metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(propane-1,2-di­amine-κ2N,N′)nickel(II) tetra­cyanidoplatinate(II)

aDepartment of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, SK-041 54 Košice, Slovakia, and bInstitute of Inorganic Chemistry, Martin Luther University, Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany
*Correspondence e-mail: ivan.potocnak@upjs.sk

(Received 22 November 2007; accepted 14 December 2007; online 21 December 2007)

In the title compound, [Ni(C3H10N2)3][Pt(CN)4], the [Pt(CN)4]2− anion with the environment of the PtII atom, lying on a mirror plane, is square planar, whereas the NiII atom in the [Ni(C3N2H10)3]2+ cation, also lying on a mirror plane, has a slightly distorted octa­hedral coordination geometry. Three chiral 1,2-diamino­propane mol­ecules, which are disordered equally over two sets of positions, adopt Δ(δδδ) and Δ(λλλ) configurations. The average Ni—N and Pt—C bond lengths are 2.131 (10) and 1.988 (10) Å, respectively. The cations and anions are connected by N—H⋯N hydrogen bonds.

Related literature

For related literature on compounds with [Ni(1,2-diamino­propane)3]2+ cations, see: Behrens et al. (2003[Behrens, M., Scherb, S., Nather, C. & Bensch, W. (2003). Z. Anorg. Allg. Chem. 629, 1367-1373.]) for Sn2S64−; Kuchár & Černák (2008[Kuchár, J. & Černák, J. (2008). Acta Cryst. E64. Submitted.]) for [Ni(CN)4]2−; Lin et al. (2005[Lin, Z.-E., Zhang, J., Zhao, J.-T., Zheng, S.-T., Pan, C.-Y., Wang, G.-M. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 6881-6884.]) for [H3Ge14NiO27]4−; Nasanen et al. (1964[Nasanen, R., Hyle, M. & Butkevitsch, O. (1964). Suom. Kemistil. 37B, 211-212.]) for ClO4; Saha et al. (2005[Saha, M. K., Dey, D. K., Samanta, B., Dey, S. K., Malik, K. M. A. & Mitra, S. (2005). Z. Naturforsch. Teil B, 60, 1043-1048.]) for [Fe(CN)5NO]2−.

[Scheme 1]

Experimental

Crystal data
  • [Ni(C3H10N2)3][Pt(CN)4]

  • Mr = 580.27

  • Orthorhombic, P n m a

  • a = 9.8206 (18) Å

  • b = 13.694 (2) Å

  • c = 16.261 (3) Å

  • V = 2186.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.27 mm−1

  • T = 220 K

  • 0.38 × 0.11 × 0.06 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: numerical (IPDS FACE; Stoe & Cie, 1999[Stoe & Cie (1999). IPDS Software. Version 2.90. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.104, Tmax = 0.446

  • 15408 measured reflections

  • 2197 independent reflections

  • 1807 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.085

  • S = 1.04

  • 2197 reflections

  • 160 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −1.92 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pt—C1 1.958 (10)
Pt—C2 1.995 (11)
Pt—C3 1.999 (9)
Ni—N21i 2.118 (9)
Ni—N10 2.127 (9)
Ni—N30 2.122 (10)
Ni—N40 2.137 (9)
Ni—N11i 2.142 (10)
Ni—N20 2.142 (10)
C1—Pt—C2 179.4 (3)
C1—Pt—C3 89.5 (2)
C2—Pt—C3 90.5 (2)
C3i—Pt—C3 178.8 (4)
N21i—Ni—N10 171.3 (4)
N21i—Ni—N30 93.3 (4)
N10—Ni—N30 93.3 (4)
N21i—Ni—N40 91.7 (4)
N10—Ni—N40 95.0 (4)
N30—Ni—N40 80.8 (4)
N21i—Ni—N11i 80.5 (4)
N10—Ni—N11i 93.3 (4)
N30—Ni—N11i 94.4 (4)
N40—Ni—N11i 170.6 (4)
N21i—Ni—N20 93.8 (4)
N10—Ni—N20 80.4 (4)
N30—Ni—N20 170.1 (4)
N40—Ni—N20 92.2 (4)
N11i—Ni—N20 93.5 (4)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21F⋯N2 0.90 2.51 3.311 (12) 148
N40—H40A⋯N2 0.90 2.30 3.160 (14) 160
N10—H10B⋯N3ii 0.90 2.40 3.193 (13) 148
N21—H21E⋯N3ii 0.90 2.24 3.066 (13) 152
N40—H40B⋯N3ii 0.90 2.21 3.098 (12) 169
N11—H11C⋯N1iii 0.90 2.48 3.342 (13) 159
N20—H20B⋯N1iii 0.90 2.11 3.005 (12) 174
N11—H11D⋯N1iv 0.90 2.46 3.242 (13) 145
N30—H30B⋯N3v 0.90 2.31 3.191 (11) 166
Symmetry codes: (ii) [-x+1, y+{\script{1\over 2}}, -z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x+1, y, z; (v) -x+1, -y, -z.

Data collection: IPDS EXPOSE (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS Software. Version 2.90. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS CELL (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS Software. Version 2.90. Stoe & Cie, Darmstadt, Germany.]); data reduction: IPDS INTEGRATE (Stoe & Cie, 1999[Stoe & Cie (1999). IPDS Software. Version 2.90. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 2001[Brandenburg, K. (2001). DIAMOND. Release 2.1e. Crystal Impact, D-53002 Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, [Ni(pn)3][Pt(CN)4] (pn = 1,2-diaminopropane) has been prepared by a chance within our studies on the role of hydrogen bonds as possible exchange paths for magnetic interactions in low-dimensional compounds. The compound consists of discrete [Ni(pn)3]2+ cations and [Pt(CN)4]2- anions (Fig. 1). Selected bond lengths and angles are given in Table 1. The NiII atom is coordinated by six N atoms of three racemic pn ligands, which are disordered over two sets of positions, with site occupancies of 0.50 (except methylene and methine C atoms), thus forming Δ(δδδ) and Δ(λλλ) configurations. Moreover, a mirror plane passes through the tetracyanoplatinate anion (N1, C1, Pt, C2 and N2 atoms) and the [Ni(pn)3]2+ cation (Ni, C31 and C41 atoms). The coordination geometry around the NiII atom can be described as octahedral. The two N atoms occupying axial positions form an angle of 170.6 (4)° and the Ni—N bond distances range from 2.118 (9)–2.142 (10)Å [mean bond length is 2.131 (10) Å], in good agreement with the values reported of other [Ni(pn)3]2+ complexes (Behrens et al., 2003; Kuchár & Černák, 2008; Saha et al., 2005). Octahedral coordination geometry around the Ni atom was observed also in other compounds with [Ni(pn)3]2+ cation (Nasanen et al., 1964; Lin et al., 2005). The square-planar geometry of [Pt(CN)4]2- is in good agreement with those of the previous studies with average Pt—C bond lengths of 1.988 (10) Å. The structure is stabilized also by the N—H···N hydrogen bonds between the cations and anions (Table 2).

Related literature top

For related literature on compounds with [Ni(1,2-diaminopropane)3]2+ cations, see: Behrens et al. (2003) for Sn2S64-; Kuchár & Černák (2008) for [Ni(CN)4]2-; Lin et al. (2005) for [H3Ge14NiO27]4-; Nasanen et al. (1964) for ClO4-; Saha et al. (2005) for [Fe(CN)5NO]2-.

Experimental top

The title compound were prepared by a chance during our attempts to prepare chain-like [Ni(pn)2][Pt(CN)4] compound suitable for magnetic studies. A mixture of a 10 ml aqueous solution of NiSO4.6H2O (0.132 g, 0.5 mmol) and pn (0.086 ml, 1.0 mmol) was stirred for 30 min and a 10 ml aqueous solution of K2[Pt(CN)4].3H2O (0.216 g, 0.5 mmol) was added. The pink precipitate thus formed was dissolved by addition of a concentrated solution of ammonia (20 ml). After few days, pink crystals of the title compound were filtered off and dried in air.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with N—H = 0.90 Å, C—H = 0.97Å (CH2), 0.98Å (CH) and Uiso(H) = 1.2Ueq(C,N) and with C—H = 0.96Å (CH3) and Uiso(H) = 1.5Ueq(C). The highest residual electron density and the deepest hole were found 1.01 and 0.88 Å from the Pt atom, respectively.

Structure description top

The title compound, [Ni(pn)3][Pt(CN)4] (pn = 1,2-diaminopropane) has been prepared by a chance within our studies on the role of hydrogen bonds as possible exchange paths for magnetic interactions in low-dimensional compounds. The compound consists of discrete [Ni(pn)3]2+ cations and [Pt(CN)4]2- anions (Fig. 1). Selected bond lengths and angles are given in Table 1. The NiII atom is coordinated by six N atoms of three racemic pn ligands, which are disordered over two sets of positions, with site occupancies of 0.50 (except methylene and methine C atoms), thus forming Δ(δδδ) and Δ(λλλ) configurations. Moreover, a mirror plane passes through the tetracyanoplatinate anion (N1, C1, Pt, C2 and N2 atoms) and the [Ni(pn)3]2+ cation (Ni, C31 and C41 atoms). The coordination geometry around the NiII atom can be described as octahedral. The two N atoms occupying axial positions form an angle of 170.6 (4)° and the Ni—N bond distances range from 2.118 (9)–2.142 (10)Å [mean bond length is 2.131 (10) Å], in good agreement with the values reported of other [Ni(pn)3]2+ complexes (Behrens et al., 2003; Kuchár & Černák, 2008; Saha et al., 2005). Octahedral coordination geometry around the Ni atom was observed also in other compounds with [Ni(pn)3]2+ cation (Nasanen et al., 1964; Lin et al., 2005). The square-planar geometry of [Pt(CN)4]2- is in good agreement with those of the previous studies with average Pt—C bond lengths of 1.988 (10) Å. The structure is stabilized also by the N—H···N hydrogen bonds between the cations and anions (Table 2).

For related literature on compounds with [Ni(1,2-diaminopropane)3]2+ cations, see: Behrens et al. (2003) for Sn2S64-; Kuchár & Černák (2008) for [Ni(CN)4]2-; Lin et al. (2005) for [H3Ge14NiO27]4-; Nasanen et al. (1964) for ClO4-; Saha et al. (2005) for [Fe(CN)5NO]2-.

Computing details top

Data collection: IPDS EXPOSE (Stoe & Cie, 1999); cell refinement: IPDS CELL (Stoe & Cie, 1999); data reduction: IPDS INTEGRATE (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The structures of the cation and anion in the title compound. Displacement ellipsoids are drawn at the 40% probability level. Coloured atoms and black bonds show the Δ(δδδ) configuration whereas transparent atoms and bonds represent the Δ(λλλ) configuration of the [Ni(pn)3]2+ cation. Hydrogen atoms are ommited for clarity. [Symmetry code: (i) x, 1/2 - y, z.]
Tris(propane-1,2-diamine-κ2N,N')nickel(II) tetracyanidoplatinate(II) top
Crystal data top
[Ni(C3H10N2)3][Pt(CN)4]F(000) = 1136
Mr = 580.27Dx = 1.762 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 8000 reflections
a = 9.8206 (18) Åθ = 2.4–25.9°
b = 13.694 (2) ŵ = 7.27 mm1
c = 16.261 (3) ÅT = 220 K
V = 2186.8 (7) Å3Needle, pink
Z = 40.38 × 0.11 × 0.06 mm
Data collection top
Stoe IPDS
diffractometer
2197 independent reflections
Radiation source: fine-focus sealed tube1807 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
φ scansθmax = 25.9°, θmin = 2.4°
Absorption correction: numerical
(IPDS FACE; Stoe & Cie, 1999)
h = 1212
Tmin = 0.104, Tmax = 0.446k = 1616
15408 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0507P)2]
where P = (Fo2 + 2Fc2)/3
2197 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 1.92 e Å3
Crystal data top
[Ni(C3H10N2)3][Pt(CN)4]V = 2186.8 (7) Å3
Mr = 580.27Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 9.8206 (18) ŵ = 7.27 mm1
b = 13.694 (2) ÅT = 220 K
c = 16.261 (3) Å0.38 × 0.11 × 0.06 mm
Data collection top
Stoe IPDS
diffractometer
2197 independent reflections
Absorption correction: numerical
(IPDS FACE; Stoe & Cie, 1999)
1807 reflections with I > 2σ(I)
Tmin = 0.104, Tmax = 0.446Rint = 0.088
15408 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.04Δρmax = 1.23 e Å3
2197 reflectionsΔρmin = 1.92 e Å3
160 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt0.20444 (3)0.25000.07418 (2)0.04021 (13)
Ni0.73154 (10)0.25000.02973 (6)0.0368 (2)
C10.1023 (9)0.25000.1776 (5)0.0475 (19)
N10.0397 (9)0.25000.2376 (5)0.072 (2)
C20.3067 (9)0.25000.0318 (7)0.058 (2)
N20.3700 (10)0.25000.0916 (6)0.079 (3)
C30.2044 (8)0.1040 (6)0.0754 (5)0.069 (2)
N30.2032 (10)0.0220 (4)0.0777 (5)0.106 (3)
C210.6124 (10)0.4305 (6)0.0987 (7)0.104 (3)
H21A0.55310.46420.13700.124*0.50
H21B0.60740.46310.04580.124*0.50
H21C0.58020.49710.09310.124*0.50
H21D0.55360.39670.13720.124*0.50
N100.8434 (11)0.3735 (7)0.0711 (6)0.048 (2)0.50
H10A0.91980.35420.09700.058*0.50
H10B0.86720.41120.02810.058*0.50
N200.5722 (11)0.3283 (7)0.0909 (6)0.051 (2)0.50
H20A0.49450.32380.06170.062*0.50
H20B0.55750.30240.14100.062*0.50
C110.7537 (11)0.4303 (6)0.1294 (6)0.085 (3)
H11A0.74490.38210.17370.101*0.50
H11B0.81560.46210.09050.101*0.50
N110.7811 (10)0.3348 (8)0.1363 (6)0.051 (3)0.50
H11C0.73460.31080.17950.061*0.50
H11D0.87040.32750.14710.061*0.50
N210.6087 (10)0.3743 (6)0.0070 (6)0.048 (2)0.50
H21E0.64450.41210.03280.057*0.50
H21F0.52340.35720.00710.057*0.50
C310.9053 (10)0.25000.1186 (6)0.067 (3)
H310.93570.31700.10820.081*0.50
C410.7596 (13)0.25000.1515 (6)0.087 (4)
H41A0.72360.18410.15470.104*0.50
H41B0.75510.27980.20560.104*0.50
N300.8963 (10)0.1956 (7)0.0412 (6)0.047 (2)0.50
H30A0.97460.20200.01280.056*0.50
H30B0.88350.13170.05170.056*0.50
N400.6798 (11)0.3121 (7)0.0867 (6)0.047 (2)0.50
H40A0.58950.30840.09560.057*0.50
H40B0.70540.37520.08900.057*0.50
C320.9945 (15)0.2029 (13)0.1810 (9)0.089 (5)0.50
H32A1.08670.20230.16150.134*0.50
H32B0.98980.23890.23160.134*0.50
H32C0.96440.13710.19030.134*0.50
C120.808 (3)0.5133 (17)0.1769 (16)0.101 (7)0.50
H12A0.90030.50030.19220.151*0.50
H12B0.75370.52240.22550.151*0.50
H12C0.80410.57140.14380.151*0.50
C130.721 (3)0.4965 (18)0.2020 (17)0.101 (7)0.50
H13A0.80290.50790.23320.151*0.50
H13B0.65460.46580.23640.151*0.50
H13C0.68670.55760.18210.151*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt0.0384 (2)0.02827 (17)0.0540 (2)0.0000.00989 (13)0.000
Ni0.0390 (5)0.0239 (5)0.0476 (5)0.0000.0062 (4)0.000
C10.048 (5)0.040 (4)0.055 (5)0.0000.006 (4)0.000
N10.073 (6)0.080 (7)0.064 (5)0.0000.008 (5)0.000
C20.041 (5)0.064 (6)0.068 (6)0.0000.013 (5)0.000
N20.048 (5)0.117 (9)0.072 (6)0.0000.005 (4)0.000
C30.076 (6)0.057 (5)0.074 (4)0.005 (4)0.001 (4)0.007 (4)
N30.177 (11)0.016 (3)0.124 (6)0.004 (4)0.013 (5)0.014 (3)
C210.080 (6)0.044 (4)0.187 (10)0.005 (4)0.037 (7)0.042 (5)
N100.044 (6)0.033 (5)0.066 (6)0.005 (4)0.014 (5)0.007 (5)
N200.050 (6)0.046 (5)0.057 (6)0.007 (5)0.007 (5)0.005 (4)
C110.104 (6)0.053 (5)0.097 (6)0.021 (5)0.015 (5)0.033 (4)
N110.053 (7)0.045 (6)0.053 (5)0.000 (5)0.008 (5)0.003 (5)
N210.047 (5)0.026 (4)0.070 (6)0.002 (4)0.015 (5)0.001 (4)
C310.055 (6)0.085 (8)0.063 (6)0.0000.007 (5)0.000
C410.065 (6)0.153 (13)0.043 (5)0.0000.006 (5)0.000
N300.047 (6)0.035 (5)0.058 (5)0.002 (4)0.011 (4)0.005 (4)
N400.046 (5)0.036 (5)0.059 (6)0.001 (4)0.013 (4)0.007 (4)
C320.054 (8)0.124 (15)0.091 (10)0.021 (9)0.018 (8)0.005 (9)
C120.14 (2)0.057 (9)0.110 (14)0.000 (12)0.024 (13)0.020 (9)
C130.14 (2)0.057 (9)0.110 (14)0.000 (12)0.024 (13)0.020 (9)
Geometric parameters (Å, º) top
Pt—C11.958 (10)N20—H20B0.9000
Pt—C21.995 (11)C11—N111.340 (13)
Pt—C3i1.999 (9)C11—C131.52 (3)
Pt—C31.999 (9)C11—C121.47 (2)
Ni—N21i2.118 (9)C11—H11A0.9800
Ni—N212.118 (9)C11—H11B0.9800
Ni—N102.127 (9)N11—H11C0.9000
Ni—N10i2.127 (9)N11—H11D0.9000
Ni—N30i2.122 (10)N21—H21E0.9000
Ni—N302.122 (10)N21—H21F0.9000
Ni—N40i2.137 (9)C31—N301.466 (12)
Ni—N402.137 (9)C31—C321.487 (16)
Ni—N112.142 (10)C31—C411.528 (16)
Ni—N11i2.142 (10)C31—H310.9800
Ni—N202.142 (10)C41—N401.565 (13)
Ni—N20i2.142 (10)C41—H41A0.9700
C1—N11.154 (11)C41—H41B0.9700
C2—N21.154 (13)N30—H30A0.9000
C3—N31.124 (11)N30—H30B0.9000
C21—N201.460 (13)N40—H40A0.9000
C21—C111.474 (14)N40—H40B0.9000
C21—N211.679 (13)C32—H32A0.9600
C21—H21A0.9700C32—H32B0.9600
C21—H21B0.9700C32—H32C0.9600
C21—H21C0.9700C12—H12A0.9600
C21—H21D0.9700C12—H12B0.9600
N10—C111.509 (14)C12—H12C0.9600
N10—H10A0.9000C13—H13A0.9600
N10—H10B0.9000C13—H13B0.9600
N20—H20A0.9000C13—H13C0.9600
C1—Pt—C2179.4 (3)N11—C11—C13124.0 (13)
C1—Pt—C3i89.5 (2)C21—C11—C1393.8 (12)
C2—Pt—C3i90.5 (2)C21—C11—C12120.9 (13)
C1—Pt—C389.5 (2)N10—C11—C12121.1 (13)
C2—Pt—C390.5 (2)C21—C11—H11A99.6
C3i—Pt—C3178.8 (4)N10—C11—H11A99.6
N21i—Ni—N10171.3 (4)C12—C11—H11A99.6
N21—Ni—N10i171.3 (4)N11—C11—H11B111.4
N21—Ni—N30i93.3 (4)C21—C11—H11B111.4
N10i—Ni—N30i93.3 (4)C13—C11—H11B111.4
N21i—Ni—N3093.3 (4)C11—N11—Ni114.6 (7)
N10—Ni—N3093.3 (4)C11—N11—H11C108.6
N21—Ni—N40i91.7 (4)Ni—N11—H11C108.6
N10i—Ni—N40i95.0 (4)C11—N11—H11D108.6
N30i—Ni—N40i80.8 (4)Ni—N11—H11D108.6
N21i—Ni—N4091.7 (4)H11C—N11—H11D107.6
N10—Ni—N4095.0 (4)C21—N21—Ni101.6 (6)
N30—Ni—N4080.8 (4)C21—N21—H21E111.5
N21—Ni—N1180.5 (4)Ni—N21—H21E111.5
N10i—Ni—N1193.3 (4)C21—N21—H21F111.5
N30i—Ni—N1194.4 (4)Ni—N21—H21F111.5
N40i—Ni—N11170.6 (4)H21E—N21—H21F109.3
N21i—Ni—N11i80.5 (4)N30—C31—C32113.6 (8)
N10—Ni—N11i93.3 (4)N30—C31—C41104.1 (7)
N30—Ni—N11i94.4 (4)C32—C31—C41108.2 (9)
N40—Ni—N11i170.6 (4)N30—C31—H31110.2
N21i—Ni—N2093.8 (4)C32—C31—H31110.2
N10—Ni—N2080.4 (4)C41—C31—H31110.2
N30—Ni—N20170.1 (4)C31—C41—N40103.5 (7)
N40—Ni—N2092.2 (4)C31—C41—H41A111.1
N11i—Ni—N2093.5 (4)N40—C41—H41A111.1
N21—Ni—N20i93.8 (4)C31—C41—H41B111.1
N10i—Ni—N20i80.4 (4)N40—C41—H41B111.1
N30i—Ni—N20i170.1 (4)H41A—C41—H41B109.0
N40i—Ni—N20i92.2 (4)C31—N30—Ni109.5 (6)
N11—Ni—N20i93.5 (4)C31—N30—H30A109.8
N1—C1—Pt178.6 (8)Ni—N30—H30A109.8
N2—C2—Pt177.6 (8)C31—N30—H30B109.8
N3—C3—Pt178.5 (8)Ni—N30—H30B109.8
N20—C21—C11106.4 (8)H30A—N30—H30B108.2
C11—C21—N21108.7 (7)C41—N40—Ni105.2 (6)
N20—C21—H21A110.4C41—N40—H40A110.7
C11—C21—H21A110.4Ni—N40—H40A110.7
N20—C21—H21B110.4C41—N40—H40B110.7
C11—C21—H21B110.4Ni—N40—H40B110.7
H21A—C21—H21B108.6H40A—N40—H40B108.8
C11—C21—H21C110.0C31—C32—H32A109.5
N21—C21—H21C110.0C31—C32—H32B109.5
C11—C21—H21D110.0H32A—C32—H32B109.5
N21—C21—H21D110.0C31—C32—H32C109.5
H21C—C21—H21D108.3H32A—C32—H32C109.5
C11—N10—Ni107.8 (7)H32B—C32—H32C109.5
C11—N10—H10A110.1C11—C12—H12A109.5
Ni—N10—H10A110.1C11—C12—H12B109.5
C11—N10—H10B110.1H12A—C12—H12B109.5
Ni—N10—H10B110.1C11—C12—H12C109.5
H10A—N10—H10B108.5H12A—C12—H12C109.5
C21—N20—Ni108.8 (7)H12B—C12—H12C109.5
C21—N20—H20A109.9C11—C13—H13A109.5
Ni—N20—H20A109.9C11—C13—H13B109.5
C21—N20—H20B109.9H13A—C13—H13B109.5
Ni—N20—H20B109.9C11—C13—H13C109.5
H20A—N20—H20B108.3H13A—C13—H13C109.5
N11—C11—C21102.7 (8)H13B—C13—H13C109.5
C21—C11—N10109.7 (7)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21F···N20.902.513.311 (12)148
N40—H40A···N20.902.303.160 (14)160
N10—H10B···N3ii0.902.403.193 (13)148
N21—H21E···N3ii0.902.243.066 (13)152
N40—H40B···N3ii0.902.213.098 (12)169
N11—H11C···N1iii0.902.483.342 (13)159
N20—H20B···N1iii0.902.113.005 (12)174
N11—H11D···N1iv0.902.463.242 (13)145
N30—H30B···N3v0.902.313.191 (11)166
Symmetry codes: (ii) x+1, y+1/2, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C3H10N2)3][Pt(CN)4]
Mr580.27
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)220
a, b, c (Å)9.8206 (18), 13.694 (2), 16.261 (3)
V3)2186.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)7.27
Crystal size (mm)0.38 × 0.11 × 0.06
Data collection
DiffractometerStoe IPDS
Absorption correctionNumerical
(IPDS FACE; Stoe & Cie, 1999)
Tmin, Tmax0.104, 0.446
No. of measured, independent and
observed [I > 2σ(I)] reflections
15408, 2197, 1807
Rint0.088
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.085, 1.04
No. of reflections2197
No. of parameters160
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 1.92

Computer programs: IPDS EXPOSE (Stoe & Cie, 1999), IPDS CELL (Stoe & Cie, 1999), IPDS INTEGRATE (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2001).

Selected geometric parameters (Å, º) top
Pt—C11.958 (10)Ni—N302.122 (10)
Pt—C21.995 (11)Ni—N402.137 (9)
Pt—C31.999 (9)Ni—N11i2.142 (10)
Ni—N21i2.118 (9)Ni—N202.142 (10)
Ni—N102.127 (9)
C1—Pt—C2179.4 (3)N21i—Ni—N11i80.5 (4)
C1—Pt—C389.5 (2)N10—Ni—N11i93.3 (4)
C2—Pt—C390.5 (2)N30—Ni—N11i94.4 (4)
C3i—Pt—C3178.8 (4)N40—Ni—N11i170.6 (4)
N21i—Ni—N10171.3 (4)N21i—Ni—N2093.8 (4)
N21i—Ni—N3093.3 (4)N10—Ni—N2080.4 (4)
N10—Ni—N3093.3 (4)N30—Ni—N20170.1 (4)
N21i—Ni—N4091.7 (4)N40—Ni—N2092.2 (4)
N10—Ni—N4095.0 (4)N11i—Ni—N2093.5 (4)
N30—Ni—N4080.8 (4)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21F···N20.902.513.311 (12)148.2
N40—H40A···N20.902.303.160 (14)159.9
N10—H10B···N3ii0.902.403.193 (13)147.8
N21—H21E···N3ii0.902.243.066 (13)151.7
N40—H40B···N3ii0.902.213.098 (12)169.3
N11—H11C···N1iii0.902.483.342 (13)159.4
N20—H20B···N1iii0.902.113.005 (12)174.4
N11—H11D···N1iv0.902.463.242 (13)145.3
N30—H30B···N3v0.902.313.191 (11)166.4
Symmetry codes: (ii) x+1, y+1/2, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x+1, y, z.
 

Acknowledgements

This work was supported by the Slovak Grant Agency VEGA (grant No. 1/2470/05), and by APVT (grant No. 20-005204). MV thanks DAAD for financial support and the hospitality of Martin Luther University.

References

First citationBehrens, M., Scherb, S., Nather, C. & Bensch, W. (2003). Z. Anorg. Allg. Chem. 629, 1367–1373.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2001). DIAMOND. Release 2.1e. Crystal Impact, D-53002 Bonn, Germany.  Google Scholar
First citationKuchár, J. & Černák, J. (2008). Acta Cryst. E64. Submitted.  Google Scholar
First citationLin, Z.-E., Zhang, J., Zhao, J.-T., Zheng, S.-T., Pan, C.-Y., Wang, G.-M. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 6881–6884.  Web of Science CSD CrossRef CAS Google Scholar
First citationNasanen, R., Hyle, M. & Butkevitsch, O. (1964). Suom. Kemistil. 37B, 211–212.  CAS Google Scholar
First citationSaha, M. K., Dey, D. K., Samanta, B., Dey, S. K., Malik, K. M. A. & Mitra, S. (2005). Z. Naturforsch. Teil B, 60, 1043–1048.  CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationStoe & Cie (1999). IPDS Software. Version 2.90. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds