metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Bis(4-meth­oxy­phen­yl)-2,2′-bis­­(tri­methyl­silan­yl­oxy)-2,2′-(ferrocene-1,1′-diyl)diaceto­nitrile

aCollege of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
*Correspondence e-mail: hxxwangxiaoli@163.com

(Received 8 November 2007; accepted 29 November 2007; online 6 December 2007)

In the title compound, [Fe(C17H20NO2Si)2], the Fe atom is situated on a crystallographic centre of inversion, leading to a perfectly staggered conformation of the Cp rings.

Related literature

For related literature, see: Evans & Truesdale (1973[Evans, D. A. & Truesdale, L. K. (1973). Tetrahedron Lett. 49, 4929-4932.]); Evans et al. (1974[Evans, D. A., Carroll, G. L. & Truesdale, L. K. (1974). J. Org. Chem. 39, 914-917.]); Lidy & Sundermeyer (1973[Lidy, W. & Sundermeyer, W. (1973). Chem. Ber. 106, 587-593.]); Dunitz et al. (1956[Dunitz, J. D., Orgel, L. E. & Rich, A. (1956). Acta Cryst. 9, 373-375.]); Fischer & Hüning (1987[Fischer, K. & Hüning, S. (1987). J. Org. Chem. 52, 564-569.]); Fleming & Woolias (1979[Fleming, L. & Woolias, M. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 829-837.]); Gassman & Talley (1978[Gassman, P. G. & Talley, J. J. (1978). Tetrahedron Lett. 40, 3773-3776.]); Groutas & Felker (1980[Groutas, W. C. & Felker, D. (1980). Synthesis, pp. 861-868.]); Rasmussen & Heilmann (1978[Rasmussen, J. K. & Heilmann, S. M. (1978). Synthesis, pp. 219-221.]); Zhou (1989[Zhou, G. D. (1989). Foundations of Structural Chemistry, 1st ed., p. 230. Beijing University Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C17H20NO2Si)2]

  • Mr = 652.71

  • Triclinic, [P \overline 1]

  • a = 7.129 (2) Å

  • b = 10.500 (4) Å

  • c = 11.449 (4) Å

  • α = 95.613 (5)°

  • β = 97.253 (6)°

  • γ = 97.441 (6)°

  • V = 837.3 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 293 (2) K

  • 0.24 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999) SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.822, Tmax = 1.000 (expected range = 0.768–0.935)

  • 4803 measured reflections

  • 3367 independent reflections

  • 2156 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.204

  • S = 1.03

  • 3367 reflections

  • 196 parameters

  • 21 restraints

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Cyanohydrin trimethylsilyl ethers are useful in organic synthesis as they serve not only for the protection of carbonyl groups (Rasmussen et al., 1978; Groutas et al., 1980; Fischer et al., 1987) but also as versatile intermediates (Gassman et al., 1978; Evans et al., 1974; Fleming et al., 1979) in the synthesis of cyanohydrins, α,β-unsaturated nitriles and β-aminoalcohols. The general method for the preparation of cyanohydrin trimethylsilyl ethers is the addition of trimethylsilyl cyanide (TMSCN) to carbonyl compounds with the aid of a catalyst including Lewis acids, such as ZnI2 (Evans et al.,1974) and AlCl3 (Lidy et al., 1973), as well as solubilized anionic species, such as K+CN--18-Crown-6 and nBu4N+CN- (Evans et al.,1973).

The molecular structure of the title compound, (I), shows the Fe atom on a crystallographic center of inversion and two Cp ligands with a cyanohydrin ether substituents. Because of the inversion symmetry the Cp ligands show a staggered conformation. The central tetrahedral C(6) atom is bound to CN, (CH3)3SiO and (CH3O)C6H4 groups in compound and is therefore a new stereogenic center which is formed during the reaction sequence. Due to the internal symmetry of the molecule Figure 1 shows the R,S diastereomer. There is no evidence for the formation of R,R- or S,S-diastereomers even from NMR spectra of the crude reaction product. The bond angle of C(6)–C(7)–N(1) is 178.9 (6)° showing sp hybridization for the CN carbon atom. The Si(1)—O(1)—C(6) bond angle measures to 131.6 (3)° which is significantly larger compared to that of a regular tetrahedron (109.5°). The influence of neighbouring Csp and Csp2 atoms shorten the C(6)–C(1), C(6)–C(7) and C(6)–C(8) bond distances (1.511 (6) Å, 1.483 (7) Å and 1.531 (6), respectively) compared to normal C—C bond distances (app. 1.54 Å). It shows there may be a super conjugate effect in the molecule of the title compound.

Related literature top

For related literature, see: Evans & Truesdale (1973); Evans et al. (1974); Lidy & Sundermeyer (1973); Dunitz et al. (1956); Fischer & Hüning (1987); Fleming & Woolias (1979); Gassman & Talley (1978); Groutas & Felker (1980); Rasmussen & Heilmann (1978); Zhou (1989).

Experimental top

Into a 100 ml 3-neck round-bottomed flask equipped with magnetic stirring bar, reflux condenser and CaCl2 drying tube was placed 1.1 mmol (297 mg) bisacetylferrocene in 15 ml dry CH2Cl2 and 1 mmol (319 mg) ZnI2. After stirring for 20 minutes, 4.4 mmol TMSCN (374 mg) were added and the was solution stirred for 10 h. During the reaction the progress of the reaction was monitored by TLC (benzene). After completion the solvent was evaporated under reduced pressure with the residue obtained being extracted with pentane. The solution was washed with saturated cold aqueous NaHSO3 and dried over Na2SO4. Filtration and removal of the solvent under reduced pressure yielded the crude product which was recrystallized from ether/light petroleum (b.p. 60–90°) to obtain single crystals the title compound.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H distances of 0.93–0.97° and Uiso(H) = 1.2Ueq of the corresponding parent atom. The methyls at the terminal group have higher Ueq than silicon atom in the central tetrahedral.

Structure description top

Cyanohydrin trimethylsilyl ethers are useful in organic synthesis as they serve not only for the protection of carbonyl groups (Rasmussen et al., 1978; Groutas et al., 1980; Fischer et al., 1987) but also as versatile intermediates (Gassman et al., 1978; Evans et al., 1974; Fleming et al., 1979) in the synthesis of cyanohydrins, α,β-unsaturated nitriles and β-aminoalcohols. The general method for the preparation of cyanohydrin trimethylsilyl ethers is the addition of trimethylsilyl cyanide (TMSCN) to carbonyl compounds with the aid of a catalyst including Lewis acids, such as ZnI2 (Evans et al.,1974) and AlCl3 (Lidy et al., 1973), as well as solubilized anionic species, such as K+CN--18-Crown-6 and nBu4N+CN- (Evans et al.,1973).

The molecular structure of the title compound, (I), shows the Fe atom on a crystallographic center of inversion and two Cp ligands with a cyanohydrin ether substituents. Because of the inversion symmetry the Cp ligands show a staggered conformation. The central tetrahedral C(6) atom is bound to CN, (CH3)3SiO and (CH3O)C6H4 groups in compound and is therefore a new stereogenic center which is formed during the reaction sequence. Due to the internal symmetry of the molecule Figure 1 shows the R,S diastereomer. There is no evidence for the formation of R,R- or S,S-diastereomers even from NMR spectra of the crude reaction product. The bond angle of C(6)–C(7)–N(1) is 178.9 (6)° showing sp hybridization for the CN carbon atom. The Si(1)—O(1)—C(6) bond angle measures to 131.6 (3)° which is significantly larger compared to that of a regular tetrahedron (109.5°). The influence of neighbouring Csp and Csp2 atoms shorten the C(6)–C(1), C(6)–C(7) and C(6)–C(8) bond distances (1.511 (6) Å, 1.483 (7) Å and 1.531 (6), respectively) compared to normal C—C bond distances (app. 1.54 Å). It shows there may be a super conjugate effect in the molecule of the title compound.

For related literature, see: Evans & Truesdale (1973); Evans et al. (1974); Lidy & Sundermeyer (1973); Dunitz et al. (1956); Fischer & Hüning (1987); Fleming & Woolias (1979); Gassman & Talley (1978); Groutas & Felker (1980); Rasmussen & Heilmann (1978); Zhou (1989).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by circles of arbitrary size.
2,2'-Bis(4-methoxyphenyl)-2,2'-bis(trimethylsilanyloxy)-2,2'-(ferrocene-1,1'- diyl)diacetonitrile top
Crystal data top
[Fe(C17H20NO2Si)2]Z = 1
Mr = 652.71F(000) = 344
Triclinic, P1Dx = 1.295 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.129 (2) ÅCell parameters from 749 reflections
b = 10.500 (4) Åθ = 2.5–25.4°
c = 11.449 (4) ŵ = 0.56 mm1
α = 95.613 (5)°T = 293 K
β = 97.253 (6)°Needle, yellow
γ = 97.441 (6)°0.24 × 0.14 × 0.12 mm
V = 837.3 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3367 independent reflections
Radiation source: fine-focus sealed tube2156 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
φ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 78
Tmin = 0.822, Tmax = 1.000k = 1013
4803 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.111P)2 + 0.2987P]
where P = (Fo2 + 2Fc2)/3
3367 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.98 e Å3
21 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Fe(C17H20NO2Si)2]γ = 97.441 (6)°
Mr = 652.71V = 837.3 (5) Å3
Triclinic, P1Z = 1
a = 7.129 (2) ÅMo Kα radiation
b = 10.500 (4) ŵ = 0.56 mm1
c = 11.449 (4) ÅT = 293 K
α = 95.613 (5)°0.24 × 0.14 × 0.12 mm
β = 97.253 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3367 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
2156 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 1.000Rint = 0.030
4803 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06321 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 1.03Δρmax = 0.98 e Å3
3367 reflectionsΔρmin = 0.43 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe21.00000.00000.00000.0414 (3)
Si11.0979 (2)0.43619 (14)0.25558 (15)0.0644 (5)
N10.6209 (8)0.2641 (6)0.0446 (5)0.0789 (15)
O11.0478 (5)0.2772 (3)0.2175 (3)0.0539 (9)
O20.6132 (6)0.1608 (4)0.6498 (3)0.0687 (11)
C10.9125 (6)0.0596 (4)0.1571 (4)0.0410 (10)
C21.0873 (7)0.0084 (5)0.1784 (4)0.0480 (11)
H21.20200.05200.21960.058*
C31.0536 (9)0.1225 (5)0.1245 (4)0.0597 (14)
H31.14330.17940.12500.072*
C40.8633 (10)0.1509 (5)0.0708 (4)0.0635 (16)
H40.80540.22970.02940.076*
C50.7750 (8)0.0411 (5)0.0897 (4)0.0532 (13)
H50.64830.03430.06300.064*
C60.8760 (6)0.1923 (4)0.2043 (4)0.0423 (10)
C70.7336 (8)0.2337 (5)0.1153 (4)0.0544 (13)
C80.7960 (6)0.1835 (4)0.3217 (4)0.0416 (10)
C90.9140 (7)0.1609 (5)0.4202 (4)0.0521 (12)
H91.04030.15110.41380.063*
C100.8494 (7)0.1524 (5)0.5273 (4)0.0538 (12)
H100.93190.13710.59240.065*
C110.6624 (7)0.1664 (5)0.5393 (4)0.0492 (12)
C120.5414 (7)0.1855 (5)0.4407 (4)0.0543 (12)
H120.41390.19190.44620.065*
C130.6097 (7)0.1950 (5)0.3340 (4)0.0503 (12)
H130.52720.20960.26860.060*
C140.4225 (9)0.1780 (7)0.6651 (5)0.0824 (19)
H14A0.40540.17190.74630.124*
H14B0.33450.11210.61480.124*
H14C0.39890.26150.64460.124*
C151.2315 (13)0.4614 (8)0.4056 (7)0.122 (3)
H15A1.34300.41890.40660.183*
H15B1.15200.42620.45980.183*
H15C1.26950.55230.42910.183*
C160.8845 (10)0.5181 (7)0.2564 (7)0.098 (2)
H16A0.80910.48510.31360.146*
H16B0.81010.50250.17920.146*
H16C0.92320.60940.27700.146*
C171.2491 (13)0.4952 (9)0.1477 (8)0.133 (3)
H17A1.35930.45120.15000.200*
H17B1.28940.58650.16710.200*
H17C1.17760.47880.06950.200*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe20.0614 (7)0.0322 (5)0.0294 (5)0.0005 (4)0.0117 (4)0.0011 (3)
Si10.0751 (11)0.0402 (8)0.0728 (10)0.0016 (7)0.0095 (8)0.0043 (7)
N10.084 (4)0.087 (4)0.070 (3)0.018 (3)0.012 (3)0.025 (3)
O10.055 (2)0.0387 (17)0.066 (2)0.0051 (14)0.0222 (16)0.0050 (15)
O20.083 (3)0.082 (3)0.050 (2)0.017 (2)0.0323 (19)0.0128 (19)
C10.049 (3)0.040 (2)0.034 (2)0.0011 (19)0.0119 (19)0.0049 (18)
C20.066 (3)0.049 (3)0.030 (2)0.012 (2)0.007 (2)0.0025 (19)
C30.099 (5)0.047 (3)0.042 (3)0.025 (3)0.025 (3)0.011 (2)
C40.113 (5)0.034 (3)0.042 (3)0.008 (3)0.026 (3)0.003 (2)
C50.061 (3)0.050 (3)0.042 (2)0.016 (2)0.012 (2)0.003 (2)
C60.046 (3)0.039 (2)0.040 (2)0.0013 (19)0.014 (2)0.0024 (18)
C70.069 (3)0.054 (3)0.048 (3)0.017 (3)0.023 (3)0.017 (2)
C80.048 (3)0.038 (2)0.038 (2)0.0016 (19)0.009 (2)0.0005 (18)
C90.045 (3)0.060 (3)0.054 (3)0.012 (2)0.015 (2)0.002 (2)
C100.060 (3)0.061 (3)0.042 (3)0.013 (2)0.009 (2)0.004 (2)
C110.062 (3)0.044 (3)0.043 (2)0.003 (2)0.023 (2)0.000 (2)
C120.047 (3)0.063 (3)0.057 (3)0.013 (2)0.019 (2)0.007 (2)
C130.042 (3)0.062 (3)0.047 (3)0.008 (2)0.008 (2)0.007 (2)
C140.092 (5)0.092 (5)0.076 (4)0.016 (4)0.053 (4)0.018 (3)
C150.136 (5)0.096 (4)0.122 (5)0.017 (4)0.015 (4)0.007 (4)
C160.101 (4)0.079 (4)0.112 (4)0.022 (3)0.012 (3)0.001 (3)
C170.141 (5)0.118 (5)0.143 (5)0.004 (4)0.045 (4)0.023 (4)
Geometric parameters (Å, º) top
Fe2—C52.034 (5)C4—H40.9300
Fe2—C5i2.034 (5)C5—H50.9300
Fe2—C42.042 (5)C6—C71.483 (7)
Fe2—C4i2.042 (5)C6—C81.531 (6)
Fe2—C12.044 (4)C8—C131.373 (6)
Fe2—C1i2.044 (4)C8—C91.379 (6)
Fe2—C32.045 (5)C9—C101.370 (6)
Fe2—C3i2.045 (5)C9—H90.9300
Fe2—C22.048 (4)C10—C111.382 (7)
Fe2—C2i2.048 (4)C10—H100.9300
Si1—O11.663 (3)C11—C121.378 (7)
Si1—C151.833 (7)C12—C131.378 (6)
Si1—C171.841 (8)C12—H120.9300
Si1—C161.842 (7)C13—H130.9300
N1—C71.164 (7)C14—H14A0.9600
O1—C61.401 (5)C14—H14B0.9600
O2—C111.360 (5)C14—H14C0.9600
O2—C141.425 (7)C15—H15A0.9600
C1—C21.422 (7)C15—H15B0.9600
C1—C51.433 (6)C15—H15C0.9600
C1—C61.511 (6)C16—H16A0.9600
C2—C31.428 (7)C16—H16B0.9600
C2—H20.9300C16—H16C0.9600
C3—C41.399 (8)C17—H17A0.9600
C3—H30.9300C17—H17B0.9600
C4—C51.395 (8)C17—H17C0.9600
C5—Fe2—C5i180.0 (3)C4—C3—Fe269.9 (3)
C5—Fe2—C440.0 (2)C2—C3—Fe269.7 (3)
C5i—Fe2—C4140.0 (2)C4—C3—H3125.7
C5—Fe2—C4i140.0 (2)C2—C3—H3125.7
C5i—Fe2—C4i40.0 (2)Fe2—C3—H3126.3
C4—Fe2—C4i180.0 (3)C5—C4—C3108.5 (4)
C5—Fe2—C141.15 (17)C5—C4—Fe269.7 (3)
C5i—Fe2—C1138.85 (17)C3—C4—Fe270.1 (3)
C4—Fe2—C168.36 (18)C5—C4—H4125.8
C4i—Fe2—C1111.64 (18)C3—C4—H4125.8
C5—Fe2—C1i138.85 (17)Fe2—C4—H4126.0
C5i—Fe2—C1i41.15 (17)C4—C5—C1108.5 (5)
C4—Fe2—C1i111.64 (18)C4—C5—Fe270.3 (3)
C4i—Fe2—C1i68.36 (18)C1—C5—Fe269.8 (2)
C1—Fe2—C1i180.00 (11)C4—C5—H5125.8
C5—Fe2—C367.6 (2)C1—C5—H5125.8
C5i—Fe2—C3112.4 (2)Fe2—C5—H5125.7
C4—Fe2—C340.0 (2)O1—C6—C7109.7 (4)
C4i—Fe2—C3140.0 (2)O1—C6—C1108.4 (4)
C1—Fe2—C368.23 (19)C7—C6—C1107.3 (4)
C1i—Fe2—C3111.77 (19)O1—C6—C8112.2 (3)
C5—Fe2—C3i112.4 (2)C7—C6—C8110.0 (4)
C5i—Fe2—C3i67.6 (2)C1—C6—C8108.9 (4)
C4—Fe2—C3i140.0 (2)N1—C7—C6178.9 (6)
C4i—Fe2—C3i40.0 (2)C13—C8—C9117.6 (4)
C1—Fe2—C3i111.77 (19)C13—C8—C6123.2 (4)
C1i—Fe2—C3i68.23 (19)C9—C8—C6119.2 (4)
C3—Fe2—C3i180.0 (4)C10—C9—C8121.5 (4)
C5—Fe2—C268.5 (2)C10—C9—H9119.3
C5i—Fe2—C2111.5 (2)C8—C9—H9119.3
C4—Fe2—C268.3 (2)C9—C10—C11120.5 (5)
C4i—Fe2—C2111.7 (2)C9—C10—H10119.8
C1—Fe2—C240.67 (18)C11—C10—H10119.8
C1i—Fe2—C2139.33 (18)O2—C11—C12125.1 (5)
C3—Fe2—C240.83 (19)O2—C11—C10116.2 (5)
C3i—Fe2—C2139.17 (19)C12—C11—C10118.7 (4)
C5—Fe2—C2i111.5 (2)C13—C12—C11120.0 (4)
C5i—Fe2—C2i68.5 (2)C13—C12—H12120.0
C4—Fe2—C2i111.7 (2)C11—C12—H12120.0
C4i—Fe2—C2i68.3 (2)C8—C13—C12121.8 (5)
C1—Fe2—C2i139.33 (18)C8—C13—H13119.1
C1i—Fe2—C2i40.67 (18)C12—C13—H13119.1
C3—Fe2—C2i139.17 (19)O2—C14—H14A109.5
C3i—Fe2—C2i40.83 (19)O2—C14—H14B109.5
C2—Fe2—C2i180.00 (7)H14A—C14—H14B109.5
O1—Si1—C15107.0 (3)O2—C14—H14C109.5
O1—Si1—C17105.0 (3)H14A—C14—H14C109.5
C15—Si1—C17110.9 (4)H14B—C14—H14C109.5
O1—Si1—C16113.7 (3)Si1—C15—H15A109.5
C15—Si1—C16108.6 (4)Si1—C15—H15B109.5
C17—Si1—C16111.7 (4)H15A—C15—H15B109.5
C6—O1—Si1131.6 (3)Si1—C15—H15C109.5
C11—O2—C14117.4 (4)H15A—C15—H15C109.5
C2—C1—C5107.2 (4)H15B—C15—H15C109.5
C2—C1—C6126.1 (4)Si1—C16—H16A109.5
C5—C1—C6126.6 (4)Si1—C16—H16B109.5
C2—C1—Fe269.8 (2)H16A—C16—H16B109.5
C5—C1—Fe269.0 (2)Si1—C16—H16C109.5
C6—C1—Fe2129.5 (3)H16A—C16—H16C109.5
C1—C2—C3107.2 (4)H16B—C16—H16C109.5
C1—C2—Fe269.5 (2)Si1—C17—H17A109.5
C3—C2—Fe269.5 (3)Si1—C17—H17B109.5
C1—C2—H2126.4H17A—C17—H17B109.5
C3—C2—H2126.4Si1—C17—H17C109.5
Fe2—C2—H2126.2H17A—C17—H17C109.5
C4—C3—C2108.6 (5)H17B—C17—H17C109.5
C15—Si1—O1—C6108.2 (5)C4i—Fe2—C4—C517 (100)
C17—Si1—O1—C6134.0 (5)C1—Fe2—C4—C538.1 (3)
C16—Si1—O1—C611.6 (5)C1i—Fe2—C4—C5141.9 (3)
C5—Fe2—C1—C2118.6 (4)C3—Fe2—C4—C5119.6 (4)
C5i—Fe2—C1—C261.4 (4)C3i—Fe2—C4—C560.4 (4)
C4—Fe2—C1—C281.5 (3)C2—Fe2—C4—C582.0 (3)
C4i—Fe2—C1—C298.5 (3)C2i—Fe2—C4—C598.0 (3)
C1i—Fe2—C1—C251 (100)C5—Fe2—C4—C3119.6 (4)
C3—Fe2—C1—C238.2 (3)C5i—Fe2—C4—C360.4 (4)
C3i—Fe2—C1—C2141.8 (3)C4i—Fe2—C4—C3102 (100)
C2i—Fe2—C1—C2180.0C1—Fe2—C4—C381.5 (3)
C5i—Fe2—C1—C5180.0C1i—Fe2—C4—C398.5 (3)
C4—Fe2—C1—C537.1 (3)C3i—Fe2—C4—C3180.0
C4i—Fe2—C1—C5142.9 (3)C2—Fe2—C4—C337.6 (3)
C1i—Fe2—C1—C5170 (100)C2i—Fe2—C4—C3142.4 (3)
C3—Fe2—C1—C580.3 (3)C3—C4—C5—C10.0 (5)
C3i—Fe2—C1—C599.7 (3)Fe2—C4—C5—C159.6 (3)
C2—Fe2—C1—C5118.6 (4)C3—C4—C5—Fe259.6 (3)
C2i—Fe2—C1—C561.4 (4)C2—C1—C5—C40.3 (5)
C5—Fe2—C1—C6120.8 (5)C6—C1—C5—C4175.9 (4)
C5i—Fe2—C1—C659.2 (5)Fe2—C1—C5—C459.9 (3)
C4—Fe2—C1—C6157.9 (5)C2—C1—C5—Fe259.6 (3)
C4i—Fe2—C1—C622.1 (5)C6—C1—C5—Fe2124.3 (4)
C1i—Fe2—C1—C669 (100)C5i—Fe2—C5—C4170 (100)
C3—Fe2—C1—C6158.9 (5)C4i—Fe2—C5—C4180.0
C3i—Fe2—C1—C621.1 (5)C1—Fe2—C5—C4119.4 (4)
C2—Fe2—C1—C6120.7 (5)C1i—Fe2—C5—C460.6 (4)
C2i—Fe2—C1—C659.3 (5)C3—Fe2—C5—C437.2 (3)
C5—C1—C2—C30.4 (5)C3i—Fe2—C5—C4142.8 (3)
C6—C1—C2—C3175.8 (4)C2—Fe2—C5—C481.4 (3)
Fe2—C1—C2—C359.5 (3)C2i—Fe2—C5—C498.6 (3)
C5—C1—C2—Fe259.1 (3)C5i—Fe2—C5—C150 (100)
C6—C1—C2—Fe2124.7 (4)C4—Fe2—C5—C1119.4 (4)
C5—Fe2—C2—C138.4 (3)C4i—Fe2—C5—C160.6 (4)
C5i—Fe2—C2—C1141.6 (3)C1i—Fe2—C5—C1180.0
C4—Fe2—C2—C181.6 (3)C3—Fe2—C5—C182.1 (3)
C4i—Fe2—C2—C198.4 (3)C3i—Fe2—C5—C197.9 (3)
C1i—Fe2—C2—C1180.0C2—Fe2—C5—C138.0 (3)
C3—Fe2—C2—C1118.5 (4)C2i—Fe2—C5—C1142.0 (3)
C3i—Fe2—C2—C161.5 (4)Si1—O1—C6—C758.0 (5)
C2i—Fe2—C2—C122 (100)Si1—O1—C6—C1174.9 (3)
C5—Fe2—C2—C380.1 (3)Si1—O1—C6—C864.7 (5)
C5i—Fe2—C2—C399.9 (3)C2—C1—C6—O130.2 (6)
C4—Fe2—C2—C336.9 (3)C5—C1—C6—O1154.4 (4)
C4i—Fe2—C2—C3143.1 (3)Fe2—C1—C6—O162.5 (5)
C1—Fe2—C2—C3118.5 (4)C2—C1—C6—C7148.7 (4)
C1i—Fe2—C2—C361.5 (4)C5—C1—C6—C735.9 (6)
C3i—Fe2—C2—C3180.0Fe2—C1—C6—C756.0 (5)
C2i—Fe2—C2—C3140 (100)C2—C1—C6—C892.2 (5)
C1—C2—C3—C40.4 (5)C5—C1—C6—C883.2 (5)
Fe2—C2—C3—C459.2 (3)Fe2—C1—C6—C8175.1 (3)
C1—C2—C3—Fe259.6 (3)O1—C6—C7—N1137 (29)
C5—Fe2—C3—C437.2 (3)C1—C6—C7—N119 (29)
C5i—Fe2—C3—C4142.8 (3)C8—C6—C7—N199 (29)
C4i—Fe2—C3—C4180.0O1—C6—C8—C13131.0 (5)
C1—Fe2—C3—C481.8 (3)C7—C6—C8—C138.5 (6)
C1i—Fe2—C3—C498.2 (3)C1—C6—C8—C13109.0 (5)
C3i—Fe2—C3—C4127 (100)O1—C6—C8—C950.2 (6)
C2—Fe2—C3—C4119.9 (4)C7—C6—C8—C9172.7 (4)
C2i—Fe2—C3—C460.1 (4)C1—C6—C8—C969.9 (5)
C5—Fe2—C3—C282.7 (3)C13—C8—C9—C101.2 (7)
C5i—Fe2—C3—C297.3 (3)C6—C8—C9—C10179.9 (4)
C4—Fe2—C3—C2119.9 (4)C8—C9—C10—C110.1 (8)
C4i—Fe2—C3—C260.1 (4)C14—O2—C11—C121.0 (8)
C1—Fe2—C3—C238.1 (3)C14—O2—C11—C10178.6 (5)
C1i—Fe2—C3—C2141.9 (3)C9—C10—C11—O2177.9 (5)
C3i—Fe2—C3—C27 (100)C9—C10—C11—C121.8 (7)
C2i—Fe2—C3—C2180.0O2—C11—C12—C13177.2 (5)
C2—C3—C4—C50.2 (5)C10—C11—C12—C132.4 (8)
Fe2—C3—C4—C559.3 (3)C9—C8—C13—C120.5 (7)
C2—C3—C4—Fe259.1 (3)C6—C8—C13—C12179.4 (4)
C5i—Fe2—C4—C5180.0C11—C12—C13—C81.3 (8)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Fe(C17H20NO2Si)2]
Mr652.71
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.129 (2), 10.500 (4), 11.449 (4)
α, β, γ (°)95.613 (5), 97.253 (6), 97.441 (6)
V3)837.3 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.56
Crystal size (mm)0.24 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.822, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4803, 3367, 2156
Rint0.030
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.204, 1.03
No. of reflections3367
No. of parameters196
No. of restraints21
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.43

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).

 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20062004) for financial support.

References

First citationBruker (1999) SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDunitz, J. D., Orgel, L. E. & Rich, A. (1956). Acta Cryst. 9, 373–375.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEvans, D. A., Carroll, G. L. & Truesdale, L. K. (1974). J. Org. Chem. 39, 914–917.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. A. & Truesdale, L. K. (1973). Tetrahedron Lett. 49, 4929–4932.  CrossRef Google Scholar
First citationFischer, K. & Hüning, S. (1987). J. Org. Chem. 52, 564–569.  CrossRef CAS Web of Science Google Scholar
First citationFleming, L. & Woolias, M. (1979). J. Chem. Soc. Perkin Trans. 1, pp. 829–837.  CrossRef Web of Science Google Scholar
First citationGassman, P. G. & Talley, J. J. (1978). Tetrahedron Lett. 40, 3773–3776.  CrossRef Google Scholar
First citationGroutas, W. C. & Felker, D. (1980). Synthesis, pp. 861–868.  CrossRef Google Scholar
First citationLidy, W. & Sundermeyer, W. (1973). Chem. Ber. 106, 587–593.  CrossRef CAS Web of Science Google Scholar
First citationRasmussen, J. K. & Heilmann, S. M. (1978). Synthesis, pp. 219–221.  CrossRef Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationZhou, G. D. (1989). Foundations of Structural Chemistry, 1st ed., p. 230. Beijing University Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds