organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of ethyl­ene­di­ammonium bis­­(p-methyl­benzene­sulfonate) monohydrate

aCollege of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, People's Republic of China, and bCollege of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: apharm@sina.com

(Received 17 November 2007; accepted 12 December 2007; online 21 December 2007)

In the asymmetric unit of the title compound, C2H10N22+·2C7H7O3S·H2O, there are two independent 4-methyl­benzene­sulfonate anions, one ethyl­enediammonium cation and a water mol­ecule. The present redetermination was carried out to improve the treatment of disorder, which was not refined in the previous study [Ahn & Kim (1985[Ahn, C.-T. & Kim, E.-S. (1985). J. Korean Chem. Soc. 29, 335-340.]). J. Korean Chem. Soc. 29, 335–340]. One of the sulfonate groups is disordered over two positions, with site-occupancy factors of 0.588 (14) and 0.412 (14). Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds hold the three components together, affording a layer structure extending parallel to the (001) plane.

Related literature

The crystal structure of the title compound has been reported previously by Ahn & Kim (1985[Ahn, C.-T. & Kim, E.-S. (1985). J. Korean Chem. Soc. 29, 335-340.]). For related compounds, see: Edwards et al. (2001[Edwards, S. H., Kahwa, I. A. & Mague, J. T. (2001). Acta Cryst. E57, o20-o21.]); Bryant et al. (1993[Bryant, G. L., Yakymyshyn, C. P. & Stewart, K. R. (1993). Acta Cryst. C49, 350-351.]); Nakamura & Iitaka (1978[Nakamura, H. & Iitaka, Y. (1978). Acta Cryst. B34, 3384-3387.]); Nethaji et al. (1992[Nethaji, M., Pattabhi, V., Chhabra, N. & Poonia, N. S. (1992). Acta Cryst. C48, 2207-2209.]).

[Scheme 1]

Experimental

Crystal data
  • C2H10N22+·2C7H7O3S·H2O

  • Mr = 422.53

  • Monoclinic, P 21

  • a = 11.302 (2) Å

  • b = 7.724 (1) Å

  • c = 12.648 (2) Å

  • β = 111.77 (1)°

  • V = 1025.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 (2) K

  • 0.56 × 0.44 × 0.44 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.865, Tmax = 0.877

  • 2942 measured reflections

  • 2693 independent reflections

  • 2293 reflections with I > 2σ(I)

  • Rint = 0.015

  • 3 standard reflections every 97 reflections intensity decay: 5.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.151

  • S = 1.06

  • 2693 reflections

  • 273 parameters

  • 7 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 631 Friedel pairs

  • Flack parameter: −0.13 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O7i 0.89 1.87 2.736 (7) 165
N1—H1B⋯O5ii 0.89 2.14 2.942 (8) 149
N1—H1B⋯O6ii 0.89 2.57 3.365 (5) 148
N1—H1B⋯O6′ii 0.89 1.88 2.735 (8) 162
N1—H1C⋯O2 0.89 1.87 2.761 (6) 176
N2—H2A⋯O6iii 0.89 2.03 2.780 (7) 142
N2—H2B⋯O4 0.89 1.78 2.665 (5) 177
N2—H2C⋯O1iv 0.89 2.05 2.893 (6) 157
O7—H7D⋯O5 0.82 2.15 2.793 (5) 134
O7—H7E⋯O1iv 0.82 2.15 2.938 (9) 160
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+1]; (ii) x, y+1, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) x, y-1, z.

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1998[Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Previously, Ahn and Kim (1985) have reported X-ray diffraction study of the title compound, (I), with R = 0.060. The present redetermination of (I) gives improvement in the treatment of disorder.

In compound (I), one of sulfonate groups of 4-methylbenzenesulfonate anions is disordered (Fig. 1). In the previous paper (Ahn & Kim, 1985), these occupancy factors were not refined and for each disordered O atom a different occupancy factor was given, which could not be accepted from the chemical point of view. The shortest S—O bond lengths in the disorder sulfonate group is of [1.410 (8) Å], it deviates greatly from the shortest one observed in the previous study [1.380 (16) Å]. The present C—N bond lengths [1.468 (8) and 1.480 (7) Å] are smaller obviously than the previous result [1.502 (12) and 1.527 (14) Å]. All C—C bond lengths by our redetermination are consistent with those observed in the Ahn & Kim's result, correspondingly. The present bond lengths and angles of (I) are coherent with those observed in tosylate (Bryant et al., 1993; Nakamura & Iitaka, 1978) and ethylenediammonium (Edwards et al., 2001; Nethaji et al., 1992).

Related literature top

The crystal structure of the title compound has been reported previously by Ahn & Kim (1985). For related compounds, see: Edwards et al. (2001); Bryant et al. (1993); Nakamura & Iitaka (1978); Nethaji et al. (1992).

Experimental top

4-Methylbenzenesulfonic acid (0.02 mol, 3.12 g), ethylenediamine (0.01 mol, 0.60 g) and sufficient water were added together at 373 K with stirring. The resulting solution was allowed to stand for 5 days at room temperature to give single crystals of (I).

Refinement top

The sulfonate O atoms in one of 4-methylbenzenesulfonates are disordered over two sites, with occupancies of 0.412 (14) and 0.588 (14). S2—O4 and S2—O4', S2—O5 and S2—O5', and S2—O6 and S2—O6' are restrained to be identical with 0.01 Å deviation. The water H atoms were located in a difference Fourier map and the positions were fiexed, with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions (C—H = 0.93–0.96 Å and N—H = 0.89 Å), and allowed to ride on their parent atoms, with Uiso(H) values 1.2–1.5 times Ueq of the parent atoms.

Structure description top

Previously, Ahn and Kim (1985) have reported X-ray diffraction study of the title compound, (I), with R = 0.060. The present redetermination of (I) gives improvement in the treatment of disorder.

In compound (I), one of sulfonate groups of 4-methylbenzenesulfonate anions is disordered (Fig. 1). In the previous paper (Ahn & Kim, 1985), these occupancy factors were not refined and for each disordered O atom a different occupancy factor was given, which could not be accepted from the chemical point of view. The shortest S—O bond lengths in the disorder sulfonate group is of [1.410 (8) Å], it deviates greatly from the shortest one observed in the previous study [1.380 (16) Å]. The present C—N bond lengths [1.468 (8) and 1.480 (7) Å] are smaller obviously than the previous result [1.502 (12) and 1.527 (14) Å]. All C—C bond lengths by our redetermination are consistent with those observed in the Ahn & Kim's result, correspondingly. The present bond lengths and angles of (I) are coherent with those observed in tosylate (Bryant et al., 1993; Nakamura & Iitaka, 1978) and ethylenediammonium (Edwards et al., 2001; Nethaji et al., 1992).

The crystal structure of the title compound has been reported previously by Ahn & Kim (1985). For related compounds, see: Edwards et al. (2001); Bryant et al. (1993); Nakamura & Iitaka (1978); Nethaji et al. (1992).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: SHELXTL (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. A view of (I), showing 40% probability displacement ellipsoids.
ethylenediammonium bis(p-methylbenzenesulfonate) monohydrate top
Crystal data top
C2H10N22+·2C7H7O3S·H2OF(000) = 448
Mr = 422.53Dx = 1.368 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 31 reflections
a = 11.302 (2) Åθ = 3.3–18.3°
b = 7.724 (1) ŵ = 0.30 mm1
c = 12.648 (2) ÅT = 293 K
β = 111.77 (1)°Rod, colorless
V = 1025.4 (3) Å30.56 × 0.44 × 0.44 mm
Z = 2
Data collection top
Siemens P4
diffractometer
2293 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.5°, θmin = 1.7°
ω scansh = 1313
Absorption correction: ψ scan
(North et al., 1968)
k = 89
Tmin = 0.865, Tmax = 0.877l = 1514
2942 measured reflections3 standard reflections every 97 reflections
2693 independent reflections intensity decay: 5.0%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.053 w = 1/[σ2(Fo2) + (0.0975P)2 + 0.2733P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.151(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.46 e Å3
2693 reflectionsΔρmin = 0.45 e Å3
273 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
7 restraintsExtinction coefficient: 0.041 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 631 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.13 (14)
Crystal data top
C2H10N22+·2C7H7O3S·H2OV = 1025.4 (3) Å3
Mr = 422.53Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.302 (2) ŵ = 0.30 mm1
b = 7.724 (1) ÅT = 293 K
c = 12.648 (2) Å0.56 × 0.44 × 0.44 mm
β = 111.77 (1)°
Data collection top
Siemens P4
diffractometer
2293 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.015
Tmin = 0.865, Tmax = 0.8773 standard reflections every 97 reflections
2942 measured reflections intensity decay: 5.0%
2693 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.151Δρmax = 0.46 e Å3
S = 1.06Δρmin = 0.45 e Å3
2693 reflectionsAbsolute structure: Flack (1983), 631 Friedel pairs
273 parametersAbsolute structure parameter: 0.13 (14)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.39487 (9)1.37382 (17)0.69865 (8)0.0449 (3)
S20.23545 (10)0.3854 (2)0.30145 (8)0.0486 (3)
N10.1694 (3)1.0595 (6)0.4993 (3)0.0493 (9)
H1A0.08761.04930.48980.074*
H1B0.17591.11890.44150.074*
H1C0.21081.11510.56420.074*
N20.4215 (4)0.7319 (6)0.5269 (4)0.0572 (10)
H2A0.50310.74560.53650.086*
H2B0.38160.67340.46290.086*
H2C0.41630.67340.58560.086*
O30.4599 (3)1.3428 (6)0.6225 (3)0.0651 (11)
O10.3297 (4)1.5388 (6)0.6770 (4)0.0644 (11)
O20.3079 (4)1.2347 (7)0.6970 (4)0.0806 (14)
O40.3036 (16)0.5455 (15)0.3399 (9)0.074 (4)0.412 (14)
O50.1256 (9)0.3402 (16)0.3317 (8)0.073 (4)0.412 (14)
O60.3193 (14)0.2405 (15)0.3414 (10)0.074 (4)0.412 (14)
O4'0.3607 (7)0.4619 (15)0.3379 (6)0.072 (3)0.588 (14)
O5'0.1431 (8)0.4885 (14)0.3320 (7)0.090 (4)0.588 (14)
O6'0.2406 (12)0.2116 (11)0.3368 (8)0.091 (3)0.588 (14)
O70.0703 (3)0.4716 (7)0.5140 (3)0.0804 (14)
H7D0.07820.49330.45330.097*
H7E0.13490.48410.57130.097*
C10.5101 (3)1.3818 (7)0.8381 (3)0.0373 (7)
C20.4835 (4)1.4629 (7)0.9233 (4)0.0482 (10)
H20.40661.52060.90700.058*
C30.5726 (4)1.4581 (7)1.0342 (4)0.0531 (11)
H30.55441.51371.09160.064*
C40.6870 (4)1.3731 (8)1.0608 (3)0.0462 (9)
C50.7114 (4)1.2905 (7)0.9742 (4)0.0496 (11)
H50.78791.23130.99110.060*
C60.6248 (4)1.2935 (7)0.8628 (4)0.0463 (10)
H60.64291.23750.80550.056*
C70.7803 (5)1.3664 (10)1.1808 (4)0.0645 (13)
H7A0.74751.43051.22900.097*
H7B0.85971.41611.18480.097*
H7C0.79371.24811.20580.097*
C80.1792 (3)0.3870 (7)0.1514 (3)0.0392 (8)
C90.0644 (4)0.4651 (7)0.0900 (4)0.0467 (10)
H90.01670.51670.12750.056*
C100.0205 (4)0.4663 (8)0.0284 (4)0.0529 (12)
H100.05640.52040.06960.063*
C110.0887 (4)0.3890 (8)0.0854 (3)0.0514 (10)
C120.2040 (4)0.3120 (7)0.0222 (4)0.0515 (11)
H120.25200.26070.05950.062*
C130.2487 (4)0.3101 (7)0.0948 (4)0.0484 (10)
H130.32590.25680.13580.058*
C140.0403 (7)0.3881 (13)0.2143 (4)0.0838 (18)
H14A0.04050.44600.24420.126*
H14B0.03070.27070.24110.126*
H14C0.10020.44700.23910.126*
C150.2250 (4)0.8868 (9)0.5035 (4)0.0552 (11)
H15A0.17970.82540.43320.066*
H15B0.21700.82090.56590.066*
C160.3611 (5)0.9038 (9)0.5199 (6)0.0727 (16)
H16A0.40540.96790.58930.087*
H16B0.36840.96830.45680.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0487 (5)0.0482 (6)0.0368 (5)0.0021 (6)0.0147 (4)0.0040 (6)
S20.0539 (5)0.0557 (7)0.0343 (5)0.0051 (6)0.0141 (4)0.0083 (6)
N10.0506 (19)0.048 (2)0.051 (2)0.0041 (17)0.0214 (17)0.0042 (19)
N20.060 (2)0.051 (2)0.067 (3)0.011 (2)0.032 (2)0.008 (2)
O30.0771 (19)0.080 (3)0.0425 (16)0.011 (2)0.0271 (15)0.0027 (19)
O10.073 (2)0.060 (2)0.056 (2)0.0253 (19)0.0182 (18)0.0121 (19)
O20.081 (2)0.088 (3)0.056 (2)0.035 (3)0.0054 (19)0.010 (2)
O40.106 (10)0.064 (8)0.039 (6)0.012 (7)0.013 (6)0.002 (5)
O50.099 (7)0.069 (10)0.039 (5)0.010 (6)0.014 (5)0.004 (5)
O60.102 (9)0.067 (7)0.040 (6)0.006 (7)0.012 (6)0.003 (5)
O4'0.076 (4)0.091 (7)0.053 (4)0.003 (4)0.030 (3)0.013 (4)
O5'0.109 (6)0.111 (10)0.053 (4)0.010 (6)0.032 (4)0.012 (5)
O6'0.112 (8)0.108 (8)0.054 (5)0.007 (7)0.033 (5)0.015 (5)
O70.0564 (18)0.118 (4)0.066 (2)0.011 (2)0.0218 (17)0.002 (3)
C10.0422 (16)0.0346 (19)0.0365 (17)0.003 (2)0.0164 (14)0.001 (2)
C20.046 (2)0.051 (3)0.051 (2)0.009 (2)0.0222 (18)0.003 (2)
C30.063 (3)0.053 (3)0.049 (2)0.001 (2)0.028 (2)0.012 (2)
C40.0514 (19)0.041 (2)0.045 (2)0.005 (3)0.0171 (16)0.001 (3)
C50.047 (2)0.047 (3)0.055 (3)0.006 (2)0.0192 (19)0.003 (2)
C60.048 (2)0.050 (3)0.045 (2)0.006 (2)0.0227 (18)0.005 (2)
C70.069 (3)0.065 (3)0.051 (3)0.003 (3)0.013 (2)0.000 (3)
C80.0416 (16)0.036 (2)0.0402 (19)0.006 (2)0.0154 (14)0.004 (2)
C90.0431 (19)0.051 (3)0.048 (2)0.0043 (19)0.0192 (17)0.004 (2)
C100.041 (2)0.063 (3)0.046 (2)0.001 (2)0.0061 (17)0.011 (2)
C110.065 (2)0.046 (3)0.041 (2)0.007 (3)0.0169 (18)0.004 (3)
C120.059 (2)0.054 (3)0.047 (2)0.002 (2)0.026 (2)0.002 (2)
C130.0444 (19)0.050 (3)0.050 (2)0.0083 (19)0.0172 (18)0.005 (2)
C140.108 (4)0.096 (5)0.040 (2)0.016 (5)0.018 (2)0.006 (4)
C150.058 (2)0.051 (3)0.057 (3)0.000 (3)0.0215 (19)0.005 (3)
C160.070 (3)0.054 (4)0.107 (4)0.009 (3)0.048 (3)0.011 (3)
Geometric parameters (Å, º) top
S1—O31.432 (3)C4—C51.381 (7)
S1—O11.446 (4)C4—C71.494 (6)
S1—O21.451 (4)C5—C61.386 (7)
S1—C11.762 (4)C5—H50.9300
S2—O6'1.410 (8)C6—H60.9300
S2—O61.432 (9)C7—H7A0.9600
S2—O41.442 (8)C7—H7B0.9600
S2—O4'1.442 (7)C7—H7C0.9600
S2—O51.471 (8)C8—C131.379 (6)
S2—O5'1.473 (7)C8—C91.379 (6)
S2—C81.764 (4)C9—C101.392 (6)
N1—C151.468 (8)C9—H90.9300
N1—H1A0.8900C10—C111.372 (7)
N1—H1B0.8900C10—H100.9300
N1—H1C0.8900C11—C121.385 (7)
N2—C161.480 (7)C11—C141.515 (6)
N2—H2A0.8900C12—C131.374 (7)
N2—H2B0.8900C12—H120.9300
N2—H2C0.8900C13—H130.9300
O7—H7D0.8228C14—H14A0.9600
O7—H7E0.8218C14—H14B0.9600
C1—C21.372 (6)C14—H14C0.9600
C1—C61.394 (6)C15—C161.480 (7)
C2—C31.391 (7)C15—H15A0.9700
C2—H20.9300C15—H15B0.9700
C3—C41.376 (7)C16—H16A0.9700
C3—H30.9300C16—H16B0.9700
O3—S1—O1111.9 (2)C5—C6—C1118.9 (4)
O3—S1—O2112.4 (3)C5—C6—H6120.5
O1—S1—O2110.8 (3)C1—C6—H6120.5
O3—S1—C1107.82 (18)C4—C7—H7A109.5
O1—S1—C1107.1 (2)C4—C7—H7B109.5
O2—S1—C1106.6 (2)H7A—C7—H7B109.5
O6—S2—O4110.5 (8)C4—C7—H7C109.5
O6—S2—O5103.5 (8)H7A—C7—H7C109.5
O4—S2—O5120.8 (8)H7B—C7—H7C109.5
O6'—S2—O4'111.6 (6)C13—C8—C9119.6 (4)
O6'—S2—O5'112.4 (6)C13—C8—S2120.6 (3)
O4'—S2—O5'113.7 (6)C9—C8—S2119.8 (3)
O6'—S2—C8107.7 (4)C8—C9—C10119.6 (4)
O6—S2—C8108.2 (5)C8—C9—H9120.2
O4—S2—C8107.0 (5)C10—C9—H9120.2
O4'—S2—C8105.1 (3)C11—C10—C9121.1 (4)
O5—S2—C8106.2 (4)C11—C10—H10119.4
O5'—S2—C8105.7 (3)C9—C10—H10119.4
C15—N1—H1A109.5C10—C11—C12118.4 (4)
C15—N1—H1B109.5C10—C11—C14121.2 (5)
H1A—N1—H1B109.5C12—C11—C14120.4 (5)
C15—N1—H1C109.5C13—C12—C11121.2 (4)
H1A—N1—H1C109.5C13—C12—H12119.4
H1B—N1—H1C109.5C11—C12—H12119.4
C16—N2—H2A109.5C12—C13—C8120.1 (4)
C16—N2—H2B109.5C12—C13—H13119.9
H2A—N2—H2B109.5C8—C13—H13119.9
C16—N2—H2C109.5C11—C14—H14A109.5
H2A—N2—H2C109.5C11—C14—H14B109.5
H2B—N2—H2C109.5H14A—C14—H14B109.5
H7D—O7—H7E115.5C11—C14—H14C109.5
C2—C1—C6120.2 (4)H14A—C14—H14C109.5
C2—C1—S1120.4 (3)H14B—C14—H14C109.5
C6—C1—S1119.2 (3)N1—C15—C16109.5 (5)
C1—C2—C3119.5 (4)N1—C15—H15A109.8
C1—C2—H2120.2C16—C15—H15A109.8
C3—C2—H2120.2N1—C15—H15B109.8
C4—C3—C2121.5 (4)C16—C15—H15B109.8
C4—C3—H3119.2H15A—C15—H15B108.2
C2—C3—H3119.2C15—C16—N2111.2 (5)
C3—C4—C5118.2 (4)C15—C16—H16A109.4
C3—C4—C7120.7 (4)N2—C16—H16A109.4
C5—C4—C7121.1 (4)C15—C16—H16B109.4
C4—C5—C6121.7 (4)N2—C16—H16B109.4
C4—C5—H5119.2H16A—C16—H16B108.0
C6—C5—H5119.2
O3—S1—C1—C2158.9 (4)O5—S2—C8—C13135.5 (7)
O1—S1—C1—C238.3 (5)O5'—S2—C8—C13176.0 (6)
O2—S1—C1—C280.3 (5)O6'—S2—C8—C9116.2 (7)
O3—S1—C1—C626.0 (5)O6—S2—C8—C9154.9 (8)
O1—S1—C1—C6146.6 (4)O4—S2—C8—C986.0 (9)
O2—S1—C1—C694.8 (4)O4'—S2—C8—C9124.7 (6)
C6—C1—C2—C30.8 (7)O5—S2—C8—C944.3 (7)
S1—C1—C2—C3175.9 (4)O5'—S2—C8—C94.2 (6)
C1—C2—C3—C40.3 (8)C13—C8—C9—C100.4 (7)
C2—C3—C4—C50.5 (8)S2—C8—C9—C10179.9 (4)
C2—C3—C4—C7178.8 (5)C8—C9—C10—C110.8 (8)
C3—C4—C5—C60.7 (8)C9—C10—C11—C121.2 (9)
C7—C4—C5—C6179.0 (5)C9—C10—C11—C14179.2 (6)
C4—C5—C6—C10.2 (8)C10—C11—C12—C131.0 (9)
C2—C1—C6—C50.6 (7)C14—C11—C12—C13179.4 (6)
S1—C1—C6—C5175.7 (4)C11—C12—C13—C80.6 (8)
O6'—S2—C8—C1363.6 (7)C9—C8—C13—C120.2 (7)
O6—S2—C8—C1324.9 (9)S2—C8—C13—C12180.0 (4)
O4—S2—C8—C1394.2 (9)N1—C15—C16—N2178.9 (4)
O4'—S2—C8—C1355.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O7i0.891.872.736 (7)165
N1—H1B···O5ii0.892.142.942 (8)149
N1—H1B···O6ii0.892.573.365 (5)148
N1—H1B···O6ii0.891.882.735 (8)162
N1—H1C···O20.891.872.761 (6)176
N2—H2A···O6iii0.892.032.780 (7)142
N2—H2B···O40.891.782.665 (5)177
N2—H2C···O1iv0.892.052.893 (6)157
O7—H7D···O50.822.152.793 (5)134
O7—H7E···O1iv0.822.152.938 (9)160
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC2H10N22+·2C7H7O3S·H2O
Mr422.53
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.302 (2), 7.724 (1), 12.648 (2)
β (°) 111.77 (1)
V3)1025.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.56 × 0.44 × 0.44
Data collection
DiffractometerSiemens P4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.865, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
2942, 2693, 2293
Rint0.015
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.151, 1.06
No. of reflections2693
No. of parameters273
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.45
Absolute structureFlack (1983), 631 Friedel pairs
Absolute structure parameter0.13 (14)

Computer programs: XSCANS (Siemens, 1994), SHELXTL (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O7i0.891.872.736 (7)165
N1—H1B···O5ii0.892.142.942 (8)149
N1—H1B···O6ii0.892.573.365 (5)148
N1—H1B···O6'ii0.891.882.735 (8)162
N1—H1C···O20.891.872.761 (6)176
N2—H2A···O6iii0.892.032.780 (7)142
N2—H2B···O40.891.782.665 (5)177
N2—H2C···O1iv0.892.052.893 (6)157
O7—H7D···O50.822.152.793 (5)134
O7—H7E···O1iv0.822.152.938 (9)160
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1; (iv) x, y1, z.
 

References

First citationAhn, C.-T. & Kim, E.-S. (1985). J. Korean Chem. Soc. 29, 335–340.  CAS Google Scholar
First citationBruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdwards, S. H., Kahwa, I. A. & Mague, J. T. (2001). Acta Cryst. E57, o20–o21.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBryant, G. L., Yakymyshyn, C. P. & Stewart, K. R. (1993). Acta Cryst. C49, 350–351.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNakamura, H. & Iitaka, Y. (1978). Acta Cryst. B34, 3384–3387.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNethaji, M., Pattabhi, V., Chhabra, N. & Poonia, N. S. (1992). Acta Cryst. C48, 2207–2209.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds