metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[methano­ltetra­kis[μ3-5-(4-meth­oxy­phen­yl)pyrazole-3-carboxyl­ato(2−)]tri­copper(II)disodium(I)

aCollege of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
*Correspondence e-mail: anyuelnnu@163.com

(Received 9 November 2007; accepted 28 November 2007; online 6 December 2007)

The asymmetric unit of the polymeric title complex, [Cu3Na2(C11H8N2O3)4(CH4O)]n, consists of two NaI atoms, three CuII atoms, four 5-(4-methoxy­phen­yl)pyrazole-3-carboxyl­ate ligands and one methanol mol­ecule. The central CuII atom is coordinated by four N atoms from four pyrazole-3-carboxyl­ate ligands, forming a distorted tetra­hedral (CuN4) geometry, while each of the other two CuII atoms is coordinated by two O atoms and two N atoms from the two ligands, forming a slightly distorted square-planar (CuN2O2) geometry. Each of the two NaI atoms is coordinated by five O atoms, forming a distorted octahedral geometry; four O atoms are from the carboxyl­ate groups of the three ligands and the remaining O atom is from the meth­oxy group of the ligand or from the methanol mol­ecule.

Related literature

For related literature, see: Fujisawa et al. (2004[Fujisawa, K., Tada, N., Ishikawa, Y., Higashimura, H., Miyashita, Y. & Okamoto, K. (2004). Inorg. Chem. Commun. 7, 209-212.]); Mezei et al. (2004[Mezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3721-3732.]); Omary et al. (2003[Omary, M. A., Rawashdeh-Omary, M. A., Diyabalanage, H. V. K. & Rasika Dias, H. V. (2003). Inorg. Chem. 42, 8612-8614.]); Spiccia et al. (1997[Spiccia, L., Graham, B., Hearn, M. T. W., Lazarev, G., Moubaraki, B., Murray, K. S. & Tiekink, E. R. T. (1997). J. Chem. Soc. Dalton Trans. pp. 4089-4097.]); Trofimenko (1972[Trofimenko, S. (1972). Chem. Rev. 72, 479-509.]); Zhou et al. (2007[Zhou, G., An, Y., Han, J., Ge, M. & Xing, Y. (2007). Acta Cryst. E63, o4474.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3Na2(C11H8N2O3)4(CH4O)]

  • Mr = 1133.42

  • Monoclinic, P 21 /n

  • a = 14.9392 (19) Å

  • b = 11.2721 (14) Å

  • c = 28.030 (4) Å

  • β = 103.259 (2)°

  • V = 4594.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.47 mm−1

  • T = 293 (2) K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Unversity of Göttingen, Germany.]) Tmin = 0.758, Tmax = 0.778

  • 27017 measured reflections

  • 10442 independent reflections

  • 5736 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.129

  • S = 1.02

  • 10442 reflections

  • 640 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR. Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Due to their significant interest, the synthesis, structure and properties of copper pyrazolates (Trofimenko, 1972; Omary et al., 2003; Fujisawa et al., 2004), especially, trinuclear copper complexes (Mezei et al., 2004; Spiccia et al., 1997), have been extensively studied. For this kind of complexes have been found to exhibit a variety of structures ranging from polymers to trimers. Besides, the trinuclear copper complexes are known to be important models for the study of testing magnetic exchange models as well as spinfrustration. As a part of our ongoing study of different environment where the reaction of copper (II) with 5-aryl-1H-pyrazole-3-carboxylic acid (Zhou et al., 2007). In this work, we describe the reaction of copper (II) with the ligand (5-(4-methoxyphenyl)-1H-pyrazole-3-carboxylic acid) in the presence of NaOH, which was used to deprotonate the ligand so as to improve the coordination capability of the ligand.

As can be seen from the crystal structure in Fig.1, the unit of the crystal is mainly made up of the sodium cations part and the anion part. The anion consists of three Cu(II) ions and four ligands. The X-ray analysis reveals that not all the coordination modes of copper(II) ions are the same. The central copper(II), Cu1, is coordinated by four N atoms, which are from four ligands, forming a distorted tetrahedral (CuN4) geometry. On the other hand, the Cu2 and Cu3 have the similar coordination modes, coordinated by two O atoms and two N atoms of two ligands, respectively, forming a slightly distorted square planar (CuN2O2) geometry. In the cations, the coordination modes of the two sodium ions are similar in general, however, Na1 is coordinated by five O atoms, four of which are from three ligands, the other from the methoxy group of the 5-position substituted group of the pyrazole; Na2 is coordinated by five O atoms too, four of which are from three ligands, but the other from the methanol molecule. The cations connect the anions each other, forming a three-dimensional structure in the crystal (Fig. 2).

Related literature top

For related literature, see: Fujisawa et al. (2004); Mezei et al. (2004); Omary et al. (2003); Spiccia et al. (1997); Trofimenko (1972); Zhou et al. (2007).

Experimental top

5-(4-Methoxyphenyl)-1H-pyrazole-3-carboxylic acid (0.044 g, 0.2 mmol) was added to a solution of copper acetate dihydrate (0.040 g, 0.2 mmol) in methanol (15 ml), the resulting mixture was treated with a solution of NaOH until the pH value come rise to be about 8. The mixture was then stirred continuously for 7 h, and the filtrate was kept in conical flask for about 40 days and some brown block crystals were obtained from the solution, dried in vacuum. Yield: 37.6%. Crystal of the title compound suitable for single-crystal X-ray diffraction was selected directly from the sample as prepared.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic H atoms, 0.96 Å for methyl H atoms, respectively, and with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H atoms, Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Structure description top

Due to their significant interest, the synthesis, structure and properties of copper pyrazolates (Trofimenko, 1972; Omary et al., 2003; Fujisawa et al., 2004), especially, trinuclear copper complexes (Mezei et al., 2004; Spiccia et al., 1997), have been extensively studied. For this kind of complexes have been found to exhibit a variety of structures ranging from polymers to trimers. Besides, the trinuclear copper complexes are known to be important models for the study of testing magnetic exchange models as well as spinfrustration. As a part of our ongoing study of different environment where the reaction of copper (II) with 5-aryl-1H-pyrazole-3-carboxylic acid (Zhou et al., 2007). In this work, we describe the reaction of copper (II) with the ligand (5-(4-methoxyphenyl)-1H-pyrazole-3-carboxylic acid) in the presence of NaOH, which was used to deprotonate the ligand so as to improve the coordination capability of the ligand.

As can be seen from the crystal structure in Fig.1, the unit of the crystal is mainly made up of the sodium cations part and the anion part. The anion consists of three Cu(II) ions and four ligands. The X-ray analysis reveals that not all the coordination modes of copper(II) ions are the same. The central copper(II), Cu1, is coordinated by four N atoms, which are from four ligands, forming a distorted tetrahedral (CuN4) geometry. On the other hand, the Cu2 and Cu3 have the similar coordination modes, coordinated by two O atoms and two N atoms of two ligands, respectively, forming a slightly distorted square planar (CuN2O2) geometry. In the cations, the coordination modes of the two sodium ions are similar in general, however, Na1 is coordinated by five O atoms, four of which are from three ligands, the other from the methoxy group of the 5-position substituted group of the pyrazole; Na2 is coordinated by five O atoms too, four of which are from three ligands, but the other from the methanol molecule. The cations connect the anions each other, forming a three-dimensional structure in the crystal (Fig. 2).

For related literature, see: Fujisawa et al. (2004); Mezei et al. (2004); Omary et al. (2003); Spiccia et al. (1997); Trofimenko (1972); Zhou et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity [symmetry codes: (i) -x, -y + 2, -z; (ii) x, y + 1, z; (iii) -x + 1/2, y + 1/2,-z + 1/2; (iv) -x + 1/2, y + 1/2, -z - 1/2; (v) -x + 1, -y + 2, -z].
[Figure 2] Fig. 2. A packing diagram of the title compound, viewed along the b axis.
Poly[methanoltetrakis[µ3-5-(4-methoxyphenyl)pyrazole-3- carboxylato(2-)]tricopper(II)disodium(I) top
Crystal data top
[Cu3Na2(C11H8N2O3)4(CH4O)]F(000) = 2300
Mr = 1133.42Dx = 1.639 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.9392 (19) ÅCell parameters from 25 reflections
b = 11.2721 (14) Åθ = 1.7–27.4°
c = 28.030 (4) ŵ = 1.47 mm1
β = 103.259 (2)°T = 293 K
V = 4594.3 (10) Å3Block, brown
Z = 40.20 × 0.18 × 0.18 mm
Data collection top
Bruker APEXII
diffractometer
10442 independent reflections
Radiation source: fine-focus sealed tube5736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 27.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1919
Tmin = 0.758, Tmax = 0.778k = 714
27017 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.0446P]
where P = (Fo2 + 2Fc2)/3
10442 reflections(Δ/σ)max = 0.001
640 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Cu3Na2(C11H8N2O3)4(CH4O)]V = 4594.3 (10) Å3
Mr = 1133.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.9392 (19) ŵ = 1.47 mm1
b = 11.2721 (14) ÅT = 293 K
c = 28.030 (4) Å0.20 × 0.18 × 0.18 mm
β = 103.259 (2)°
Data collection top
Bruker APEXII
diffractometer
10442 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5736 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.778Rint = 0.060
27017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.02Δρmax = 0.63 e Å3
10442 reflectionsΔρmin = 0.46 e Å3
640 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.24102 (4)0.89206 (4)0.007883 (16)0.03566 (15)
Cu20.21995 (4)0.85438 (5)0.127702 (17)0.03981 (16)
Cu30.26870 (4)0.96721 (5)0.142677 (17)0.03766 (15)
Na10.09271 (12)1.38506 (14)0.20928 (6)0.0445 (4)
Na20.38592 (12)1.20926 (16)0.24191 (6)0.0491 (5)
N210.2942 (2)0.9926 (3)0.03602 (11)0.0331 (8)
N220.2824 (2)0.9723 (3)0.08417 (11)0.0350 (8)
N310.1821 (2)1.0211 (3)0.03588 (11)0.0329 (8)
N320.1953 (2)1.0375 (3)0.08496 (11)0.0342 (8)
N410.3176 (2)0.8097 (3)0.06531 (11)0.0345 (8)
N420.3224 (2)0.8453 (3)0.11176 (11)0.0330 (8)
N110.1810 (2)0.7588 (3)0.03323 (10)0.0334 (8)
N120.1743 (2)0.7580 (3)0.08211 (11)0.0350 (8)
O0020.4384 (3)1.2269 (3)0.17398 (11)0.0665 (10)
O210.2702 (2)0.9444 (3)0.17502 (10)0.0519 (9)
O220.3597 (2)1.1000 (3)0.18099 (11)0.0604 (10)
O0030.0353 (3)1.1325 (3)0.19293 (12)0.0777 (12)
O310.2137 (2)1.0889 (3)0.17528 (10)0.0489 (8)
O320.1214 (2)1.2466 (3)0.15958 (11)0.0620 (10)
O0040.3920 (3)0.5010 (3)0.11149 (12)0.0724 (11)
O420.4578 (2)0.7657 (3)0.22695 (10)0.0481 (8)
O410.3475 (2)0.8990 (3)0.20259 (9)0.0445 (8)
O0010.1488 (2)0.5579 (3)0.17536 (10)0.0614 (10)
O120.0662 (2)0.5787 (3)0.18083 (10)0.0461 (8)
O110.1564 (2)0.7383 (3)0.17436 (9)0.0468 (8)
O010.2871 (3)1.3552 (3)0.23317 (12)0.0807 (13)
H01D0.28571.42250.25250.097*
C0020.5032 (4)1.1562 (5)0.20906 (19)0.087 (2)
H00A0.51061.18990.24120.130*
H00B0.56141.15510.20010.130*
H00C0.48031.07660.20910.130*
C270.4209 (3)1.1897 (4)0.12623 (16)0.0486 (12)
C280.3644 (3)1.2622 (4)0.09281 (16)0.0487 (12)
H28A0.34121.33140.10340.058*
C290.3418 (3)1.2330 (4)0.04356 (15)0.0419 (11)
H29A0.30341.28290.02150.050*
C240.3753 (3)1.1310 (4)0.02669 (14)0.0351 (10)
C250.4323 (3)1.0590 (4)0.06076 (15)0.0409 (11)
H25A0.45560.98990.05010.049*
C260.4555 (3)1.0872 (4)0.11036 (16)0.0475 (12)
H26A0.49391.03760.13260.057*
C230.3474 (3)1.0914 (4)0.02513 (14)0.0346 (10)
C220.3686 (3)1.1343 (4)0.06771 (15)0.0402 (11)
H22A0.40361.20070.07110.048*
C210.3257 (3)1.0557 (4)0.10412 (14)0.0349 (10)
C200.3193 (3)1.0359 (4)0.15744 (15)0.0430 (11)
C0030.0010 (5)1.0324 (6)0.22134 (19)0.107 (3)
H00D0.01241.05220.25550.161*
H00E0.05751.00870.21330.161*
H00F0.04240.96830.21450.161*
C370.0562 (3)1.1217 (5)0.14285 (16)0.0526 (13)
C380.0948 (4)1.2206 (5)0.11655 (17)0.0584 (14)
H38A0.10561.28880.13300.070*
C390.1171 (3)1.2178 (4)0.06624 (16)0.0477 (12)
H39A0.14311.28470.04900.057*
C340.1016 (3)1.1171 (4)0.04033 (14)0.0363 (10)
C350.0620 (3)1.0210 (4)0.06773 (15)0.0426 (11)
H35A0.05020.95300.05140.051*
C360.0388 (3)1.0215 (4)0.11856 (15)0.0482 (12)
H36A0.01200.95520.13590.058*
C330.1288 (3)1.1111 (4)0.01371 (14)0.0346 (10)
C320.1069 (3)1.1861 (4)0.04886 (15)0.0383 (10)
H32A0.07111.25440.04370.046*
C310.1507 (3)1.1359 (4)0.09326 (14)0.0374 (11)
C300.1616 (3)1.1623 (4)0.14637 (16)0.0454 (12)
C0040.4011 (4)0.5693 (5)0.15262 (18)0.0808 (19)
H00G0.39970.51770.18000.121*
H00H0.45850.61140.14500.121*
H00I0.35140.62500.16070.121*
C470.3925 (3)0.5600 (4)0.06895 (16)0.0492 (12)
C480.4107 (3)0.6787 (4)0.06168 (15)0.0434 (12)
H48A0.42440.72500.08650.052*
C490.4081 (3)0.7290 (4)0.01677 (15)0.0401 (11)
H49A0.42030.80960.01200.048*
C440.3883 (3)0.6632 (4)0.02072 (14)0.0362 (10)
C450.3748 (4)0.5420 (4)0.01318 (16)0.0532 (13)
H45A0.36400.49470.03850.064*
C460.3770 (4)0.4911 (4)0.03111 (18)0.0641 (16)
H46A0.36800.40980.03550.077*
C430.3779 (3)0.7190 (4)0.06680 (14)0.0360 (10)
C420.4218 (3)0.6984 (4)0.11475 (15)0.0414 (11)
H42A0.46670.64170.12630.050*
C410.3856 (3)0.7789 (4)0.14223 (14)0.0346 (10)
C400.3996 (3)0.8143 (4)0.19402 (14)0.0389 (11)
C170.1403 (3)0.5876 (4)0.12659 (15)0.0440 (12)
C180.1213 (3)0.6996 (4)0.10857 (15)0.0447 (12)
H18A0.11100.76020.12920.054*
C190.1174 (3)0.7232 (4)0.05952 (15)0.0409 (11)
H19A0.10530.79990.04760.049*
C140.1313 (3)0.6344 (4)0.02838 (14)0.0342 (10)
C150.1472 (3)0.5200 (4)0.04669 (15)0.0485 (13)
H15A0.15510.45840.02590.058*
C160.1514 (3)0.4969 (4)0.09585 (15)0.0516 (13)
H16A0.16180.42000.10790.062*
C130.1362 (3)0.6607 (4)0.02251 (14)0.0334 (10)
C120.1005 (3)0.5983 (4)0.06540 (14)0.0393 (11)
H12A0.06670.52830.06870.047*
C110.1262 (3)0.6631 (4)0.10215 (14)0.0335 (10)
C100.1138 (3)0.6555 (4)0.15602 (15)0.0398 (11)
C010.2282 (5)1.3529 (7)0.2013 (3)0.128 (3)
H01A0.19351.42530.20440.191*
H01B0.26351.34480.16830.191*
H01C0.18691.28680.20930.191*
C0010.1668 (5)0.6523 (6)0.21017 (19)0.111 (3)
H00J0.17140.62100.24250.166*
H00K0.11760.70890.20280.166*
H00L0.22360.69040.20870.166*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0578 (4)0.0319 (3)0.0185 (2)0.0002 (2)0.0113 (2)0.0008 (2)
Cu20.0568 (4)0.0445 (3)0.0192 (3)0.0096 (3)0.0109 (2)0.0018 (2)
Cu30.0532 (4)0.0396 (3)0.0204 (3)0.0049 (3)0.0088 (2)0.0021 (2)
Na10.0633 (13)0.0442 (11)0.0278 (9)0.0025 (9)0.0141 (9)0.0038 (7)
Na20.0558 (12)0.0646 (13)0.0277 (9)0.0015 (9)0.0109 (8)0.0135 (8)
N210.043 (2)0.037 (2)0.0195 (17)0.0033 (17)0.0067 (15)0.0025 (14)
N220.047 (2)0.038 (2)0.0234 (18)0.0057 (17)0.0135 (16)0.0001 (15)
N310.046 (2)0.033 (2)0.0209 (17)0.0039 (16)0.0096 (16)0.0016 (14)
N320.048 (2)0.033 (2)0.0242 (18)0.0019 (17)0.0123 (16)0.0017 (14)
N410.050 (2)0.034 (2)0.0218 (18)0.0012 (17)0.0114 (16)0.0040 (14)
N420.042 (2)0.037 (2)0.0190 (17)0.0013 (16)0.0040 (16)0.0016 (14)
N110.052 (2)0.033 (2)0.0159 (16)0.0020 (17)0.0091 (16)0.0025 (14)
N120.049 (2)0.035 (2)0.0204 (17)0.0057 (17)0.0081 (16)0.0007 (14)
O0020.086 (3)0.077 (3)0.0336 (19)0.010 (2)0.0095 (19)0.0170 (17)
O210.076 (2)0.061 (2)0.0211 (15)0.0183 (18)0.0158 (16)0.0035 (14)
O220.086 (3)0.062 (2)0.0399 (19)0.0145 (19)0.0266 (19)0.0114 (16)
O0030.105 (3)0.094 (3)0.030 (2)0.001 (2)0.006 (2)0.0095 (19)
O310.072 (2)0.050 (2)0.0249 (16)0.0097 (17)0.0106 (16)0.0053 (14)
O320.095 (3)0.051 (2)0.048 (2)0.0225 (19)0.032 (2)0.0068 (16)
O0040.110 (3)0.064 (3)0.053 (2)0.012 (2)0.038 (2)0.0275 (18)
O420.051 (2)0.062 (2)0.0282 (17)0.0057 (16)0.0029 (15)0.0056 (15)
O410.059 (2)0.049 (2)0.0250 (16)0.0092 (16)0.0082 (15)0.0038 (13)
O0010.095 (3)0.064 (2)0.0250 (17)0.020 (2)0.0139 (18)0.0055 (15)
O120.058 (2)0.044 (2)0.0318 (17)0.0052 (16)0.0012 (15)0.0127 (14)
O110.067 (2)0.053 (2)0.0201 (15)0.0161 (17)0.0102 (15)0.0055 (13)
O010.101 (3)0.108 (3)0.042 (2)0.036 (2)0.035 (2)0.023 (2)
C0020.111 (6)0.101 (5)0.038 (3)0.004 (4)0.005 (3)0.010 (3)
C270.060 (3)0.054 (3)0.031 (3)0.010 (3)0.007 (2)0.008 (2)
C280.063 (3)0.041 (3)0.046 (3)0.001 (2)0.021 (3)0.019 (2)
C290.049 (3)0.034 (3)0.043 (3)0.002 (2)0.013 (2)0.005 (2)
C240.040 (3)0.035 (3)0.031 (2)0.006 (2)0.011 (2)0.0022 (18)
C250.051 (3)0.036 (3)0.033 (2)0.004 (2)0.006 (2)0.0083 (19)
C260.052 (3)0.047 (3)0.039 (3)0.000 (2)0.000 (2)0.001 (2)
C230.041 (3)0.034 (3)0.030 (2)0.000 (2)0.011 (2)0.0007 (18)
C220.048 (3)0.037 (3)0.038 (3)0.007 (2)0.014 (2)0.002 (2)
C210.041 (3)0.035 (3)0.029 (2)0.000 (2)0.010 (2)0.0053 (18)
C200.058 (3)0.042 (3)0.031 (2)0.005 (2)0.016 (2)0.007 (2)
C0030.160 (7)0.123 (6)0.032 (3)0.012 (5)0.008 (4)0.012 (4)
C370.059 (3)0.070 (4)0.029 (3)0.012 (3)0.008 (2)0.008 (2)
C380.073 (4)0.066 (4)0.036 (3)0.000 (3)0.010 (3)0.016 (2)
C390.059 (3)0.044 (3)0.037 (3)0.002 (2)0.005 (2)0.003 (2)
C340.037 (3)0.042 (3)0.029 (2)0.002 (2)0.006 (2)0.0067 (19)
C350.051 (3)0.045 (3)0.030 (2)0.002 (2)0.006 (2)0.005 (2)
C360.052 (3)0.058 (3)0.032 (3)0.005 (2)0.005 (2)0.005 (2)
C330.045 (3)0.033 (2)0.027 (2)0.000 (2)0.009 (2)0.0054 (18)
C320.046 (3)0.030 (2)0.040 (3)0.004 (2)0.013 (2)0.0040 (19)
C310.050 (3)0.034 (3)0.032 (2)0.001 (2)0.018 (2)0.0020 (19)
C300.061 (3)0.043 (3)0.037 (3)0.002 (2)0.021 (2)0.006 (2)
C0040.113 (6)0.092 (5)0.043 (3)0.013 (4)0.030 (3)0.021 (3)
C470.057 (3)0.054 (3)0.040 (3)0.001 (2)0.017 (2)0.015 (2)
C480.056 (3)0.044 (3)0.036 (3)0.001 (2)0.021 (2)0.004 (2)
C490.046 (3)0.035 (3)0.043 (3)0.001 (2)0.019 (2)0.009 (2)
C440.043 (3)0.035 (3)0.031 (2)0.005 (2)0.010 (2)0.0043 (19)
C450.086 (4)0.044 (3)0.039 (3)0.002 (3)0.031 (3)0.003 (2)
C460.109 (5)0.031 (3)0.063 (4)0.006 (3)0.042 (3)0.013 (2)
C430.046 (3)0.032 (3)0.031 (2)0.001 (2)0.010 (2)0.0040 (18)
C420.045 (3)0.041 (3)0.035 (3)0.008 (2)0.002 (2)0.001 (2)
C410.041 (3)0.035 (3)0.026 (2)0.002 (2)0.006 (2)0.0028 (18)
C400.044 (3)0.047 (3)0.024 (2)0.009 (2)0.006 (2)0.001 (2)
C170.053 (3)0.051 (3)0.030 (2)0.010 (2)0.014 (2)0.005 (2)
C180.061 (3)0.044 (3)0.035 (3)0.004 (2)0.023 (2)0.008 (2)
C190.052 (3)0.035 (3)0.040 (3)0.003 (2)0.018 (2)0.002 (2)
C140.040 (3)0.039 (3)0.024 (2)0.002 (2)0.0093 (19)0.0046 (18)
C150.079 (4)0.036 (3)0.035 (3)0.008 (2)0.021 (2)0.002 (2)
C160.082 (4)0.041 (3)0.036 (3)0.005 (2)0.020 (3)0.010 (2)
C130.039 (3)0.034 (3)0.028 (2)0.0024 (19)0.0078 (19)0.0041 (18)
C120.050 (3)0.034 (3)0.033 (2)0.010 (2)0.008 (2)0.0021 (19)
C110.039 (3)0.036 (3)0.024 (2)0.002 (2)0.0026 (19)0.0061 (18)
C100.048 (3)0.044 (3)0.026 (2)0.005 (2)0.005 (2)0.002 (2)
C010.114 (7)0.161 (8)0.105 (6)0.016 (5)0.019 (5)0.005 (5)
C0010.187 (8)0.105 (6)0.038 (3)0.052 (5)0.022 (4)0.002 (3)
Geometric parameters (Å, º) top
Cu1—N311.955 (3)C25—H25A0.9300
Cu1—N211.970 (3)C26—H26A0.9300
Cu1—N111.978 (3)C23—C221.390 (5)
Cu1—N411.979 (3)C22—C211.392 (5)
Cu2—N221.899 (3)C22—H22A0.9300
Cu2—N121.917 (3)C21—C201.492 (5)
Cu2—O111.938 (3)C003—H00D0.9600
Cu2—O211.952 (3)C003—H00E0.9600
Cu3—N421.898 (3)C003—H00F0.9600
Cu3—N321.906 (3)C37—C361.374 (6)
Cu3—O311.932 (3)C37—C381.387 (7)
Cu3—O411.973 (3)C38—C391.373 (6)
Na1—O322.199 (3)C38—H38A0.9300
Na1—O12i2.360 (4)C39—C341.395 (6)
Na1—O001ii2.402 (3)C39—H39A0.9300
Na1—O41iii2.431 (3)C34—C351.381 (6)
Na1—O42iii2.489 (3)C34—C331.477 (5)
Na2—O222.212 (3)C35—C361.387 (5)
Na2—O012.262 (4)C35—H35A0.9300
Na2—O42iv2.292 (4)C36—H36A0.9300
Na2—O11v2.309 (3)C33—C321.393 (5)
Na2—O12v2.842 (3)C32—C311.387 (5)
N21—N221.340 (4)C32—H32A0.9300
N21—C231.361 (5)C31—C301.490 (5)
N22—C211.335 (5)C004—H00G0.9600
N31—C331.350 (5)C004—H00H0.9600
N31—N321.357 (4)C004—H00I0.9600
N32—C311.341 (5)C47—C481.371 (6)
N41—N421.348 (4)C47—C461.377 (6)
N41—C431.357 (5)C48—C491.389 (5)
N42—C411.345 (5)C48—H48A0.9300
N11—N121.351 (4)C49—C441.373 (5)
N11—C131.361 (5)C49—H49A0.9300
N12—C111.338 (5)C44—C451.390 (6)
O002—C271.369 (5)C44—C431.476 (5)
O002—C0021.450 (6)C45—C461.375 (6)
O21—C201.296 (5)C45—H45A0.9300
O22—C201.227 (5)C46—H46A0.9300
O003—C371.372 (5)C43—C421.373 (5)
O003—C0031.415 (6)C42—C411.378 (5)
O31—C301.288 (5)C42—H42A0.9300
O32—C301.226 (5)C41—C401.473 (5)
O004—C471.364 (5)C17—C181.365 (6)
O004—C0041.419 (6)C17—C161.371 (6)
O42—C401.241 (5)C18—C191.389 (5)
O41—C401.289 (5)C18—H18A0.9300
O001—C171.384 (5)C19—C141.375 (5)
O001—C0011.427 (6)C19—H19A0.9300
O12—C101.229 (5)C14—C151.389 (5)
O11—C101.301 (5)C14—C131.475 (5)
O01—C011.389 (7)C15—C161.390 (5)
O01—H01D0.9300C15—H15A0.9300
C002—H00A0.9600C16—H16A0.9300
C002—H00B0.9600C13—C121.389 (5)
C002—H00C0.9600C12—C111.387 (5)
C27—C281.377 (6)C12—H12A0.9300
C27—C261.380 (6)C11—C101.481 (5)
C28—C291.384 (5)C01—H01A0.9600
C28—H28A0.9300C01—H01B0.9600
C29—C241.380 (5)C01—H01C0.9600
C29—H29A0.9300C001—H00J0.9600
C24—C251.387 (6)C001—H00K0.9600
C24—C231.485 (5)C001—H00L0.9600
C25—C261.390 (5)
N31—Cu1—N2196.08 (13)C22—C21—C20138.0 (4)
N31—Cu1—N11127.78 (14)O22—C20—O21124.7 (4)
N21—Cu1—N11105.49 (12)O22—C20—C21121.6 (4)
N31—Cu1—N41104.58 (13)O21—C20—C21113.6 (4)
N21—Cu1—N41122.51 (14)O003—C003—H00D109.5
N11—Cu1—N41102.60 (13)O003—C003—H00E109.5
N22—Cu2—N1299.55 (13)H00D—C003—H00E109.5
N22—Cu2—O11177.64 (13)O003—C003—H00F109.5
N12—Cu2—O1182.73 (13)H00D—C003—H00F109.5
N22—Cu2—O2182.16 (13)H00E—C003—H00F109.5
N12—Cu2—O21176.68 (14)O003—C37—C36123.7 (5)
O11—Cu2—O2195.61 (12)O003—C37—C38116.2 (4)
N42—Cu3—N3297.74 (13)C36—C37—C38120.0 (4)
N42—Cu3—O31178.72 (13)C39—C38—C37120.1 (4)
N32—Cu3—O3183.24 (13)C39—C38—H38A120.0
N42—Cu3—O4182.78 (13)C37—C38—H38A120.0
N32—Cu3—O41178.06 (14)C38—C39—C34121.6 (4)
O31—Cu3—O4196.28 (12)C38—C39—H39A119.2
O32—Na1—O12i103.65 (13)C34—C39—H39A119.2
O32—Na1—O001ii100.87 (13)C35—C34—C39116.7 (4)
O12i—Na1—O001ii98.11 (13)C35—C34—C33121.1 (4)
O32—Na1—O41iii127.59 (14)C39—C34—C33122.1 (4)
O12i—Na1—O41iii116.02 (12)C34—C35—C36122.9 (4)
O001ii—Na1—O41iii105.64 (12)C34—C35—H35A118.6
O32—Na1—O42iii101.94 (12)C36—C35—H35A118.6
O12i—Na1—O42iii83.62 (11)C37—C36—C35118.8 (4)
O001ii—Na1—O42iii156.02 (12)C37—C36—H36A120.6
O41iii—Na1—O42iii53.59 (10)C35—C36—H36A120.6
O22—Na2—O0194.91 (14)N31—C33—C32109.9 (4)
O22—Na2—O42iv106.28 (13)N31—C33—C34120.1 (4)
O01—Na2—O42iv123.62 (16)C32—C33—C34130.0 (4)
O22—Na2—O11v143.86 (15)C31—C32—C33104.3 (4)
O01—Na2—O11v88.48 (12)C31—C32—H32A127.8
O42iv—Na2—O11v101.47 (12)C33—C32—H32A127.8
O22—Na2—O12v114.85 (12)N32—C31—C32109.4 (3)
O01—Na2—O12v138.08 (12)N32—C31—C30113.2 (4)
O42iv—Na2—O12v77.25 (11)C32—C31—C30137.4 (4)
O11v—Na2—O12v50.01 (10)O32—C30—O31125.1 (4)
N22—N21—C23107.5 (3)O32—C30—C31120.5 (4)
N22—N21—Cu1123.5 (2)O31—C30—C31114.3 (4)
C23—N21—Cu1129.0 (3)O004—C004—H00G109.5
C21—N22—N21109.7 (3)O004—C004—H00H109.5
C21—N22—Cu2116.0 (3)H00G—C004—H00H109.5
N21—N22—Cu2134.3 (3)O004—C004—H00I109.5
C33—N31—N32107.3 (3)H00G—C004—H00I109.5
C33—N31—Cu1130.3 (3)H00H—C004—H00I109.5
N32—N31—Cu1122.3 (2)O004—C47—C48124.5 (4)
C31—N32—N31109.0 (3)O004—C47—C46115.5 (4)
C31—N32—Cu3114.1 (3)C48—C47—C46119.9 (4)
N31—N32—Cu3136.5 (3)C47—C48—C49119.2 (4)
N42—N41—C43107.8 (3)C47—C48—H48A120.4
N42—N41—Cu1122.6 (3)C49—C48—H48A120.4
C43—N41—Cu1129.3 (3)C44—C49—C48121.9 (4)
C41—N42—N41108.8 (3)C44—C49—H49A119.0
C41—N42—Cu3114.9 (3)C48—C49—H49A119.0
N41—N42—Cu3136.2 (3)C49—C44—C45117.6 (4)
N12—N11—C13107.0 (3)C49—C44—C43121.6 (4)
N12—N11—Cu1120.9 (2)C45—C44—C43120.7 (4)
C13—N11—Cu1132.0 (2)C46—C45—C44121.0 (4)
C11—N12—N11109.8 (3)C46—C45—H45A119.5
C11—N12—Cu2114.3 (3)C44—C45—H45A119.5
N11—N12—Cu2135.8 (3)C45—C46—C47120.2 (4)
C27—O002—C002116.3 (4)C45—C46—H46A119.9
C20—O21—Cu2115.3 (3)C47—C46—H46A119.9
C20—O22—Na2159.9 (3)N41—C43—C42108.8 (3)
C37—O003—C003118.2 (4)N41—C43—C44119.8 (4)
C30—O31—Cu3114.8 (3)C42—C43—C44131.4 (4)
C30—O32—Na1157.2 (3)C43—C42—C41106.0 (4)
C47—O004—C004117.6 (4)C43—C42—H42A127.0
C40—O42—Na2iv126.3 (3)C41—C42—H42A127.0
C40—O42—Na1vi91.1 (3)N42—C41—C42108.6 (3)
Na2iv—O42—Na1vi105.43 (13)N42—C41—C40113.3 (4)
C40—O41—Cu3113.5 (2)C42—C41—C40138.0 (4)
C40—O41—Na1vi92.6 (2)O42—C40—O41122.6 (4)
Cu3—O41—Na1vi153.97 (15)O42—C40—C41122.0 (4)
C17—O001—C001117.1 (4)O41—C40—C41115.4 (4)
C17—O001—Na1vii128.7 (3)C18—C17—C16120.1 (4)
C001—O001—Na1vii111.2 (3)C18—C17—O001123.6 (4)
C10—O12—Na1i118.4 (3)C16—C17—O001116.3 (4)
C10—O12—Na2viii81.5 (3)C17—C18—C19120.1 (4)
Na1i—O12—Na2viii93.58 (11)C17—C18—H18A119.9
C10—O11—Cu2115.2 (2)C19—C18—H18A120.0
C10—O11—Na2viii104.8 (2)C14—C19—C18120.7 (4)
Cu2—O11—Na2viii139.39 (15)C14—C19—H19A119.6
C01—O01—Na2125.5 (4)C18—C19—H19A119.6
C01—O01—H01D117.2C19—C14—C15118.7 (4)
Na2—O01—H01D117.2C19—C14—C13121.1 (4)
O002—C002—H00A109.5C15—C14—C13120.1 (4)
O002—C002—H00B109.5C14—C15—C16120.3 (4)
H00A—C002—H00B109.5C14—C15—H15A119.8
O002—C002—H00C109.5C16—C15—H15A119.8
H00A—C002—H00C109.5C17—C16—C15119.9 (4)
H00B—C002—H00C109.5C17—C16—H16A120.0
O002—C27—C28115.7 (4)C15—C16—H16A120.0
O002—C27—C26124.7 (4)N11—C13—C12109.3 (3)
C28—C27—C26119.6 (4)N11—C13—C14120.8 (3)
C27—C28—C29120.6 (4)C12—C13—C14129.9 (4)
C27—C28—H28A119.7C11—C12—C13105.0 (4)
C29—C28—H28A119.7C11—C12—H12A127.5
C24—C29—C28121.0 (4)C13—C12—H12A127.5
C24—C29—H29A119.5N12—C11—C12108.8 (3)
C28—C29—H29A119.5N12—C11—C10113.8 (4)
C29—C24—C25117.7 (4)C12—C11—C10137.3 (4)
C29—C24—C23122.9 (4)O12—C10—O11123.6 (4)
C25—C24—C23119.2 (4)O12—C10—C11122.6 (4)
C24—C25—C26121.9 (4)O11—C10—C11113.8 (4)
C24—C25—H25A119.1O01—C01—H01A109.5
C26—C25—H25A119.1O01—C01—H01B109.5
C27—C26—C25119.2 (4)H01A—C01—H01B109.5
C27—C26—H26A120.4O01—C01—H01C109.5
C25—C26—H26A120.4H01A—C01—H01C109.5
N21—C23—C22109.2 (4)H01B—C01—H01C109.5
N21—C23—C24118.9 (3)O001—C001—H00J109.5
C22—C23—C24131.8 (4)O001—C001—H00K109.5
C23—C22—C21104.5 (4)H00J—C001—H00K109.5
C23—C22—H22A127.7O001—C001—H00L109.5
C21—C22—H22A127.7H00J—C001—H00L109.5
N22—C21—C22109.1 (3)H00K—C001—H00L109.5
N22—C21—C20112.8 (4)
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y+2, z; (v) x+1/2, y+1/2, z1/2; (vi) x+1/2, y1/2, z+1/2; (vii) x, y1, z; (viii) x+1/2, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu3Na2(C11H8N2O3)4(CH4O)]
Mr1133.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.9392 (19), 11.2721 (14), 28.030 (4)
β (°) 103.259 (2)
V3)4594.3 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.20 × 0.18 × 0.18
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.758, 0.778
No. of measured, independent and
observed [I > 2σ(I)] reflections
27017, 10442, 5736
Rint0.060
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.129, 1.02
No. of reflections10442
No. of parameters640
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.46

Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b) and DIAMOND (Brandenburg, 1998), SHELXTL (Sheldrick, 1997b).

 

Acknowledgements

The authors are grateful to Dr Tian Yunqi for his selfless help with our work.

References

First citationBrandenburg, K. (1998). DIAMOND. Version 2.1. Crystal Impact GbR. Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2. Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFujisawa, K., Tada, N., Ishikawa, Y., Higashimura, H., Miyashita, Y. & Okamoto, K. (2004). Inorg. Chem. Commun. 7, 209–212.  Web of Science CSD CrossRef CAS Google Scholar
First citationMezei, G., Rivera-Carrillo, M. & Raptis, R. G. (2004). Inorg. Chim. Acta, 357, 3721–3732.  Web of Science CSD CrossRef CAS Google Scholar
First citationOmary, M. A., Rawashdeh-Omary, M. A., Diyabalanage, H. V. K. & Rasika Dias, H. V. (2003). Inorg. Chem. 42, 8612–8614.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Unversity of Göttingen, Germany.  Google Scholar
First citationSpiccia, L., Graham, B., Hearn, M. T. W., Lazarev, G., Moubaraki, B., Murray, K. S. & Tiekink, E. R. T. (1997). J. Chem. Soc. Dalton Trans. pp. 4089–4097.  CSD CrossRef Web of Science Google Scholar
First citationTrofimenko, S. (1972). Chem. Rev. 72, 479–509.  CrossRef Web of Science Google Scholar
First citationZhou, G., An, Y., Han, J., Ge, M. & Xing, Y. (2007). Acta Cryst. E63, o4474.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds