organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2-phenyl­ethyl)naphthalene-1,8:4,5-bis­­(dicarboximide)

aDepartment of Applied Physics, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, 240-8501 Yokohama, Japan
*Correspondence e-mail: mizu-j@ynu.ac.jp

(Received 10 November 2007; accepted 18 November 2007; online 6 December 2007)

The title compound, C30H22N2O4, is a derivative of the naphthalene–imide pigments that are characterized by significant overlap of the stacked mol­ecules. The mol­ecule has a centre of symmetry. Accordingly, the phenylethyl groups are arranged in a trans fashion across the skeleton. The phenyl rings are not parallel to the naphthalene­imide skeleton and are twisted in the same direction by 9.27 (7)°. The mol­ecules are, however, stacked with insignificant overlap along the stacking axis, as characterized by appreciable slide in the direction of either the short or the long mol­ecular axis, in marked contrast to the ordinary naphthalene–imide pigments.

Related literature

For perylene and perinone pigments, see: Herbst & Hunger (2004[Herbst, W. & Hunger, K. (2004). Industrial Organic Pigments, pp. 473-487. Weinheim: VCH.]). Five structural studies of related compounds have been reported by Mizuguchi (2003a[Mizuguchi, J. (2003a). Z. Krist. New Cryst. Struct. 218, 137-138.],b[Mizuguchi, J. (2003b). Z. Krist. New Cryst. Struct. 218, 139-140.], 2004[Mizuguchi, J. (2004). J. Phys. Chem. B, 108, 8926-8930.]), Mizuguchi et al. (2005[Mizuguchi, J., Makino, T., Imura, Y., Takahashi, H. & Suzuki, S. (2005). Acta Cryst. E61, o3044-o3046.]) and Tsukada et al. (2007[Tsukada, Y., Hirao, K. & Mizuguchi, J. (2007). Acta Cryst. E63, o3872.]). For ethyl phenyl­perylene­imide-related papers, see: Hädicke & Graser (1986[Hädicke, E. & Graser, F. (1986). Acta Cryst. C42, 189-195.]), Mizuguchi (1998a[Mizuguchi, J. (1998a). Acta Cryst. C54, 1479-1481.],b[Mizuguchi, J. (1998b). J. Appl. Phys. 84, 4479-4486.], 2005a[Mizuguchi, J. (2005a). Acta Cryst. E61, o1064-o1065.],b[Mizuguchi, J. (2005b). Acta Cryst. E61, o1066-o1067.]), Mizuguchi & Tojo (2002[Mizuguchi, J. & Tojo, K. (2002). Z. Krist. New Cryst. Struct. 217, 247-248.]), Mizuguchi & Hino (2005[Mizuguchi, J. & Hino, K. (2005). Acta Cryst. E61, o669-o671.]), Mizuguchi et al. (2006[Mizuguchi, J., Hino, K. & Tojo, K. (2006). Dyes Pigm. 70, 126-135.]). For related literature, see: Hino & Mizuguchi (2005[Hino, K. & Mizuguchi, J. (2005). Acta Cryst. E61, o672-o674.]); Mizuguchi (1981[Mizuguchi, J. (1981). Krist. Tech. 16, 695-700.]); Mizuguchi & Shimo (2006[Mizuguchi, J. & Shimo, N. (2006). J. Imag. Sci. Tech. 50, 115-121.]).

[Scheme 1]

Experimental

Crystal data
  • C30H22N2O4

  • Mr = 474.50

  • Monoclinic, P 21 /n

  • a = 7.70264 (14) Å

  • b = 4.93695 (9) Å

  • c = 29.9857 (5) Å

  • β = 97.9096 (7)°

  • V = 1129.44 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.76 mm−1

  • T = 93 (1) K

  • 0.5 × 0.14 × 0.06 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.790, Tmax = 0.955

  • 9315 measured reflections

  • 1993 independent reflections

  • 1723 reflections with F2 > 2σ(F2)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.124

  • S = 1.13

  • 1993 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure (Version 3.8). Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

The title compound (PhENI) is a derivative of the naphthalene-imides which belongs to the category of perylene and perinone pigments (Herbst & Hunger, 2004). The difference between the perylene and perinone pigments is whether the central skeleton is perylene or naphthalene. Both pigments are typically characterized by close π-π stacks (Hädicke & Graser, 1986; Mizuguchi, 1998a, 2004; Mizuguchi & Shimo, 2006), giving rise to an additional absorption band in the visible region due to intermolecular excitonic interactions (Mizuguchi, 1998b). However, the present band disappears in the amorphous state where the molecules are randomly arranged. Accordingly, the color varies drastically from an amorphous phase to the crystalline one, as found in ethylphenylperyleneimide (EPhP), in which the naphthalene skeleton in PhENI is replaced by the perylene one (Mizuguchi, 1998b). Then, we struck on an idea that it would be ideal for electronic paper applications if the color change occurs in much shorter wavelength (for example, between colorless and blue) with a smaller chromphore such as PhENI. In this connection, an attempt has been made to synthesize PhENI and determine its crystal structure.

The title molecule is centrosymmetric (Fig. 1) and an asymmetric unit comprises a half of the molecule. Therefore, ethylphenyl groups are arranged in a trans fashion across the naphthaleneimide skeleton. The naphthalene-imide skeleton is entirely planar as indicated by a small deviation of 0.018 Å from the least-squares plane defined by atoms C1—C7/N1. The phenyl rings and the napthaleneimide skeleton are not in parallel, but twisted by 9.27 (7)°. Fig. 2 shows the molecular packing of PhENI. The molecules are stacked with insignificant overlap as characterized by significant slide in the direction of the short-molecular axis, quite in contrast to the ordinary naphthalene-imides (Mizuguchi, 2003a,b) and peryelene- imide pigments (Hädicke & Graser, 1986; Mizuguchi, 1998a, 2005a,b) where the molecules are directly stacked with an interplanar distance of about 3.3 - 3.5 Å. Since the π-π interactions are insignificant in PhENI, this compound gives no additional absorption band in the visible region and cannot be applied to electronic paper applications.

Related literature top

For perylene and perinone pigments, see: Herbst & Hunger (2004). Five structural studies of related compounds have been reported by Mizuguchi (2003a,b, 2004), Mizuguchi et al. (2005), Tsukada et al. (2007). For ethyl phenylperyleneimide-related papers, see: Hädicke & Graser (1986), Mizuguchi (1998a,b, 2005a,b), Mizuguchi & Tojo (2002), Mizuguchi & Hino (2005), Mizuguchi et al. (2006). For related literature, see: Hino & Mizuguchi (2005b); Mizuguchi (1981); Mizuguchi & Shimo (2006); Rigaku/MSC (2006).

Experimental top

PhENI was synthesized by reaction of naphthalene-1,4,5,8-tetra-carboxylic-dianhydride with 2-phenylethylamine at 403 K for 5 h. Then, the products were purified two times by sublimation under vacuum, using a five-zone furnace (Mizuguchi, 1981). Single crystals of PhENI were grown from solution in dimethylsulfoxide. After 36 h, a number of single crystals were obtained in the form of needles.

Refinement top

All H atoms were placed in geometrically idealized position and constrained to ride on their parent atoms, with C—H = 0.95 and 0.99 Å, and Uiso(H) = 1.2Ueq(C)

Structure description top

The title compound (PhENI) is a derivative of the naphthalene-imides which belongs to the category of perylene and perinone pigments (Herbst & Hunger, 2004). The difference between the perylene and perinone pigments is whether the central skeleton is perylene or naphthalene. Both pigments are typically characterized by close π-π stacks (Hädicke & Graser, 1986; Mizuguchi, 1998a, 2004; Mizuguchi & Shimo, 2006), giving rise to an additional absorption band in the visible region due to intermolecular excitonic interactions (Mizuguchi, 1998b). However, the present band disappears in the amorphous state where the molecules are randomly arranged. Accordingly, the color varies drastically from an amorphous phase to the crystalline one, as found in ethylphenylperyleneimide (EPhP), in which the naphthalene skeleton in PhENI is replaced by the perylene one (Mizuguchi, 1998b). Then, we struck on an idea that it would be ideal for electronic paper applications if the color change occurs in much shorter wavelength (for example, between colorless and blue) with a smaller chromphore such as PhENI. In this connection, an attempt has been made to synthesize PhENI and determine its crystal structure.

The title molecule is centrosymmetric (Fig. 1) and an asymmetric unit comprises a half of the molecule. Therefore, ethylphenyl groups are arranged in a trans fashion across the naphthaleneimide skeleton. The naphthalene-imide skeleton is entirely planar as indicated by a small deviation of 0.018 Å from the least-squares plane defined by atoms C1—C7/N1. The phenyl rings and the napthaleneimide skeleton are not in parallel, but twisted by 9.27 (7)°. Fig. 2 shows the molecular packing of PhENI. The molecules are stacked with insignificant overlap as characterized by significant slide in the direction of the short-molecular axis, quite in contrast to the ordinary naphthalene-imides (Mizuguchi, 2003a,b) and peryelene- imide pigments (Hädicke & Graser, 1986; Mizuguchi, 1998a, 2005a,b) where the molecules are directly stacked with an interplanar distance of about 3.3 - 3.5 Å. Since the π-π interactions are insignificant in PhENI, this compound gives no additional absorption band in the visible region and cannot be applied to electronic paper applications.

For perylene and perinone pigments, see: Herbst & Hunger (2004). Five structural studies of related compounds have been reported by Mizuguchi (2003a,b, 2004), Mizuguchi et al. (2005), Tsukada et al. (2007). For ethyl phenylperyleneimide-related papers, see: Hädicke & Graser (1986), Mizuguchi (1998a,b, 2005a,b), Mizuguchi & Tojo (2002), Mizuguchi & Hino (2005), Mizuguchi et al. (2006). For related literature, see: Hino & Mizuguchi (2005b); Mizuguchi (1981); Mizuguchi & Shimo (2006); Rigaku/MSC (2006).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the 50% displacement parameters. Unlabelled atoms are related by the symmetry code (1 - x, 1 - y, 1 - z).
[Figure 2] Fig. 2. The crystal packing of PhENI. All H atoms have been omitted for clarity.
N,N'-Bis(2-phenylethyl)naphthalene-1,8:4,5-bis(dicarboximide) top
Crystal data top
C30H22N2O4F(000) = 496.00
Mr = 474.50Dx = 1.395 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ynCell parameters from 7242 reflections
a = 7.70264 (14) Åθ = 3.0–68.2°
b = 4.93695 (9) ŵ = 0.76 mm1
c = 29.9857 (5) ÅT = 93 K
β = 97.9096 (7)°Needle, red
V = 1129.44 (3) Å30.5 × 0.14 × 0.06 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1723 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.033
ω scansθmax = 68.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.790, Tmax = 0.955k = 55
9315 measured reflectionsl = 3636
1993 independent reflections
Refinement top
Refinement on F20 restraints
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.066P)2 + 0.3352P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
1993 reflectionsΔρmax = 0.20 e Å3
163 parametersΔρmin = 0.31 e Å3
Crystal data top
C30H22N2O4V = 1129.44 (3) Å3
Mr = 474.50Z = 2
Monoclinic, P21/nCu Kα radiation
a = 7.70264 (14) ŵ = 0.76 mm1
b = 4.93695 (9) ÅT = 93 K
c = 29.9857 (5) Å0.5 × 0.14 × 0.06 mm
β = 97.9096 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1993 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1723 reflections with F2 > 2σ(F2)
Tmin = 0.790, Tmax = 0.955Rint = 0.033
9315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.13Δρmax = 0.20 e Å3
1993 reflectionsΔρmin = 0.31 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > σ(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.76514 (14)0.4835 (2)0.39308 (3)0.0292 (3)
O20.47967 (13)0.2072 (2)0.45229 (3)0.0276 (3)
N10.62139 (16)0.1417 (2)0.42345 (4)0.0229 (3)
C50.9302 (2)0.2343 (3)0.45209 (5)0.0220 (3)
C40.92479 (19)0.0265 (3)0.48430 (5)0.0208 (3)
C10.61317 (19)0.0739 (3)0.45314 (5)0.0229 (3)
C70.7696 (2)0.3000 (3)0.42016 (5)0.0229 (3)
C20.77252 (19)0.1294 (3)0.48570 (5)0.0218 (3)
C61.0809 (2)0.3834 (3)0.45135 (5)0.0235 (3)
C80.4594 (2)0.2050 (3)0.39298 (5)0.0256 (3)
C100.2576 (2)0.0767 (3)0.32490 (5)0.0261 (3)
C30.7698 (2)0.3308 (3)0.51738 (5)0.0232 (3)
C110.2122 (2)0.2694 (3)0.29170 (5)0.0298 (4)
C120.0387 (2)0.2994 (4)0.27250 (6)0.0351 (4)
C150.1263 (2)0.0841 (3)0.33819 (6)0.0341 (4)
C140.0470 (2)0.0537 (4)0.31927 (6)0.0385 (4)
C90.4439 (2)0.0522 (3)0.34836 (5)0.0273 (3)
C130.0910 (2)0.1393 (4)0.28624 (6)0.0360 (4)
H8b0.45580.40200.38680.031*
H8a0.35720.15980.40830.031*
H9b0.52620.12940.32910.033*
H9a0.47410.14100.35390.033*
H110.30010.38140.28210.036*
H120.00900.43140.24970.042*
H150.15590.21780.36070.041*
H140.13530.16510.32890.046*
H130.20960.16160.27310.043*
H61.08380.52250.42960.028*
H30.66640.43470.51810.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0300 (6)0.0317 (7)0.0252 (6)0.0004 (4)0.0009 (4)0.0065 (4)
O20.0227 (5)0.0297 (7)0.0301 (6)0.0049 (4)0.0019 (4)0.0004 (4)
N10.0213 (6)0.0269 (8)0.0199 (6)0.0006 (5)0.0004 (4)0.0005 (5)
C50.0239 (8)0.0232 (8)0.0193 (7)0.0007 (6)0.0046 (5)0.0024 (6)
C40.0232 (7)0.0218 (8)0.0182 (7)0.0002 (6)0.0055 (5)0.0027 (5)
C10.0234 (7)0.0251 (9)0.0204 (7)0.0000 (6)0.0041 (5)0.0034 (6)
C70.0256 (8)0.0248 (9)0.0187 (7)0.0008 (6)0.0038 (6)0.0023 (6)
C20.0230 (7)0.0235 (9)0.0194 (7)0.0006 (6)0.0043 (5)0.0034 (5)
C60.0277 (8)0.0235 (9)0.0200 (7)0.0005 (6)0.0055 (6)0.0014 (6)
C80.0221 (7)0.0290 (9)0.0248 (8)0.0012 (6)0.0003 (6)0.0002 (6)
C100.0274 (8)0.0287 (9)0.0219 (7)0.0019 (6)0.0021 (6)0.0055 (6)
C30.0218 (7)0.0248 (9)0.0240 (7)0.0029 (6)0.0063 (6)0.0028 (6)
C110.0287 (8)0.0343 (10)0.0262 (8)0.0010 (7)0.0037 (6)0.0010 (7)
C120.0331 (9)0.0436 (11)0.0274 (8)0.0083 (7)0.0000 (6)0.0055 (7)
C150.0346 (9)0.0338 (10)0.0327 (9)0.0009 (7)0.0000 (7)0.0047 (7)
C140.0325 (9)0.0385 (11)0.0437 (10)0.0077 (8)0.0028 (7)0.0013 (8)
C90.0261 (8)0.0323 (9)0.0230 (7)0.0035 (7)0.0014 (6)0.0014 (6)
C130.0252 (8)0.0460 (11)0.0348 (9)0.0001 (7)0.0029 (6)0.0049 (8)
Geometric parameters (Å, º) top
O1—C71.2138 (19)C8—H8a0.990
O2—C11.2182 (18)C10—C111.387 (2)
N1—C11.395 (2)C10—C151.387 (2)
N1—C71.398 (2)C10—C91.513 (2)
N1—C81.4749 (18)C3—H30.950
C5—C41.414 (2)C11—C121.388 (2)
C5—C71.492 (2)C11—H110.950
C5—C61.377 (2)C12—C131.380 (2)
C4—C4i1.4131 (19)C12—H120.950
C4—C21.408 (2)C15—C141.385 (2)
C1—C21.4849 (19)C15—H150.950
C2—C31.377 (2)C14—C131.383 (2)
C6—C3i1.405 (2)C14—H140.950
C6—H60.950C9—H9b0.990
C8—C91.526 (2)C9—H9a0.990
C8—H8b0.990C13—H130.950
O1···O2ii3.3754 (15)C7···C1ii3.509 (2)
O1···N1ii3.5905 (17)C7···C2ii3.433 (2)
O1···C1ii3.1573 (19)C7···C3ii3.438 (2)
O1···C2ii3.3654 (18)C2···O1iii3.3654 (18)
O2···O1iii3.3754 (15)C2···O2iv3.3145 (19)
O2···O2iv3.4962 (14)C2···C5iii3.563 (2)
O2···N1iii3.5401 (17)C2···C7iii3.433 (2)
O2···C1iv3.3222 (18)C6···C5vi3.467 (2)
O2···C7iii3.5251 (19)C6···C4ii3.581 (2)
O2···C2iv3.3145 (19)C6···C4vi3.498 (2)
O2···C8iii3.396 (2)C6···C6vi3.520 (2)
O2···C3v3.1941 (19)C6···C3ii3.600 (2)
O2···C3iv3.4719 (19)C8···O2ii3.396 (2)
N1···O1iii3.5905 (17)C8···C3iv3.469 (2)
N1···O2ii3.5401 (17)C3···O2v3.1941 (19)
C5···C2ii3.563 (2)C3···O2iv3.4719 (19)
C5···C6vi3.467 (2)C3···C5iii3.261 (2)
C5···C3ii3.261 (2)C3···C4iii3.578 (2)
C4···C6iii3.581 (2)C3···C7iii3.438 (2)
C4···C6vi3.498 (2)C3···C6iii3.600 (2)
C4···C3ii3.578 (2)C3···C8iv3.469 (2)
C1···O1iii3.1573 (19)C11···C15ii3.581 (2)
C1···O2iv3.3222 (18)C12···C14ii3.586 (2)
C1···C1iv3.580 (2)C15···C11iii3.581 (2)
C1···C7iii3.509 (2)C14···C12iii3.586 (2)
C7···O2ii3.5251 (19)
C1—N1—C7125.52 (11)C11—C10—C15118.49 (14)
C1—N1—C8116.63 (12)C11—C10—C9121.22 (14)
C7—N1—C8117.85 (12)C15—C10—C9120.19 (14)
C4—C5—C7119.79 (13)C2—C3—C6i120.32 (14)
C4—C5—C6120.19 (13)C2—C3—H3119.8
C7—C5—C6119.96 (14)C6i—C3—H3119.8
C5—C4—C4i119.41 (13)C10—C11—C12120.30 (16)
C5—C4—C2121.31 (12)C10—C11—H11119.8
C4i—C4—C2119.28 (13)C12—C11—H11119.9
O2—C1—N1120.75 (12)C11—C12—C13120.66 (16)
O2—C1—C2122.22 (14)C11—C12—H12119.7
N1—C1—C2117.03 (12)C13—C12—H12119.7
O1—C7—N1121.08 (13)C10—C15—C14121.36 (16)
O1—C7—C5122.44 (14)C10—C15—H15119.3
N1—C7—C5116.48 (13)C14—C15—H15119.3
C4—C2—C1119.75 (13)C15—C14—C13119.69 (17)
C4—C2—C3120.46 (13)C15—C14—H14120.2
C1—C2—C3119.79 (13)C13—C14—H14120.2
C5—C6—C3i120.34 (14)C8—C9—C10108.83 (13)
C5—C6—H6119.8C8—C9—H9b109.9
C3i—C6—H6119.8C8—C9—H9a109.9
N1—C8—C9113.32 (13)C10—C9—H9b109.9
N1—C8—H8b108.9C10—C9—H9a109.9
N1—C8—H8a108.9H9b—C9—H9a108.3
C9—C8—H8b108.9C12—C13—C14119.50 (15)
C9—C8—H8a108.9C12—C13—H13120.3
H8b—C8—H8a107.7C14—C13—H13120.3
C1—N1—C7—O1179.62 (14)C5—C4—C2—C3179.92 (15)
C1—N1—C7—C51.5 (2)C4i—C4—C2—C1179.44 (14)
C7—N1—C1—O2177.03 (14)C4i—C4—C2—C30.2 (2)
C7—N1—C1—C23.7 (2)C2—C4—C4i—C5i0.1 (2)
C1—N1—C8—C990.00 (16)O2—C1—C2—C4178.20 (14)
C8—N1—C1—O22.6 (2)O2—C1—C2—C32.5 (2)
C8—N1—C1—C2176.64 (13)N1—C1—C2—C42.5 (2)
C7—N1—C8—C989.70 (17)N1—C1—C2—C3176.75 (14)
C8—N1—C7—O10.05 (19)C4—C2—C3—C6i0.1 (2)
C8—N1—C7—C5178.80 (13)C1—C2—C3—C6i179.37 (14)
C4—C5—C7—O1176.99 (15)C5—C6—C3i—C2i0.1 (2)
C4—C5—C7—N11.8 (2)N1—C8—C9—C10166.24 (13)
C7—C5—C4—C22.9 (2)C11—C10—C15—C140.5 (2)
C7—C5—C4—C4i177.23 (14)C15—C10—C11—C120.2 (2)
C4—C5—C6—C3i0.1 (2)C11—C10—C9—C897.43 (17)
C6—C5—C4—C2179.84 (15)C9—C10—C11—C12176.13 (16)
C6—C5—C4—C4i0.1 (2)C15—C10—C9—C878.79 (19)
C7—C5—C6—C3i177.15 (14)C9—C10—C15—C14175.83 (16)
C6—C5—C7—O10.3 (2)C10—C11—C12—C130.3 (2)
C6—C5—C7—N1179.15 (14)C11—C12—C13—C140.4 (2)
C5—C4—C4i—C2i0.1 (2)C10—C15—C14—C130.4 (2)
C5—C4—C2—C10.6 (2)C15—C14—C13—C120.1 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1, z; (iii) x, y1, z; (iv) x+1, y, z+1; (v) x+1, y1, z+1; (vi) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC30H22N2O4
Mr474.50
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)7.70264 (14), 4.93695 (9), 29.9857 (5)
β (°) 97.9096 (7)
V3)1129.44 (3)
Z2
Radiation typeCu Kα
µ (mm1)0.76
Crystal size (mm)0.5 × 0.14 × 0.06
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.790, 0.955
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
9315, 1993, 1723
Rint0.033
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.124, 1.13
No. of reflections1993
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.31

Computer programs: PROCESS-AUTO (Rigaku, 1998), PROCESS-AUTO, CrystalStructure (Rigaku/MSC), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), CrystalStructure.

 

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHädicke, E. & Graser, F. (1986). Acta Cryst. C42, 189–195.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHerbst, W. & Hunger, K. (2004). Industrial Organic Pigments, pp. 473–487. Weinheim: VCH.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHino, K. & Mizuguchi, J. (2005). Acta Cryst. E61, o672–o674.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMizuguchi, J. (1981). Krist. Tech. 16, 695–700.  CrossRef CAS Google Scholar
First citationMizuguchi, J. (1998a). Acta Cryst. C54, 1479–1481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMizuguchi, J. (1998b). J. Appl. Phys. 84, 4479–4486.  Web of Science CrossRef CAS Google Scholar
First citationMizuguchi, J. (2003a). Z. Krist. New Cryst. Struct. 218, 137-138.  CAS Google Scholar
First citationMizuguchi, J. (2003b). Z. Krist. New Cryst. Struct. 218, 139-140.  CAS Google Scholar
First citationMizuguchi, J. (2004). J. Phys. Chem. B, 108, 8926-8930.  Web of Science CrossRef CAS Google Scholar
First citationMizuguchi, J. (2005a). Acta Cryst. E61, o1064–o1065.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMizuguchi, J. (2005b). Acta Cryst. E61, o1066–o1067.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMizuguchi, J. & Hino, K. (2005). Acta Cryst. E61, o669–o671.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMizuguchi, J., Hino, K. & Tojo, K. (2006). Dyes Pigm. 70, 126-135.  Web of Science CrossRef CAS Google Scholar
First citationMizuguchi, J., Makino, T., Imura, Y., Takahashi, H. & Suzuki, S. (2005). Acta Cryst. E61, o3044–o3046.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMizuguchi, J. & Shimo, N. (2006). J. Imag. Sci. Tech. 50, 115–121.  Web of Science CrossRef CAS Google Scholar
First citationMizuguchi, J. & Tojo, K. (2002). Z. Krist. New Cryst. Struct. 217, 247-248.  CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure (Version 3.8). Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTsukada, Y., Hirao, K. & Mizuguchi, J. (2007). Acta Cryst. E63, o3872.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds