 (3)0.003 (2)0.002 (3)0.0053 (19)
N20.061 (3)0.047 (2)0.051 (3)0.001 (2)0.009 (3)0.015 (2)
O10.082 (4)0.0380 (17)0.052 (3)0.0009 (19)0.004 (2)0.0096 (16)
O20.108 (4)0.051 (2)0.043 (3)0.007 (3)0.021 (3)0.0049 (18)
O30.057 (3)0.054 (2)0.099 (5)0.002 (2)0.030 (3)0.018 (2)
O1W0.104 (4)0.065 (2)0.080 (4)0.010 (3)0.009 (4)0.014 (3)
S10.0534 (8)0.0328 (6)0.0383 (8)0.0019 (7)0.0015 (8)0.0011 (5)
Geometric parameters (Å, º) top
Ag1—N12.137 (4)C10—C111.331 (9)
Ag1—O1W2.138 (5)C10—H100.9300
C1—C21.370 (7)C11—C121.403 (9)
C1—C61.376 (8)C11—H110.9300
C1—S11.762 (5)C12—C131.367 (8)
C2—C31.402 (8)C12—H120.9300
C2—H20.9300C13—C141.406 (8)
C3—C41.396 (9)C13—H130.9300
C3—H30.9300C14—C151.437 (7)
C4—N21.390 (6)C15—N11.312 (7)
C4—C51.393 (8)C15—H150.9300
C5—C61.386 (8)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—H60.9300C16—H16C0.9600
C7—C81.380 (7)N2—H2A0.8600
C7—N11.383 (7)N2—H2B0.8600
C7—C161.490 (8)O1—S11.440 (4)
C8—C91.406 (8)O2—S11.445 (5)
C8—H80.9300O3—S11.449 (5)
C9—C141.405 (8)O1W—H360.86 (4)
C9—C101.431 (7)
N1—Ag1—O1W178.7 (2)C12—C11—H11119.2
C2—C1—C6119.4 (5)C13—C12—C11120.7 (6)
C2—C1—S1120.7 (4)C13—C12—H12119.7
C6—C1—S1119.9 (4)C11—C12—H12119.7
C1—C2—C3120.8 (5)C12—C13—C14118.8 (6)
C1—C2—H2119.6C12—C13—H13120.6
C3—C2—H2119.6C14—C13—H13120.6
C4—C3—C2119.7 (5)C9—C14—C13120.9 (5)
C4—C3—H3120.1C9—C14—C15116.7 (5)
C2—C3—H3120.1C13—C14—C15122.4 (5)
N2—C4—C5121.4 (6)N1—C15—C14124.2 (5)
N2—C4—C3119.8 (5)N1—C15—H15117.9
C5—C4—C3118.7 (5)C14—C15—H15117.9
C6—C5—C4120.3 (5)C7—C16—H16A109.5
C6—C5—H5119.9C7—C16—H16B109.5
C4—C5—H5119.9H16A—C16—H16B109.5
C1—C6—C5120.9 (5)C7—C16—H16C109.5
C1—C6—H6119.5H16A—C16—H16C109.5
C5—C6—H6119.5H16B—C16—H16C109.5
C8—C7—N1119.0 (5)C15—N1—C7119.7 (4)
C8—C7—C16123.8 (6)C15—N1—Ag1117.3 (4)
N1—C7—C16117.2 (5)C7—N1—Ag1123.0 (4)
C7—C8—C9122.8 (5)C4—N2—H2A120.0
C7—C8—H8118.6C4—N2—H2B120.0
C9—C8—H8118.6H2A—N2—H2B120.0
C14—C9—C8117.6 (4)Ag1—O1W—H36116 (4)
C14—C9—C10117.8 (6)O1—S1—O2111.9 (3)
C8—C9—C10124.6 (6)O1—S1—O3112.7 (3)
C11—C10—C9120.2 (6)O2—S1—O3111.9 (4)
C11—C10—H10119.9O1—S1—C1107.7 (2)
C9—C10—H10119.9O2—S1—C1105.9 (2)
C10—C11—C12121.5 (5)O3—S1—C1106.3 (2)
C10—C11—H11119.2
C6—C1—C2—C32.4 (9)C10—C9—C14—C130.3 (9)
S1—C1—C2—C3177.1 (5)C8—C9—C14—C151.3 (9)
C1—C2—C3—C40.4 (9)C10—C9—C14—C15179.7 (6)
C2—C3—C4—N2175.7 (5)C12—C13—C14—C90.2 (10)
C2—C3—C4—C52.3 (9)C12—C13—C14—C15179.1 (6)
N2—C4—C5—C6175.1 (6)C9—C14—C15—N11.1 (10)
C3—C4—C5—C62.8 (9)C13—C14—C15—N1179.6 (6)
C2—C1—C6—C51.9 (9)C14—C15—N1—C70.2 (9)
S1—C1—C6—C5177.7 (5)C14—C15—N1—Ag1179.1 (5)
C4—C5—C6—C10.8 (9)C8—C7—N1—C150.4 (9)
N1—C7—C8—C90.1 (10)C16—C7—N1—C15179.5 (7)
C16—C7—C8—C9179.1 (6)C8—C7—N1—Ag1178.4 (4)
C7—C8—C9—C140.8 (10)C16—C7—N1—Ag10.7 (8)
C7—C8—C9—C10179.7 (7)C2—C1—S1—O1111.1 (5)
C14—C9—C10—C110.3 (10)C6—C1—S1—O168.4 (5)
C8—C9—C10—C11179.2 (7)C2—C1—S1—O2129.0 (5)
C9—C10—C11—C120.3 (11)C6—C1—S1—O251.5 (6)
C10—C11—C12—C130.9 (11)C2—C1—S1—O39.8 (6)
C11—C12—C13—C140.8 (11)C6—C1—S1—O3170.7 (5)
C8—C9—C14—C13179.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.373.092 (6)142
N2—H2B···O3ii0.862.183.005 (7)160
O1W—H36···O2i0.86 (4)2.25 (3)3.027 (8)150 (6)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Ag(C10H9N)(H2O)](C6H6NO3S)
Mr441.25
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)6.779 (1), 13.997 (3), 18.076 (4)
V3)1715.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.32
Crystal size (mm)0.47 × 0.09 × 0.06
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.529, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
7289, 3904, 2458
Rint0.069
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 0.97
No. of reflections3904
No. of parameters221
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.49
Absolute structureFlack (1983), 1646 Friedel pairs
Absolute structure parameter0.46 (6)

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Siemens, 1990).

Selected geometric parameters (Å, º) top
Ag1—N12.137 (4)Ag1—O1W2.138 (5)
N1—Ag1—O1W178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.373.092 (6)142
N2—H2B···O3ii0.862.183.005 (7)160
O1W—H36···O2i0.86 (4)2.25 (3)3.027 (8)150 (6)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Anshan Normal University for supporting this work.

References

First citationAtria, A. M., Baggio, R. F., Garland, M. T. & Spodine, E. (1994). Acta Cryst. C50, 864–866.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCai, J. W., Zhou, J. S. & Lin, M. L. (2003). J. Mater. Chem. 13, 1806–1811.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, F. F., Ma, J. F., Song, S. Y. & Yang, J. (2006). Cryst. Growth Des. 6, 209–215.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1990). SHELXTL-Plus. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds