metal-organic compounds
Tris(propane-1,2-diamine-κ2N,N′)nickel(II) tetracyanidoplatinate(II)
aDepartment of Inorganic Chemistry, Faculty of Science, P. J. Šafárik University, Moyzesova 11, SK-041 54 Košice, Slovakia, and bInstitute of Inorganic Chemistry, Martin Luther University, Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle, Germany
*Correspondence e-mail: ivan.potocnak@upjs.sk
In the title compound, [Ni(C3H10N2)3][Pt(CN)4], the [Pt(CN)4]2− anion with the environment of the PtII atom, lying on a mirror plane, is square planar, whereas the NiII atom in the [Ni(C3N2H10)3]2+ cation, also lying on a mirror plane, has a slightly distorted octahedral coordination geometry. Three chiral 1,2-diaminopropane molecules, which are disordered equally over two sets of positions, adopt Δ(δδδ) and Δ(λλλ) configurations. The average Ni—N and Pt—C bond lengths are 2.131 (10) and 1.988 (10) Å, respectively. The cations and anions are connected by N—H⋯N hydrogen bonds.
Related literature
For related literature on compounds with [Ni(1,2-diaminopropane)3]2+ cations, see: Behrens et al. (2003) for Sn2S64−; Kuchár & Černák (2008) for [Ni(CN)4]2−; Lin et al. (2005) for [H3Ge14NiO27]4−; Nasanen et al. (1964) for ClO4−; Saha et al. (2005) for [Fe(CN)5NO]2−.
Experimental
Crystal data
|
Refinement
|
|
Data collection: IPDS EXPOSE (Stoe & Cie, 1999); cell IPDS CELL (Stoe & Cie, 1999); data reduction: IPDS INTEGRATE (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536807066913/hy2111sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536807066913/hy2111Isup2.hkl
The title compound were prepared by a chance during our attempts to prepare chain-like [Ni(pn)2][Pt(CN)4] compound suitable for magnetic studies. A mixture of a 10 ml aqueous solution of NiSO4.6H2O (0.132 g, 0.5 mmol) and pn (0.086 ml, 1.0 mmol) was stirred for 30 min and a 10 ml aqueous solution of K2[Pt(CN)4].3H2O (0.216 g, 0.5 mmol) was added. The pink precipitate thus formed was dissolved by addition of a concentrated solution of ammonia (20 ml). After few days, pink crystals of the title compound were filtered off and dried in air.
H atoms were positioned geometrically and refined as riding atoms, with N—H = 0.90 Å, C—H = 0.97Å (CH2), 0.98Å (CH) and Uiso(H) = 1.2Ueq(C,N) and with C—H = 0.96Å (CH3) and Uiso(H) = 1.5Ueq(C). The highest residual electron density and the deepest hole were found 1.01 and 0.88 Å from the Pt atom, respectively.
The title compound, [Ni(pn)3][Pt(CN)4] (pn = 1,2-diaminopropane) has been prepared by a chance within our studies on the role of hydrogen bonds as possible exchange paths for magnetic interactions in low-dimensional compounds. The compound consists of discrete [Ni(pn)3]2+ cations and [Pt(CN)4]2- anions (Fig. 1). Selected bond lengths and angles are given in Table 1. The NiII atom is coordinated by six N atoms of three racemic pn ligands, which are disordered over two sets of positions, with site occupancies of 0.50 (except methylene and methine C atoms), thus forming Δ(δδδ) and Δ(λλλ) configurations. Moreover, a mirror plane passes through the tetracyanoplatinate anion (N1, C1, Pt, C2 and N2 atoms) and the [Ni(pn)3]2+ cation (Ni, C31 and C41 atoms). The coordination geometry around the NiII atom can be described as octahedral. The two N atoms occupying axial positions form an angle of 170.6 (4)° and the Ni—N bond distances range from 2.118 (9)–2.142 (10)Å [mean bond length is 2.131 (10) Å], in good agreement with the values reported of other [Ni(pn)3]2+ complexes (Behrens et al., 2003; Kuchár & Černák, 2008; Saha et al., 2005). Octahedral coordination geometry around the Ni atom was observed also in other compounds with [Ni(pn)3]2+ cation (Nasanen et al., 1964; Lin et al., 2005). The square-planar geometry of [Pt(CN)4]2- is in good agreement with those of the previous studies with average Pt—C bond lengths of 1.988 (10) Å. The structure is stabilized also by the N—H···N hydrogen bonds between the cations and anions (Table 2).
For related literature on compounds with [Ni(1,2-diaminopropane)3]2+ cations, see: Behrens et al. (2003) for Sn2S64-; Kuchár & Černák (2008) for [Ni(CN)4]2-; Lin et al. (2005) for [H3Ge14NiO27]4-; Nasanen et al. (1964) for ClO4-; Saha et al. (2005) for [Fe(CN)5NO]2-.
Data collection: IPDS EXPOSE (Stoe & Cie, 1999); cell
IPDS CELL (Stoe & Cie, 1999); data reduction: IPDS INTEGRATE (Stoe & Cie, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).Fig. 1. The structures of the cation and anion in the title compound. Displacement ellipsoids are drawn at the 40% probability level. Coloured atoms and black bonds show the Δ(δδδ) configuration whereas transparent atoms and bonds represent the Δ(λλλ) configuration of the [Ni(pn)3]2+ cation. Hydrogen atoms are ommited for clarity. [Symmetry code: (i) x, 1/2 - y, z.] |
[Ni(C3H10N2)3][Pt(CN)4] | F(000) = 1136 |
Mr = 580.27 | Dx = 1.762 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 8000 reflections |
a = 9.8206 (18) Å | θ = 2.4–25.9° |
b = 13.694 (2) Å | µ = 7.27 mm−1 |
c = 16.261 (3) Å | T = 220 K |
V = 2186.8 (7) Å3 | Needle, pink |
Z = 4 | 0.38 × 0.11 × 0.06 mm |
Stoe IPDS diffractometer | 2197 independent reflections |
Radiation source: fine-focus sealed tube | 1807 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.088 |
φ scans | θmax = 25.9°, θmin = 2.4° |
Absorption correction: numerical (IPDS FACE; Stoe & Cie, 1999) | h = −12→12 |
Tmin = 0.104, Tmax = 0.446 | k = −16→16 |
15408 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0507P)2] where P = (Fo2 + 2Fc2)/3 |
2197 reflections | (Δ/σ)max < 0.001 |
160 parameters | Δρmax = 1.23 e Å−3 |
0 restraints | Δρmin = −1.92 e Å−3 |
[Ni(C3H10N2)3][Pt(CN)4] | V = 2186.8 (7) Å3 |
Mr = 580.27 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 9.8206 (18) Å | µ = 7.27 mm−1 |
b = 13.694 (2) Å | T = 220 K |
c = 16.261 (3) Å | 0.38 × 0.11 × 0.06 mm |
Stoe IPDS diffractometer | 2197 independent reflections |
Absorption correction: numerical (IPDS FACE; Stoe & Cie, 1999) | 1807 reflections with I > 2σ(I) |
Tmin = 0.104, Tmax = 0.446 | Rint = 0.088 |
15408 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 1.04 | Δρmax = 1.23 e Å−3 |
2197 reflections | Δρmin = −1.92 e Å−3 |
160 parameters |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Pt | 0.20444 (3) | 0.2500 | 0.07418 (2) | 0.04021 (13) | |
Ni | 0.73154 (10) | 0.2500 | 0.02973 (6) | 0.0368 (2) | |
C1 | 0.1023 (9) | 0.2500 | 0.1776 (5) | 0.0475 (19) | |
N1 | 0.0397 (9) | 0.2500 | 0.2376 (5) | 0.072 (2) | |
C2 | 0.3067 (9) | 0.2500 | −0.0318 (7) | 0.058 (2) | |
N2 | 0.3700 (10) | 0.2500 | −0.0916 (6) | 0.079 (3) | |
C3 | 0.2044 (8) | 0.1040 (6) | 0.0754 (5) | 0.069 (2) | |
N3 | 0.2032 (10) | 0.0220 (4) | 0.0777 (5) | 0.106 (3) | |
C21 | 0.6124 (10) | 0.4305 (6) | 0.0987 (7) | 0.104 (3) | |
H21A | 0.5531 | 0.4642 | 0.1370 | 0.124* | 0.50 |
H21B | 0.6074 | 0.4631 | 0.0458 | 0.124* | 0.50 |
H21C | 0.5802 | 0.4971 | 0.0931 | 0.124* | 0.50 |
H21D | 0.5536 | 0.3967 | 0.1372 | 0.124* | 0.50 |
N10 | 0.8434 (11) | 0.3735 (7) | 0.0711 (6) | 0.048 (2) | 0.50 |
H10A | 0.9198 | 0.3542 | 0.0970 | 0.058* | 0.50 |
H10B | 0.8672 | 0.4112 | 0.0281 | 0.058* | 0.50 |
N20 | 0.5722 (11) | 0.3283 (7) | 0.0909 (6) | 0.051 (2) | 0.50 |
H20A | 0.4945 | 0.3238 | 0.0617 | 0.062* | 0.50 |
H20B | 0.5575 | 0.3024 | 0.1410 | 0.062* | 0.50 |
C11 | 0.7537 (11) | 0.4303 (6) | 0.1294 (6) | 0.085 (3) | |
H11A | 0.7449 | 0.3821 | 0.1737 | 0.101* | 0.50 |
H11B | 0.8156 | 0.4621 | 0.0905 | 0.101* | 0.50 |
N11 | 0.7811 (10) | 0.3348 (8) | 0.1363 (6) | 0.051 (3) | 0.50 |
H11C | 0.7346 | 0.3108 | 0.1795 | 0.061* | 0.50 |
H11D | 0.8704 | 0.3275 | 0.1471 | 0.061* | 0.50 |
N21 | 0.6087 (10) | 0.3743 (6) | 0.0070 (6) | 0.048 (2) | 0.50 |
H21E | 0.6445 | 0.4121 | −0.0328 | 0.057* | 0.50 |
H21F | 0.5234 | 0.3572 | −0.0071 | 0.057* | 0.50 |
C31 | 0.9053 (10) | 0.2500 | −0.1186 (6) | 0.067 (3) | |
H31 | 0.9357 | 0.3170 | −0.1082 | 0.081* | 0.50 |
C41 | 0.7596 (13) | 0.2500 | −0.1515 (6) | 0.087 (4) | |
H41A | 0.7236 | 0.1841 | −0.1547 | 0.104* | 0.50 |
H41B | 0.7551 | 0.2798 | −0.2056 | 0.104* | 0.50 |
N30 | 0.8963 (10) | 0.1956 (7) | −0.0412 (6) | 0.047 (2) | 0.50 |
H30A | 0.9746 | 0.2020 | −0.0128 | 0.056* | 0.50 |
H30B | 0.8835 | 0.1317 | −0.0517 | 0.056* | 0.50 |
N40 | 0.6798 (11) | 0.3121 (7) | −0.0867 (6) | 0.047 (2) | 0.50 |
H40A | 0.5895 | 0.3084 | −0.0956 | 0.057* | 0.50 |
H40B | 0.7054 | 0.3752 | −0.0890 | 0.057* | 0.50 |
C32 | 0.9945 (15) | 0.2029 (13) | −0.1810 (9) | 0.089 (5) | 0.50 |
H32A | 1.0867 | 0.2023 | −0.1615 | 0.134* | 0.50 |
H32B | 0.9898 | 0.2389 | −0.2316 | 0.134* | 0.50 |
H32C | 0.9644 | 0.1371 | −0.1903 | 0.134* | 0.50 |
C12 | 0.808 (3) | 0.5133 (17) | 0.1769 (16) | 0.101 (7) | 0.50 |
H12A | 0.9003 | 0.5003 | 0.1922 | 0.151* | 0.50 |
H12B | 0.7537 | 0.5224 | 0.2255 | 0.151* | 0.50 |
H12C | 0.8041 | 0.5714 | 0.1438 | 0.151* | 0.50 |
C13 | 0.721 (3) | 0.4965 (18) | 0.2020 (17) | 0.101 (7) | 0.50 |
H13A | 0.8029 | 0.5079 | 0.2332 | 0.151* | 0.50 |
H13B | 0.6546 | 0.4658 | 0.2364 | 0.151* | 0.50 |
H13C | 0.6867 | 0.5576 | 0.1821 | 0.151* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Pt | 0.0384 (2) | 0.02827 (17) | 0.0540 (2) | 0.000 | −0.00989 (13) | 0.000 |
Ni | 0.0390 (5) | 0.0239 (5) | 0.0476 (5) | 0.000 | −0.0062 (4) | 0.000 |
C1 | 0.048 (5) | 0.040 (4) | 0.055 (5) | 0.000 | −0.006 (4) | 0.000 |
N1 | 0.073 (6) | 0.080 (7) | 0.064 (5) | 0.000 | −0.008 (5) | 0.000 |
C2 | 0.041 (5) | 0.064 (6) | 0.068 (6) | 0.000 | −0.013 (5) | 0.000 |
N2 | 0.048 (5) | 0.117 (9) | 0.072 (6) | 0.000 | 0.005 (4) | 0.000 |
C3 | 0.076 (6) | 0.057 (5) | 0.074 (4) | 0.005 (4) | 0.001 (4) | −0.007 (4) |
N3 | 0.177 (11) | 0.016 (3) | 0.124 (6) | 0.004 (4) | 0.013 (5) | −0.014 (3) |
C21 | 0.080 (6) | 0.044 (4) | 0.187 (10) | 0.005 (4) | 0.037 (7) | −0.042 (5) |
N10 | 0.044 (6) | 0.033 (5) | 0.066 (6) | −0.005 (4) | −0.014 (5) | −0.007 (5) |
N20 | 0.050 (6) | 0.046 (5) | 0.057 (6) | 0.007 (5) | −0.007 (5) | −0.005 (4) |
C11 | 0.104 (6) | 0.053 (5) | 0.097 (6) | −0.021 (5) | 0.015 (5) | −0.033 (4) |
N11 | 0.053 (7) | 0.045 (6) | 0.053 (5) | 0.000 (5) | −0.008 (5) | −0.003 (5) |
N21 | 0.047 (5) | 0.026 (4) | 0.070 (6) | −0.002 (4) | −0.015 (5) | −0.001 (4) |
C31 | 0.055 (6) | 0.085 (8) | 0.063 (6) | 0.000 | 0.007 (5) | 0.000 |
C41 | 0.065 (6) | 0.153 (13) | 0.043 (5) | 0.000 | 0.006 (5) | 0.000 |
N30 | 0.047 (6) | 0.035 (5) | 0.058 (5) | −0.002 (4) | −0.011 (4) | 0.005 (4) |
N40 | 0.046 (5) | 0.036 (5) | 0.059 (6) | −0.001 (4) | −0.013 (4) | 0.007 (4) |
C32 | 0.054 (8) | 0.124 (15) | 0.091 (10) | 0.021 (9) | 0.018 (8) | −0.005 (9) |
C12 | 0.14 (2) | 0.057 (9) | 0.110 (14) | 0.000 (12) | −0.024 (13) | −0.020 (9) |
C13 | 0.14 (2) | 0.057 (9) | 0.110 (14) | 0.000 (12) | −0.024 (13) | −0.020 (9) |
Pt—C1 | 1.958 (10) | N20—H20B | 0.9000 |
Pt—C2 | 1.995 (11) | C11—N11 | 1.340 (13) |
Pt—C3i | 1.999 (9) | C11—C13 | 1.52 (3) |
Pt—C3 | 1.999 (9) | C11—C12 | 1.47 (2) |
Ni—N21i | 2.118 (9) | C11—H11A | 0.9800 |
Ni—N21 | 2.118 (9) | C11—H11B | 0.9800 |
Ni—N10 | 2.127 (9) | N11—H11C | 0.9000 |
Ni—N10i | 2.127 (9) | N11—H11D | 0.9000 |
Ni—N30i | 2.122 (10) | N21—H21E | 0.9000 |
Ni—N30 | 2.122 (10) | N21—H21F | 0.9000 |
Ni—N40i | 2.137 (9) | C31—N30 | 1.466 (12) |
Ni—N40 | 2.137 (9) | C31—C32 | 1.487 (16) |
Ni—N11 | 2.142 (10) | C31—C41 | 1.528 (16) |
Ni—N11i | 2.142 (10) | C31—H31 | 0.9800 |
Ni—N20 | 2.142 (10) | C41—N40 | 1.565 (13) |
Ni—N20i | 2.142 (10) | C41—H41A | 0.9700 |
C1—N1 | 1.154 (11) | C41—H41B | 0.9700 |
C2—N2 | 1.154 (13) | N30—H30A | 0.9000 |
C3—N3 | 1.124 (11) | N30—H30B | 0.9000 |
C21—N20 | 1.460 (13) | N40—H40A | 0.9000 |
C21—C11 | 1.474 (14) | N40—H40B | 0.9000 |
C21—N21 | 1.679 (13) | C32—H32A | 0.9600 |
C21—H21A | 0.9700 | C32—H32B | 0.9600 |
C21—H21B | 0.9700 | C32—H32C | 0.9600 |
C21—H21C | 0.9700 | C12—H12A | 0.9600 |
C21—H21D | 0.9700 | C12—H12B | 0.9600 |
N10—C11 | 1.509 (14) | C12—H12C | 0.9600 |
N10—H10A | 0.9000 | C13—H13A | 0.9600 |
N10—H10B | 0.9000 | C13—H13B | 0.9600 |
N20—H20A | 0.9000 | C13—H13C | 0.9600 |
C1—Pt—C2 | 179.4 (3) | N11—C11—C13 | 124.0 (13) |
C1—Pt—C3i | 89.5 (2) | C21—C11—C13 | 93.8 (12) |
C2—Pt—C3i | 90.5 (2) | C21—C11—C12 | 120.9 (13) |
C1—Pt—C3 | 89.5 (2) | N10—C11—C12 | 121.1 (13) |
C2—Pt—C3 | 90.5 (2) | C21—C11—H11A | 99.6 |
C3i—Pt—C3 | 178.8 (4) | N10—C11—H11A | 99.6 |
N21i—Ni—N10 | 171.3 (4) | C12—C11—H11A | 99.6 |
N21—Ni—N10i | 171.3 (4) | N11—C11—H11B | 111.4 |
N21—Ni—N30i | 93.3 (4) | C21—C11—H11B | 111.4 |
N10i—Ni—N30i | 93.3 (4) | C13—C11—H11B | 111.4 |
N21i—Ni—N30 | 93.3 (4) | C11—N11—Ni | 114.6 (7) |
N10—Ni—N30 | 93.3 (4) | C11—N11—H11C | 108.6 |
N21—Ni—N40i | 91.7 (4) | Ni—N11—H11C | 108.6 |
N10i—Ni—N40i | 95.0 (4) | C11—N11—H11D | 108.6 |
N30i—Ni—N40i | 80.8 (4) | Ni—N11—H11D | 108.6 |
N21i—Ni—N40 | 91.7 (4) | H11C—N11—H11D | 107.6 |
N10—Ni—N40 | 95.0 (4) | C21—N21—Ni | 101.6 (6) |
N30—Ni—N40 | 80.8 (4) | C21—N21—H21E | 111.5 |
N21—Ni—N11 | 80.5 (4) | Ni—N21—H21E | 111.5 |
N10i—Ni—N11 | 93.3 (4) | C21—N21—H21F | 111.5 |
N30i—Ni—N11 | 94.4 (4) | Ni—N21—H21F | 111.5 |
N40i—Ni—N11 | 170.6 (4) | H21E—N21—H21F | 109.3 |
N21i—Ni—N11i | 80.5 (4) | N30—C31—C32 | 113.6 (8) |
N10—Ni—N11i | 93.3 (4) | N30—C31—C41 | 104.1 (7) |
N30—Ni—N11i | 94.4 (4) | C32—C31—C41 | 108.2 (9) |
N40—Ni—N11i | 170.6 (4) | N30—C31—H31 | 110.2 |
N21i—Ni—N20 | 93.8 (4) | C32—C31—H31 | 110.2 |
N10—Ni—N20 | 80.4 (4) | C41—C31—H31 | 110.2 |
N30—Ni—N20 | 170.1 (4) | C31—C41—N40 | 103.5 (7) |
N40—Ni—N20 | 92.2 (4) | C31—C41—H41A | 111.1 |
N11i—Ni—N20 | 93.5 (4) | N40—C41—H41A | 111.1 |
N21—Ni—N20i | 93.8 (4) | C31—C41—H41B | 111.1 |
N10i—Ni—N20i | 80.4 (4) | N40—C41—H41B | 111.1 |
N30i—Ni—N20i | 170.1 (4) | H41A—C41—H41B | 109.0 |
N40i—Ni—N20i | 92.2 (4) | C31—N30—Ni | 109.5 (6) |
N11—Ni—N20i | 93.5 (4) | C31—N30—H30A | 109.8 |
N1—C1—Pt | 178.6 (8) | Ni—N30—H30A | 109.8 |
N2—C2—Pt | 177.6 (8) | C31—N30—H30B | 109.8 |
N3—C3—Pt | 178.5 (8) | Ni—N30—H30B | 109.8 |
N20—C21—C11 | 106.4 (8) | H30A—N30—H30B | 108.2 |
C11—C21—N21 | 108.7 (7) | C41—N40—Ni | 105.2 (6) |
N20—C21—H21A | 110.4 | C41—N40—H40A | 110.7 |
C11—C21—H21A | 110.4 | Ni—N40—H40A | 110.7 |
N20—C21—H21B | 110.4 | C41—N40—H40B | 110.7 |
C11—C21—H21B | 110.4 | Ni—N40—H40B | 110.7 |
H21A—C21—H21B | 108.6 | H40A—N40—H40B | 108.8 |
C11—C21—H21C | 110.0 | C31—C32—H32A | 109.5 |
N21—C21—H21C | 110.0 | C31—C32—H32B | 109.5 |
C11—C21—H21D | 110.0 | H32A—C32—H32B | 109.5 |
N21—C21—H21D | 110.0 | C31—C32—H32C | 109.5 |
H21C—C21—H21D | 108.3 | H32A—C32—H32C | 109.5 |
C11—N10—Ni | 107.8 (7) | H32B—C32—H32C | 109.5 |
C11—N10—H10A | 110.1 | C11—C12—H12A | 109.5 |
Ni—N10—H10A | 110.1 | C11—C12—H12B | 109.5 |
C11—N10—H10B | 110.1 | H12A—C12—H12B | 109.5 |
Ni—N10—H10B | 110.1 | C11—C12—H12C | 109.5 |
H10A—N10—H10B | 108.5 | H12A—C12—H12C | 109.5 |
C21—N20—Ni | 108.8 (7) | H12B—C12—H12C | 109.5 |
C21—N20—H20A | 109.9 | C11—C13—H13A | 109.5 |
Ni—N20—H20A | 109.9 | C11—C13—H13B | 109.5 |
C21—N20—H20B | 109.9 | H13A—C13—H13B | 109.5 |
Ni—N20—H20B | 109.9 | C11—C13—H13C | 109.5 |
H20A—N20—H20B | 108.3 | H13A—C13—H13C | 109.5 |
N11—C11—C21 | 102.7 (8) | H13B—C13—H13C | 109.5 |
C21—C11—N10 | 109.7 (7) |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N21—H21F···N2 | 0.90 | 2.51 | 3.311 (12) | 148 |
N40—H40A···N2 | 0.90 | 2.30 | 3.160 (14) | 160 |
N10—H10B···N3ii | 0.90 | 2.40 | 3.193 (13) | 148 |
N21—H21E···N3ii | 0.90 | 2.24 | 3.066 (13) | 152 |
N40—H40B···N3ii | 0.90 | 2.21 | 3.098 (12) | 169 |
N11—H11C···N1iii | 0.90 | 2.48 | 3.342 (13) | 159 |
N20—H20B···N1iii | 0.90 | 2.11 | 3.005 (12) | 174 |
N11—H11D···N1iv | 0.90 | 2.46 | 3.242 (13) | 145 |
N30—H30B···N3v | 0.90 | 2.31 | 3.191 (11) | 166 |
Symmetry codes: (ii) −x+1, y+1/2, −z; (iii) x+1/2, −y+1/2, −z+1/2; (iv) x+1, y, z; (v) −x+1, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C3H10N2)3][Pt(CN)4] |
Mr | 580.27 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 220 |
a, b, c (Å) | 9.8206 (18), 13.694 (2), 16.261 (3) |
V (Å3) | 2186.8 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 7.27 |
Crystal size (mm) | 0.38 × 0.11 × 0.06 |
Data collection | |
Diffractometer | Stoe IPDS |
Absorption correction | Numerical (IPDS FACE; Stoe & Cie, 1999) |
Tmin, Tmax | 0.104, 0.446 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15408, 2197, 1807 |
Rint | 0.088 |
(sin θ/λ)max (Å−1) | 0.615 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.085, 1.04 |
No. of reflections | 2197 |
No. of parameters | 160 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.23, −1.92 |
Computer programs: IPDS EXPOSE (Stoe & Cie, 1999), IPDS CELL (Stoe & Cie, 1999), IPDS INTEGRATE (Stoe & Cie, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2001).
Pt—C1 | 1.958 (10) | Ni—N30 | 2.122 (10) |
Pt—C2 | 1.995 (11) | Ni—N40 | 2.137 (9) |
Pt—C3 | 1.999 (9) | Ni—N11i | 2.142 (10) |
Ni—N21i | 2.118 (9) | Ni—N20 | 2.142 (10) |
Ni—N10 | 2.127 (9) | ||
C1—Pt—C2 | 179.4 (3) | N21i—Ni—N11i | 80.5 (4) |
C1—Pt—C3 | 89.5 (2) | N10—Ni—N11i | 93.3 (4) |
C2—Pt—C3 | 90.5 (2) | N30—Ni—N11i | 94.4 (4) |
C3i—Pt—C3 | 178.8 (4) | N40—Ni—N11i | 170.6 (4) |
N21i—Ni—N10 | 171.3 (4) | N21i—Ni—N20 | 93.8 (4) |
N21i—Ni—N30 | 93.3 (4) | N10—Ni—N20 | 80.4 (4) |
N10—Ni—N30 | 93.3 (4) | N30—Ni—N20 | 170.1 (4) |
N21i—Ni—N40 | 91.7 (4) | N40—Ni—N20 | 92.2 (4) |
N10—Ni—N40 | 95.0 (4) | N11i—Ni—N20 | 93.5 (4) |
N30—Ni—N40 | 80.8 (4) |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N21—H21F···N2 | 0.90 | 2.51 | 3.311 (12) | 148.2 |
N40—H40A···N2 | 0.90 | 2.30 | 3.160 (14) | 159.9 |
N10—H10B···N3ii | 0.90 | 2.40 | 3.193 (13) | 147.8 |
N21—H21E···N3ii | 0.90 | 2.24 | 3.066 (13) | 151.7 |
N40—H40B···N3ii | 0.90 | 2.21 | 3.098 (12) | 169.3 |
N11—H11C···N1iii | 0.90 | 2.48 | 3.342 (13) | 159.4 |
N20—H20B···N1iii | 0.90 | 2.11 | 3.005 (12) | 174.4 |
N11—H11D···N1iv | 0.90 | 2.46 | 3.242 (13) | 145.3 |
N30—H30B···N3v | 0.90 | 2.31 | 3.191 (11) | 166.4 |
Symmetry codes: (ii) −x+1, y+1/2, −z; (iii) x+1/2, −y+1/2, −z+1/2; (iv) x+1, y, z; (v) −x+1, −y, −z. |
Acknowledgements
This work was supported by the Slovak Grant Agency VEGA (grant No. 1/2470/05), and by APVT (grant No. 20-005204). MV thanks DAAD for financial support and the hospitality of Martin Luther University.
References
Behrens, M., Scherb, S., Nather, C. & Bensch, W. (2003). Z. Anorg. Allg. Chem. 629, 1367–1373. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2001). DIAMOND. Release 2.1e. Crystal Impact, D-53002 Bonn, Germany. Google Scholar
Kuchár, J. & Černák, J. (2008). Acta Cryst. E64. Submitted. Google Scholar
Lin, Z.-E., Zhang, J., Zhao, J.-T., Zheng, S.-T., Pan, C.-Y., Wang, G.-M. & Yang, G.-Y. (2005). Angew. Chem. Int. Ed. 44, 6881–6884. Web of Science CSD CrossRef CAS Google Scholar
Nasanen, R., Hyle, M. & Butkevitsch, O. (1964). Suom. Kemistil. 37B, 211–212. CAS Google Scholar
Saha, M. K., Dey, D. K., Samanta, B., Dey, S. K., Malik, K. M. A. & Mitra, S. (2005). Z. Naturforsch. Teil B, 60, 1043–1048. CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Stoe & Cie (1999). IPDS Software. Version 2.90. Stoe & Cie, Darmstadt, Germany. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, [Ni(pn)3][Pt(CN)4] (pn = 1,2-diaminopropane) has been prepared by a chance within our studies on the role of hydrogen bonds as possible exchange paths for magnetic interactions in low-dimensional compounds. The compound consists of discrete [Ni(pn)3]2+ cations and [Pt(CN)4]2- anions (Fig. 1). Selected bond lengths and angles are given in Table 1. The NiII atom is coordinated by six N atoms of three racemic pn ligands, which are disordered over two sets of positions, with site occupancies of 0.50 (except methylene and methine C atoms), thus forming Δ(δδδ) and Δ(λλλ) configurations. Moreover, a mirror plane passes through the tetracyanoplatinate anion (N1, C1, Pt, C2 and N2 atoms) and the [Ni(pn)3]2+ cation (Ni, C31 and C41 atoms). The coordination geometry around the NiII atom can be described as octahedral. The two N atoms occupying axial positions form an angle of 170.6 (4)° and the Ni—N bond distances range from 2.118 (9)–2.142 (10)Å [mean bond length is 2.131 (10) Å], in good agreement with the values reported of other [Ni(pn)3]2+ complexes (Behrens et al., 2003; Kuchár & Černák, 2008; Saha et al., 2005). Octahedral coordination geometry around the Ni atom was observed also in other compounds with [Ni(pn)3]2+ cation (Nasanen et al., 1964; Lin et al., 2005). The square-planar geometry of [Pt(CN)4]2- is in good agreement with those of the previous studies with average Pt—C bond lengths of 1.988 (10) Å. The structure is stabilized also by the N—H···N hydrogen bonds between the cations and anions (Table 2).